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1 Background on Crossing Number

We assume that the reader is familiar with basic terms of graph theory. In
this paper we consider finite simple graphs, unless we specifically speak about
multigraphs. A graph is cubic if it has all vertices of degree 3.

In a (proper) drawing of a graph G in the plane the vertices of G are
points and the edges are simple curves joining their endvertices. Moreover,
it is required that no edge passes through a vertex (except at its ends), and
that no three edges intersect in a common point which is not a vertex. An
edge crossing is an intersection point of two edges-curves in the drawing which
is not a vertex. The crossing number cr(G) of a graph G is the minimum
number of edge crossings in a proper drawing of G in the plane (thus, a graph
is planar if and only if its crossing number is 0). We remark that there are
other possible definitions of crossing number which are supposed, but not(!)
known, to be equivalent to each other.

The algorithmic problem CrossingNumber is given as follows:

Input: A multigraph G and an integer k.

Question: Is it true that cr(G) ≤ k ?

It has been proved in a classical paper by Garey and Johnson [3] that Cros-
singNumber is an NP -complete problem for k on the input.

Since then, a new significant complexity result about graph crossing
number has appeared only recently — a paper by Grohe [4] presenting
a quadratic-time (“FPT”) algorithm for CrossingNumber(k) with con-
stant k. There is also a long-standing open question, originally asked by
Seese: What is the complexity of CrossingNumber for graphs of fixed
tree-width? (Here we leave aside other results dealing with various restricted
versions of the crossing number problem appearing in connection with VLSI
design or with graph drawing, such as the “layered crossing” number etc.)

Before the above mentioned “FPT” algorithm of Grohe for crossing num-
ber has appeared; Fellows [1] observed that there are finitely many excluded
minors for the cubic graphs of crossing number at most k, which implied a
(non-constructive) algorithm for CrossingNumber(k) with constant k over
cubic graphs. That observation might still suggest that CrossingNumber
was easier to solve over cubic graphs than in general. However, that is not
so, as we show in this paper.
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A minor F of a graph G is a graph obtained from a subgraph of G by
contractions of edges. Let us further define the minor-monotone crossing
number mcr(G) as the smallest crossing number cr(H) over all graphs H
having G as a minor. The traditional crossing number does not behave well
with respect to taking minors; one may find graphs G such that cr(G) = 1 but
cr(G′) is arbitrarily large for a minor G′ of G. On the other hand, mcr(G′) ≤
mcr(G) for a minor G′ of G by definition. Our main result immediately
extends to a proof that also the minor-monotone crossing number is NP -
hard to compute, which has been an open question till now.

2 Crossing Number and OLA

We first define another classical NP -complete combinatorial problem [2]
called OptimalLinearArrangement, which is given as follows:

Input: An n-vertex graph G, and an integer a.

Question: Is there a bijection α : V (G) → {1, . . . , n} (a linear arrangement
of vertices) such that the following holds

∑

uv∈E(G)
|α(u) − α(v)| ≤ a ?(1)

The sum on the left of (1) is called the weight of α.
The above mentioned paper [3] actually reduces CrossingNumber from

OptimalLinearArrangement. We, however, consider that reduction
“unrealistic” in the following sense: The reduction in [3] creates many large
classes of parallel edges, and it uses vertices of very high degrees. (There
seems to be no easy modification avoiding those.) So we consider it natural
to ask what can be said about the crossing number problem on simple graphs
with small vertex degrees.

It might be tempting to construct a “nicer” polynomial reduction for
CrossingNumber from another NP -complete problem called Planar-SAT
(a version of the satisfiability problem with a planar incidence graph). There
have been, to our knowledge, a few attempts in this directions, so far unsuc-
cessful. We consider this phenomenon remarkable since Planar-SAT seems to
be much closer to the crossing-number problem than the Linear Arrangement
is.
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Still, we have found another construction reducing CrossingNumber
from OptimalLinearArrangement, which produces cubic graphs. The
basic idea of our construction is similar to [3], but the restriction to degree-
3 vertices brings many more difficulties to the proofs. The construction
establishes our main result which reads:

Theorem 2.1 The problem CrossingNumber is NP -complete for 3-
connected (simple) cubic graphs.

Let us, moreover, define so called MM-CrossingNumber problem (from
“Minor-Monotone”) as follows:

Input: A multigraph G and an integer k.

Question: Is it true that mcr(G) ≤ k ?

We immediately conclude the following new result.

Corollary 2.2 The problem MM-CrossingNumber is NP -complete.

Observation Let a cubic graph G be a minor of a multigraph H. Then
some subdivision of G is contained as a subgraph in H. Hence cr(G) ≤ cr(H).

Thus cr(G) = mcr(G) for cubic graphs, and the corollary follows directly
from Theorem 2.1.

3 Our Cubic Construction

Let us call a cubic grid the graph illustrated in Figure 1 (looking like a “brick
wall”). We say that the cubic-grid height equals the number of the “hori-
zontal” paths, and the length equals the number of edges on the “top-most”
horizontal path. (The positions are referred to as in Figure 1.) Formally, the
cubic grid of even height h and length `, denoted by C ′

h,`, is defined

V (C ′
h,`) = {vi,j : i = 1, 2, . . . , h; j = 0, 1, . . . , `}∪

∪{wi,j : i = 2, 3, . . . , h − 1; j = 1, 2, . . . , `} ,

E(C ′
h,`) = {v2i−1,jv2i,j : i = 1, 2, . . . , h/2; j = 0, 1, . . . , `}∪

∪{w2i,jw2i+1,j : i = 2, 3, . . . , h/2 − 1; j = 1, 2, . . . , `}∪
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∪{vi,j−1wi,j, wi,jvi,j : i = 2, 3, . . . , h − 1; j = 1, 2, . . . , `}∪

∪{vi,j−1vi,j : i = 1, h; j = 1, 2, . . . , `} .

Suppose we now identify the “left-most” vertices in the grid C ′
h,` with the

“right-most” ones, formally vi,0 = vi,` for i = 1, 2, . . . , h, and simplify the
resulting graph. Then we obtain the cyclic cubic grid Ch,` (which is, indeed,
a cubic graph).

Figure 1: An illustration of a cubic grid (a fragment of length 11 and height
8).

Let us have a cubic grid C ′
h,` or Ch,` as above. We say that an edge f is

attached to the grid at low position j if the edge v1,j−1v1,j is subdivided with
a vertex xf , where xf is an endvertex of f as well. We say that f is attached
at high position j if an analogous construction is done for the edge vh,j−1vh,j.
Notice that the new vertex xf introduced when attaching an edge f has
degree 3, and that the degrees of other vertices are unchanged. Similarly, a
vertex x is attached to the grid at position j if two new edges f, f ′ with a
common endvertex x are attached via their other endvertices at low and high
positions j, respectively, to our cubic grid. This is illustrated on a detailed
picture in Figure 2.

In a cyclic cubic grid Ch,`, the cycles M i on vertices vi,0wi,1vi,1wi,2-
. . . vi,`−1wi,` for i = 2, 3, . . . , h−1, and on vertices vi,0vi,1 . . . vi,`−1 for i = 1, h,
are called the main cycles of the grid Ch,`. M1 and Mh are also referred to
as the outer main cycles. We use the same names, main cycles, for the sub-
divisions of the cycles M i in graphs created from the grid Ch,` by attaching
edges.

Assume now that we are given a graph G on n vertices. In order to prove
Theorem 2.1, we are going to construct a cubic graph HG depending on G.
(Although our graph HG is huge, it has polynomial size in G.) We show
then how one can compute the weight of an optimal linear arrangement for
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Figure 2: A detail of the cyclic cubic grid C4,`, with an edge f attached at
high position j.

G from the crossing number cr(HG), and vice versa. Our construction uses
several size parameters defined next:

n = |V (G)|, m = |E(G)|,

t = 2mn,(2)

r = t2 = 4m2n2,

s = m3r = 4m5n2,

q = (m3 + n + 1)r = 4m5n2 + 4m2n3 + 4m2n2,

z = 2((s + rn)nt + r) = 16m6n4 + 16m3n5 + 8m2n2.

Without loss of generality we may assume that the graph G is sufficiently
large, say

m > n > 100 .(3)

We start with two copies B1, B2 of the cyclic cubic grid Cz,q, called here
the boulders (for their huge size that keeps the rest of our graph “in place”).
Then we make n disjoint copies R1, . . . , Rn of the cyclic cubic grid Ct,q, called
here the rings. An intermediate step in the construction – our graph Hm,n,
is obtained by the following operations:

• Start with the disjoint union B1∪B2∪R1∪ . . .∪Rn of the two boulders
and the n rings.
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• For every pair of integers 0 ≤ i < m3 and 0 ≤ j < r, take a new edge
εs

i+jm3, and attach εs

i+jm3 at low positions i + j(m3 + n + 1) < q to
the boulder B1 via one end, and to B2 via the other end. These s new
edges εs

0, . . . , ε
s

s−1 are called the free spokes in Hm,n.

• For every pair of integers 1 ≤ i ≤ n and 0 ≤ j < r, set p = i−1+m3 +
j(m3 + n + 1) < q, and take two new vertices ν r1

i,j and ν r3

i,j connected
by an edge εp2

i,j. Then attach a new edge εp1

i,j (new edge εp3

i,j) with one
end ν r1

i,j (one end ν r3

i,j) to the boulder B1 (B2) at low position p via the
other end. Finally, attach a new edge εr1

i,j (new edge εr3

i,j) to the ring Ri

at low (high) position p via the other end. The path formed by three
edges εp1

i,j, ε
p2

i,j, ε
p3

i,j is called the j-th ring spoke of Ri in Hm,n.

We remark that the above construction attaches only one edge at the same
position of each of the boulders and rings, and so the operations are well-
defined. (Figure 3.) This remark applies also to further constructions on the
graph HG.

To simplify our notation, the above names of the boulders B1, B2 and the
rings Ri are inherited to the subdivisions of those boulders and rings created
in the construction of Hm,n. The same simplified notation is used further for
the graph HG, too.

B1 B2
R1 R2 Rn

εs

?

ν r1

? νr3

?

Figure 3: How to attach free and ring spokes in the graph Hm,n.

So far, the constructed graph Hm,n does not depend on a particular struc-
ture of G, but only on its size and our choice of the parameters (2). In the
next lemma we show that drawings of Hm,n are very “flexible”, and hence
suitable for modeling the linear arrangement problem of G. (Actually, all the
drawings described in the next lemma are optimal, as we see in Section 5.)
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Lemma 3.1 For any permutation π of the set {1, 2, . . . , n}; there is a draw-
ing of the graph Hm,n with (s + rn)nt crossings, such that the subdrawings
of the rings are pairwise disjoint, and that any free spoke in the drawing
intersects all the rings in order Rπ(1), . . . , Rπ(n) from B1 to B2.

Proof. We start with the unique planar embedding of the boulders and the
free and ring spokes of Hm,n. Then we draw each ring Ri of Hm,n so that
Ri separates the boulders from each other in the drawing, and that the rings
are nested into each other in the required order Rπ(1), . . . , Rπ(n). So each of
the s free spokes, and each of the rn ring spokes, has t crossings with each
ring (one with every main cycle), summing to a total of (s+ rn)nt crossings.
We finally attach, in a suitable drawing, each of the ring spokes to its ring
by the edges εr1

i,j and εr3

i,j with no additional crossings. See Figure 3 for an
illustration.

Finally, the graph HG needed for our polynomial reduction from G is
constructed as follows:

• Start with the graph Hm,n, for n = |V (G)| and m = |E(G)|. Number
the vertices V (G) = {1, 2, . . . , n}.

• For every ordered pair 0 < i, j ≤ n such that {i, j} ∈ E(G), set
p = (i − 1 + jn − n)4m2(m3 + n + 1) + m3 + n < q. In the graph
Hm,n, attach new vertices χij, χ

′
ij to the rings Ri, Rj, respectively, at

positions p, and add a new edge {χij, χ
′
ij}. The subgraph Xi,j induced

on the five new edges incident with χij, χ
′
ij is called a handle of the

edge ij in HG. (Figure 4.)

That is, the rings in HG model the vertices of G, and the handles model the
edges of G. As we show later, an optimal drawing of HG uniquely determines
an ordering of the rings of Hm,n, and hence the weight of an optimal linear
arrangement of G corresponds to the number of crossings between the rings
and the handles in an optimal drawing of the graph HG.

We conclude this section with an upper bound on the crossing number of
our constructed graph.

Lemma 3.2 Let us, for a given graph G, construct the graph HG as described
above. If G has a linear arrangement of weight A, then the crossing number
of HG is

cr(HG) ≤ (s + rn)nt + 2(A + m)t − 4m ,
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χij χ′
ij

Ri Rj

Figure 4: How to attach handles of the edges of G in the graph HG.

where the weight of a linear arrangement is defined by (1) on page 3, and
m, n, r, s, t are given by (2) on page 6.

Proof. Let α be the linear arrangement of G of weight A. We draw the
graph Hm,n ⊂ HG by Lemma 3.1 with (s+rn)nt edge crossings, such that the
rings are ordered as Rα−1(1), . . . , Rα−1(n) from B1 to B2. Then we draw the
handles in HG for all edges of G in the natural (shortest) way, as illustrated
in Figure 4.

Now for 0 < i, j ≤ n such that {i, j} ∈ E(G), the handle of ij in HG has
t − 1 crossings with the main cycles of the ring Ri and t − 1 crossings with
those of Rj. Moreover, the handle has t · |α(i)− α(j)| − t crossings with the
rings “between Ri and Rj”. Keeping in mind that each edge of G actually
makes two handles of ij and of ji, we sum the crossings of the handles:

∑

ij∈E(G)
2 (t · |α(i) − α(j)| − t + 2t − 2) =

= 2t
∑

ij∈E(G)
|α(i) − α(j)| + 2mt − 4m = 2At + 2mt − 4m .

Altogether, the described drawing of HG has (s + rn)nt + 2(A + m)t − 4m
crossings.

Now, using obvious A ≤ m(n − 1), it is easy to conclude:

Corollary 3.3 For any G conforming to (3), cr(HG) < z/2 = (s+rn)nt+r.
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4 Assorted Topological Lemmas

We need to be a bit more formal in this section. A curve γ is a continuous
function mapping the interval [0, 1] to a topological space. A curve γ is a
closed curve if γ(0) = γ(1). A closed curve γ is contractible in a topological
space if γ can be continuously deformed to a single point there. We call a
cylinder the topological space obtained from the unit square by identifying
one pair of opposite edges in the same direction. (A cylinder has two disjoint
closed curves as the boundary.)

We are going to deal with collections of curves having somehow special
structure. A set Γ of curves is called nice if all of the following are true:

• No three curves in Γ have a common intersection.

• If x is a self-intersection point of a curve γ ∈ Γ, i.e. x = γ(a) = γ(b)
for distinct a, b ∈ [0, 1], then no other curve in Γ passes through x.

• If x in an intersection point of γ, γ ′ ∈ Γ, then in a sufficiently small
neighbourhood U of x, the curves γ, γ ′ are otherwise disjoint, and they
intersect the boundary of U in a cyclic order of γ, γ ′, γ, γ′ (they “prop-
erly cross”).

A subset of a nice set of curves is nice as well by the definition. Naturally,
we call a crossing of curves the intersection point of two curves in a nice
set. This obviously corresponds with the notion of an edge crossing in a
topological graph.

Lemma 4.1 Let k, ` be positive integers, let p = k(` + 1), and let Π be a
cylinder with two closed boundary curves π1, π2. Let X1, . . . , Xp be distinct
points on π1 in this cyclic order, and let Y1, . . . , Yp be distinct points on π2

in the corresponding cyclic order. Suppose that S = {σi : i = 1, . . . , p} is a
nice set of p curves on Π such that each σi has ends Xi and Yi, and that τ is
a contractible closed curve on Π disjoint from π1, π2. Moreover, assume that
τ intersects each one of the curves in S0 = {σi(`+1) : i = 1, . . . , k} ⊂ S, and
that (S \ S0) ∪ {τ} also forms a nice set of curves. Then at least one of the
two cases happens:

• τ crosses twice at least 3
5
k` of the curves in S \ S0, or

• there are at lest ( 2
25

k2 − 1
5
k)` crossings of curves in S.
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Proof. First notice that since τ is a contractible closed curve, it divides Π
into two connected regions, one of them containing both π1, π2. So if a curve
σ ∈ S \ S0 intersects τ (and, recall {σ, τ} is nice), then σ has (at lest) two
crossings with τ by Jordan’s curve theorem. Hence, let us assume that more
than 2

5
k` of the curves in S \ S0 are disjoint from τ , and denote their subset

by S1 ⊆ S \ S0.

Claim 4.1.1. For any two ϕ, ϕ′ ∈ S1 and two θ, θ′ ∈ S0 such that the ends
of ϕ, ϕ′ on π1 separate the ends of θ, θ′ there, one of θ or θ′ has at least two
crossings with ϕ ∪ ϕ′.

To see that the claim holds true; realize that one of the connected com-
ponents of the topological space Π \ (ϕ ∪ ϕ′) contains the whole curve τ by
our choice of ϕ, ϕ′, and no such component may contain an end of θ and an
end of θ′ at the same time. See Figure 5.

τ
ϕ ϕ′

θ′θ

π1

Figure 5: An illustration to Claim 4.1.1.

For the rest of the proof of Lemma 4.1 we focus on the collection of curves
S0 ∪ S1, and consider their cyclic ordering determined by their ends on π1.
(Also the same cyclic ordering as determined by their ends on π2.) By the
assumptions, every ` + 1 consecutive curves of S0 ∪ S1 must contain at least
one curve from S0. So we find a, b such that σa(`+1), σb(`+1) ∈ S0 divide the
cyclic ordering of S1 into two parts of size at least 1

2
(|S1|− `) each. Hence we

may apply Claim 4.1.1 to θ = σa(`+1), θ
′ = σb(`+1) and to 1

2
(|S1| − `) choices

of disjoint pairs from S1, accounting for at least |S1| − ` crossings in S.
More generally, with indices modulo p the pair σ(a+i)(`+1), σ(b+i)(`+1) ∈ S0

divides the cyclic ordering of S1 into two parts of size at least 1
2
(|S1|−(i+1)`)

each, for i = 0, 1, . . . , 2
5
k−2. By applying the previous idea for each pair θ =

σ(a+i)(`+1), θ′ = σ(b+i)(`+1), we find at least this number of distinct crossings
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of curves in S:

2k/5−2
∑

i=0

(|S1| − (i + 1)`) ≥
2k/5−2
∑

i=0

(

2

5
k` − (i + 1)`

)

=

=
2k/5−1
∑

i=1

i` =

(

2k/5

2

)

` =
(

2

25
k2 −

1

5
k
)

`

Lemma 4.2 Let n, t be positive integers. Suppose that, for each i =
1, 2, . . . , n, we have a set Ri of t closed curves. If the union R1∪R2∪. . .∪Rn

has less than t2 intersecting pairs of curves, then there are pairwise disjoint
representatives %i ∈ Ri, i = 1, 2, . . . , n.

Proof. We select the curve %1 ∈ R1 which is intersected by the least number
of other curves. Then we replace R1 by the collection R′

1 of t copies of %1, but
we do not count the pairs from R′

1 as intersecting. It follows from the way
we have chosen %1, that the number of intersecting pairs in R′

1∪R2∪ . . .∪Rn

is not larger than in R1 ∪ R2 ∪ . . . ∪Rn.
In the next step we analogously select %2 ∈ R2 with the least number of

intersections, and replace R2 by R′
2 consisting of t copies of %2 (not considered

pairwise intersecting); and so on. . . , up to %n. We claim that %1, %2, . . . , %n

are the desired pairwise disjoint representatives. Indeed, if %i intersected %j,
then there would be t2 intersecting pairs from R′

i and R′
j, and hence also

the number of intersecting pairs in the original collection R1 ∪R2 ∪ . . .∪Rn

would had been at least t2, a contradiction.

For the next two lemmas, we define a set X (c, d) of pairwise disjoint
cycles in a cyclic cubic grid D = Ct,` as follows: We shall use the notation
from the definition of a cubic grid (page 4, Figure 2). Let Cj denote the
cycle of the cubic grid D on vertices v1,c+2j, v2,c+2j, w2,c+2j, w3,c+2j, v3,c+2j, . . . ,
wh−1,c+2j, vh−1,c+2j, vh,c+2j, vh,c+2j+1, vh−1,c+2j+1, . . . , v1,c+2j+1. (Such a cycle
is also depicted in Figure 6.) Then X (c, d) = {Cj : 0 ≤ j < 1

2
(d − c)}.

Lemma 4.3 Let k, `, t be integers, and let (p1, p2, . . . , pk) be an increasing
sequence of integers such that p1 > 4kt, pk < `, and pj+1 − pi ≥ 4kt for
j = 1, 2, . . . , k. Assume that the graph F is constructed from the cyclic cubic
grid D = Ct,` by attaching a vertex zj at position pj for each j = 1, 2, . . . , k.
Then cr(F ) = k(t − 2) .
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Proof. There is an obvious drawing of F with exactly k(t−2) edge crossings
— when the edges incident with each zj cross all the main cycles of F except
the outer ones. Conversely, we prove that every proper drawing of F must
have at least k(t − 2) crossings. Let us fix a ∈ {0, 1, . . . , k − 1}. Assuming
p0 = 0, we denote by X = X (pa, pa+1) a collection of disjoint cycles in D ⊂ F .
Since one edge crossing may involve edges of at most two of the cycles in X ,
and since cr(F ) < kt ≤ 1

2
|X |, we conclude:

Claim 4.3.1. Any optimal drawing of F must have a cycle C ∈ X (pa, pa+1)
with no crossed edge.

M b

C z′a

z′′a

M1

M t

Za

za

Figure 6: An illustration to Claim 4.3.2.

Denote the i-th main cycle in the cyclic cubic grid of F by M i, for
i = 1, . . . , t. Denote the neighbours of za subdividing the outer main cy-
cles M1, M t in F by z′a, z

′′
a , respectively. We define a path Za in F consisting

of the path z′azaz
′′
a , and of the subpaths of M 1, M t connecting z′a, z

′′
a , respec-

tively, to the cycle C from Claim 4.3.1; as depicted in Figure 6. Let us
further fix b ∈ {2, 3 . . . , t − 1}. By Claim 4.3.1 the cycle C is drawn as a
simple closed curve with no edge crossing, and so a drawing of another main
cycle M b (which intersects C in two edges) separates the ends of Za on C.
We conclude:

Claim 4.3.2. The path Za must cross the main cycle M b, for all pairs a ∈
{0, 1, . . . , k − 1} and b ∈ {2, 3 . . . , t − 1}.

Now realize that the main cycles M 2, . . . , M t−1 are pairwise disjoint, and
that also the paths Za for a = 0, 1, . . . , k − 1 are chosen as pairwise disjoint
subgraphs in F . Hence we account for at least (t−2)k distinct edge crossings
in F using Claim 4.3.2.
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Lemma 4.4 Let q, t be integers. Let Π be a cyclinder, and let %1, %2 be two
disjoint curves on Π both connecting points on the opposite boundaries of Π.
Assume that D is a drawing of the cyclic cubic grid Ct,q on Π. Moreover,
assume the following:

• The drawing of D is such that each of the main cycles of D is drawn
as a noncontractible closed curve on Π, intersecting each curve %1, %2

in exactly one point.

• No other edge of the drawing D is intersected by %1 or %2.

• There are indices c, d, d > c + 2t such that the vertices v1,c and v1,d of
the first main cycle M 1 ⊂ D are drawn inside the same region Σ of
Π \ (%1 ∪ %2).

Then all the cycles in the set X (c+ t, d− t) defined as above are drawn inside
the region Σ.

%2%1 Σ

M1

M t

v1,c v1,c+t/2−1 v1,d

Figure 7: An illustration to Lemma 4.4.

Proof. We may assume, without loss of generality, that %1 intersects the
edge v1,c−1v1,c of M1. Denote by P i ⊂ M i the subpath of the i-th main
cycle M i of D on the vertices vi,c−i, . . . , vi,c+i−1. Recall that %1 intersects M i

exactly once. We establish the following claim by induction on i ≥ 1:

Claim 4.4.1. The curve %1 intersects M i in an edge from P i.

The claim is true for i = 1 by our assumption. Suppose it is true for i < t,
but false for i+1. Then, up to symmetry, the vertices wi+1,c+i, vi+1,c+i of M i+1

were drawn outside of Σ, while the vertices wi,c+i, vi,c+i of M i were drawn
inside Σ (or vice versa). But, than the edge wi,c+iwi+1,c+i or vi,c+ivi+1,c+i
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(depending on parity of i) of D would have to be drawn intersecting %1 ∪ %2,
a contradiction to the assumptions.

(Actually, Claim 4.4.1 can be established in a stronger form, but we prefer
this weak form with a straightforward proof. See Figure 7.) A symmetric
statement clearly holds for %2. Since the above paths P i are disjoint from
the cycles in X (c+ t, d− t) by definition, the drawings of these cycles are not
intersected by %1 ∪ %2, and hence these cycles are all drawn inside Σ.

5 Proof of the Reduction

Recall the notation from Section 3, and assume that G is a graph on the
vertex set {1, 2, . . . , n}. Let HG denote the graph constructed along the
description on page 8.

Lemma 5.1 If an optimal linear arrangement of a graph G has weight A,
then the crossing number of the graph HG is at least

cr(HG) ≥ (s + rn)nt + 2(A + m)t − 8m .

(See (2) and Lemma 3.2 for details on the notation.)

We proceed the proof of Lemma 5.1 along the following sequence of claims.
(Actually, all technical work has already been done in the previous section.)
Assume that we have an optimal drawing of the graph HG at hand.

Lemma 5.2 In the optimal drawing of HG, the boulders B1, B2 are drawn
with no edge crossings.

Proof. We assume, for a contradiction, that the boulder B1 in HG is drawn
with some edge crossings. Notice that B1 has (2) z pairwise disjoint main
cycles by definition, and one edge crossing in HG may involve at most two of
them. Since the total number of crossings is less than z/2 by Corollary 3.3, we
conclude that some main cycle N ⊂ B1 is drawn with no crossings. Without
loss of generality, we may suppose that the subgraph HG − V (B1) is drawn
in the exterior face of N .

In this situation we redraw the whole boulder B1 in the interior face of
the original drawing of N , such that the first main cycle N1 ⊂ B1 coincides
with the original cycle N . Then we prolong the edges of the original drawing
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of HG −E(B1) that were attached to N1 of B1 along the original drawings of
(pairwise disjoint) paths in B1 connecting those edges to N . In this way we
introduce no new crossings to the drawing of HG, and we eliminate previous
crossings on edges of B1, which contradicts optimality of the original drawing.

Hence, in particular, the first main cycles Nj of the boulder Bj, j = 1, 2
are drawn with no crossings. Then there is a uniquely defined cylinder Π
with the boundary curves N1 and N2 in the plane. Realize that the whole
subgraph HG − V (B1) − V (B2) is drawn on Π.

Lemma 5.3 In the optimal drawing of HG, each main cycle M of every ring
Ri, i ∈ {1, 2, . . . , n} is drawn as a closed curve separating the subdrawing of
the boulder B1 from the subdrawing of B2.

Proof. Suppose, for a contradiction, that the claim is false for a main cycle
M ⊂ Rh. Instead of the plane, let us consider the cylinder Π. Then our
contradiction says that M is drawn as a contractible curve on Π.

We are going to apply Lemma 4.1 in this situation. Let (2) k = r and
` = m3. For 0 ≤ i < m3 and 0 ≤ j < r, we denote by σi+1+j(m3+1) the
drawing of the (i + jm3)-th free spoke – the edge εs

i+jm3 of Hm,n (page 6).
Further for 0 ≤ j < r, we denote by σj(m3+1) the drawing of a path Sj

associated with the j-th ring spoke of the ring Rh: Sj consists of the edges
εp1

h,j, ε
r1

h,j and εr3

h,j, ε
p3

h,j, and of (one of) the shortest path connecting the ends
of εr1

h,j, ε
r3

h,j across the ring Rh.
One may easily verify that the above collection S = {σj : 0 ≤ j <

r(m3 +1)} and τ = M satisfy the assumptions of Lemma 4.1. It follows from
Lemma 5.2 that the ends of the curves in S are ordered on the boundaries
of Π as required, and that τ is drawn in the interior of Π. Naturally, τ
intersects the drawings of each of the paths Sj since M shares a vertex
with Sj. Moreover, a subcollection of disjoint paths S in a proper optimal
drawing of a graph forms a nice set of curves by definition, and the same
applies to the set (S \ S0) ∪ {τ} as in Lemma 4.1.

If τ was contractible on Π, and if the second possibility in Lemma 4.1
happened, then the number of crossings in the drawing of HG would be, using
(3), at least

(
2

25
k2 −

1

5
k)` = (

2

25
r2 −

1

5
r)m3 = (

32

25
m4n4 −

4

5
m2n2)m3 =

16



=
32

25
m7n4 −

4

5
m5n2 > m7n4 > z ,

which contradicts Corollary 3.3. Hence the first conclusion of the lemma
should be true, and there are at least

(4) 2 ·
3

5
k` =

6

5
rm3 =

6

5
s = s +

1

5
rm3 > s + rn +

1

8
rm3

crossings on the edges of M using (3). (Notice that we have not even con-
sidered crossings of M with the ring spokes of other rings than of Rh in this
inequality.)

The above inequality (4) applies to every main cycle M in HG which is
drawn contractible on Π, while the noncontractible main cycles clearly have
each at least s + rn crossings with all the spokes in HG. Thus the total
number of crossings in our drawing of HG is at least

s + rn +
1

8
rm3 + (nt − 1)(s + rn) =

= (m3 + n)rnt +
1

8
rm3 > (m3 + n)rnt + r =

1

2
z ,

which again contradicts Corollary 3.3. Hence, indeed, every main cycle M
of HG must be drawn as a noncontractible closed curve on Π in the optimal
drawing of HG, and so M separates B1 from B2.

Corollary 5.4 In the optimal drawing of HG, there are at least (s + rn)nt
crossings between edges of the main cycles of the rings and edges of the free
and ring spokes in HG.

Lemma 5.5 There is a selection of main cycles Mi ⊂ Ri, i = 1, 2, . . . , n
of the rings in HG, such that the cycles M1, . . . , Mn are drawn as pairwise
disjoint closed curves in the above optimal drawing of HG. Moreover, there
is a permutation π of {1, . . . , n} such that, for each j = 1, . . . , n, the closed
curve Mπ(j) separates the subdrawing B1 ∪ Mπ(1) ∪ . . . ∪ Mπ(j−1) from the
subdrawing B2 ∪ Mπ(j+1) ∪ . . . ∪ Mπ(n).

Proof. Combining Corollaries 3.3 and 5.4, we see that there are less than
r = t2 crossings between pairs of main cycles of the rings in the optimal
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drawing of HG. Let us, for i = 1, . . . , n, form a collection Mi of closed
curves – the drawings of the t main cycles of the ring Ri. Then we apply
Lemma 4.2, and hence we find pairwise disjoint representatives Mi ∈ Mi, as
desired.

The second part then naturally follows from Lemma 5.3 and Jordan’s
curve theorem.

Lemma 5.6 For every k = 0, 1, . . . , 4n2 − 1, there is an index ck ∈ Ck =
{km5 − 2m4, . . . , km5 + 2m4} such that the edge of the ck-th free spoke εs

ck
is

crossed exactly once by each of the main cycles of all the rings, and that εs

ck

has no more crossings than these in the optimal drawing of HG.

Proof. By Lemma 5.3, each of the main cycles crosses each of the s + rn
spokes in the optimal drawing of HG. Suppose, for a contradiction, that for
every j ∈ Ck as above, |Ck| = 4m4 + 1, the j-th free spoke has at least two
crossings with some main cycle in HG. Then such a drawing of HG would
have at least

(s + rn)nt + 4m4 + 1 > (s + rn)nt + r = z/2

edge crossings, which is a contradiction to Corollary 3.3.

Recall that the vertices of G are numbered as {1, 2, . . . , n}, and that Xi,j

denotes the subgraph of the handle in the constructed graph HG correspond-
ing to an edge ij ∈ E(G) (page 8).

Lemma 5.7 Let π be the permutation from Lemma 5.5, let Π be the cylinder
defined after Lemma 5.2 for the optimal drawing of HG, and let {i, j} ∈ E(G)
be an edge. For ` = i+n(j−1), consider the indices c4`−2 and c4`+2 given by
Lemma 5.6, and denote by Σ` the region on Π bounded by the drawings of the
c4`−2, c4`+2-th free spokes and containing the subdrawing of the handle Xi,j.
Then Σ` contains at least

t
(

|π−1(i) − π−1(j)| − 1
)

crossings between edges of the subgraph Xi,j ∪Ri ∪Rj and edges of the main
cycles of other rings Rk in HG for k 6= i, j.

Proof. First, notice that Σ` is well defined since the drawings of the c4`−2-th
and of the c4`+2-th free spokes are disjoint by Lemma 5.6, they do not cross
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Xi,j, and each of them connects two points on the opposite boundaries of Π.
Moreover, by an analogous argument, the drawings of the c4`−1-th and c4`+1-
th free spokes divide Σ` into three topological components Σ1

` , Σ
2
` , Σ

3
` in this

order, such that Xi,j is drawn inside Σ2
` .

We denote by H ′
G the subgraph of HG obtained by deleting the two boul-

ders and all the free and ring spokes. Then, by Corollaries 3.3 and 5.4,
the subdrawing of H ′

G contains less than r edge crossings. Consider now a
ring Rk of HG, for which π−1(i) < π−1(k) < π−1(j) (up to symmetry). By
Lemma 5.5, there are main cycles Mi ⊂ Ri, Mj ⊂ Rj, Mk ⊂ Rk such that
the drawing of Mk separates the drawings of Mi and Mj from each other
on Π. Denote by M b

k ⊂ Rk the b-th main cycle of the ring Rk.
Recall that c4`−2 ≤ (4`m2 − 2m2 + 2m)m3, and c4`−1 ≥ (4`m2 − m2 −

2m)m3. So Lemma 5.6 also implies that the (4`m2 − 2m2 + 3m − 1)-th
and (4`m2 − m2 − 3m + 1)-th ring spokes of Rk (page 6) are both drawn
inside Σ1

` . Here we restrict the notation from the definition of a cyclic cubic
grid just to the ring Rk. We set c = (4`m2 − 2m2 + 3m)(m3 + n + 1) and
d = (4`m2 − m2 − 3m)(m3 + n + 1). The previous argument implies that
the vertices v1,c, v1,d of the first main cycle M 1

k of Rk are also drawn inside
Σ1

` . Hence the situation corresponds with the setting of Lemma 4.4, and we
conclude that all the cycles of Rk in the set X1 = X (c + t, d − t) (defined in
Section 4) are drawn inside Σ1

` .
Let us now estimate, using (2, 3):

d − c = (m2 − 6m)(m3 + n + 1) > m5 − 6 · 3m4 >

> 100m4 − 18m4 > 16m4 + 4m4 > 4r + 2t

So |X1| = 1
2
(d− c−2t) > 2r. Recall that the subdrawing of H ′

G has less than
r edge crossings. Since one edge crossing may involve at most two of the
cycles from X1, there exists a cycle C1 ∈ X1 which has no edge crossed in the
subdrawing of H ′

G. We analogously find a symmetric cycle C2 drawn inside
the region Σ3

` , and C2 having no edge crossed in the subdrawing of H ′
G. (See

in Figure 8.)
Consider now the drawing of the connected subgraph Ri ∪ Rj ∪ Xi,j ⊂

H ′
G which is disjoint from the drawings of C1 and C2. So it follows from

our assumptions, and from Xi,j being drawn inside Σ2
` , that the drawing of

Ri ∪ Rj ∪ Xi,j separates the drawings of C1 and of C2 from each other in
Σ. We denote by Q ⊂ M b

k the shortest path connecting a vertex on C1 to a
vertex on C2 and drawn in Σ. (Q is uniquely defined by our assumptions.)
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c4`−2 c4`−1 c4`+1 c4`+2

C1 C2

Xi,j

Mk

M b
k

M1
k

Mi

Mj

Rk

Ri

Rj

Q

Σ1
` Σ2

` Σ3
`

Figure 8: An illustration to the proof of Lemma 5.7.

Then Q crosses the drawing of Ri ∪ Rj ∪ Xi,j by Jordan’s curve theorem.
In this way we find distinct edge crossings for all choices of k such that
π−1(i) < π−1(k) < π−1(j), and for all t choices of the main cycle M b

k ⊂ Rk.
The statement now follows.

And now we are ready to finish the proofs of Lemma 5.1 and of Theo-
rem 2.1:

Proof of Lemma 5.1. We are going to count three collections of edge crossings
in the optimal drawing of HG. These collections are pairwise disjoint since
they involve different pairs of edges of HG, as one may easily check. Firstly,
there are (at least) (s + rn)nt crossings described in Corollary 5.4.

Secondly, denote by di the degree of the vertex i in G. Let us consider the
subgraph Fi of HG formed by the ring Ri and by 2di pairs of incident edges
from all handles which are attached to Ri in HG. Then, by Lemma 4.3, the
subgraph Fi itself has at least 2di(t−2) edge crossings in any drawing of HG.

Thirdly, the permutation π from Lemma 5.5 defines a linear arrangement
α = π−1 of the vertices of G. (An edge {i, j} ∈ E(G) contributes with
|α(i) − α(j)| to the total weight of the arrangement α on G (1).) Recall the
notation and conclusion of Lemma 5.7: An edge {i, j} of G contributes (via
its two handles in HG) with at least 2t(|α(i) − α(j)| − 1) crossings in HG

which are contained in the regions Σ` and Σ`′ , where ` = i − 1 + n(j − 1)
and `′ = j − 1 + n(i − 1). So in particular, the sets of crossings accounted
here for distinct edges of G are pairwise disjoint, and also disjoint from the
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crossings contributed by the subgraphs Fi above.
Altogether, we have found at least this many distinct edge crossings in

the optimal drawing of HG:

(s + rn)nt +
∑

i∈V (G)

2di(t − 2) +
∑

{i,j}∈E(G)

2t(|α(i) − α(j)| − 1) =

= (s + rn)nt + 2t
∑

{i,j}∈E(G)

|α(i) − α(j)| − 2tm + 4tm − 8m =

= (s + rn)nt + 2tA + 2tm − 8m

Proof of Theorem 2.1. Assume that G, a is an input instance of the
OptimalLinearArrangement problem, and that G is sufficiently large
(3). The above described graph HG is clearly cubic, it has polynomial size
in n = |V (G)|, and HG has been constructed efficiently. We now ask the
problem CrossingNumber on the input HG, (s + rn)nt + 2t(a + m), and
give the same answer to OptimalLinearArrangement on G, a.

If there is a linear arrangement of G of weight at most a, then the correct
answer is YES according to Lemma 3.2. Conversely, if the optimal linear
arrangement of G has weight greater than a, then the crossing number of HG

is by Lemma 5.1

cr(HG) ≥ (s + rn)nt + 2t(a + 1 + m) − 8m >

> (s + rn)nt + 2t(a + m) ,

and so the correct answer is NO. Since the OptimalLinearArrangement
problem is known to be NP -complete [2], the statement of Theorem 2.1
follows.
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