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Abstract

In an edge coloring of a graph, each color class forms a subgraph
without path of length two (a matching). An edge subcoloring gen-
eralizes this concept: Each color class in an edge subcoloring forms a
subgraph without path of length three. While every graph with max-
imum degree at most two is edge 2-subcolorable, we point out in this
paper that recognizing edge 2-subcolorable graphs with maximum de-
gree three is NP-complete, even when restricted to triangle-free graphs.
As by-products, we obtain NP-completeness results for the star index
and the subchromatic number for several classes of graphs. It is also
proved that recognizing edge 3-subcolorable graphs is NP-complete.

Moreover, edge subcolorings and subchromatic index of various
basic graph classes are studied. In particular, we show that every uni-
cyclic graph is edge 3-subcolorable and edge 2-subcolorable unicyclic
graphs have a simple structure, allowing an easy linear time recogni-
tion. We also present an algorithm for testing edge k-subcolorability
for graphs of bounded treewidth.

1 Introduction

Let G = (V, E) be a graph. An independent set (a clique) is a set of pairwise
nonadjacent (adjacent) vertices. For W C V| the subgraph of G induced by
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W is denoted by G[W]. For F C E, V(F') denotes the set of endvertices of
edges from F', and G(F) = (V(F), F') is the subgraph of G induced by the
edge set F'.

A (proper) wvertex r-coloring of G is a partition Vi,...,V, into disjoint
independent sets, called color classes of the coloring. The chromatic num-
ber x(G) is the smallest number r for which G admits a vertex r-coloring.
One of the most interesting generalizations of the classical vertex coloring is
the notion of vertex subcoloring; see [2, 9, 12, 15]. A wvertex r-subcoloring
is a partition Vi,...,V, of V where each color class V; consists of disjoint
cliques (of various sizes). The smallest number r for which G' has a vertex
r-subcoloring is called the subchromatic number xs(G) of G.

Note that a partition Vi, ..., V, of V is a vertex r-coloring of G = (V, E) if
and only if, for each i, G[V;] does not contain a P as an (induced) subgraph,
and the partition is a vertex r-subcoloring if and only if, for each i, G[V}]
does not contain a P; as an induced subgraph (P; denotes the path on k
vertices).

A (proper) edge r-coloring is a partition Ey, ..., E,. of E into color classes
FE; in which every two distinct edges do not have an endvertex in common, i.e.,
each E; forms a matching. The chromatic indezx x'(G) is the smallest number
r for which G admits an edge r-coloring. Clearly, a partition Ei,..., E, of
E is an edge r-coloring of G = (V, F) if and only if, for each i, G(E;) does
not contain a P; as a (not necessarily induced) subgraph. This observation
leads to the following natural generalization of the classical edge coloring.
Definition. An edge r-subcoloring of the edges of a graph G = (V, E)
is a partition F, ..., E, of E into disjoint color classes E; such that each
G(E;) does not contain a Py as a (not necessarily induced) subgraph. The
subchromatic index x.(G) is the smallest number r for which G admits an
edge r-subcoloring.

Remark. Obviously, a partition Ey, ..., E, of F(G) is an edge r-coloring of
G if and only if, for each 4, the connected components of G(E;) are stars or
triangles, where a star is a complete bipartite graph K; ; for some s > 1.

A related notion that has been studied in the literature is as follows.
A partition Ey,..., E, of E(G) is a star partition of G if, for each i, the
connected components of G(E;) are stars. The star index x*(G) of G is

the smallest number r for which G has a star partition into r subsets FEj;;
cf. [1, 3, 4, 5, 11, 16, 19].

Clearly, for all graphs G, x.(G) < x*(G), and x,(G) = x*(G) whenever
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G is triangle-free.

Recall that the line graph L(G) of a graph G has the edges of G as
vertices and two distinct edges e, €’ are adjacent in L(G) whenever they have
an endvertex in common. It is well-known that proper edge colorings of G
correspond to proper vertex colorings of L(G) and vice versa. In particular,
X' (G) = x(L(G)). Likewise, we have the following easy to see fact.

Fact 1 Edge subcolorings of a graph G correspond to vertex subcolorings of
the line graph L(G) of G and vice versa. In particular, x\,(G) = xs(L(Q)).

Our terminology of edge subcoloring is intended to recall this fact.

2 Basic properties and examples

First, since the subchromatic index of a graph is the maximum subchromatic
index among those of its connected components, so we assume throughout
this paper that all graphs are connected.

The next proposition means that subcolorings provide monotone prop-
erty.

Proposition 1 For any graph G and any vertex v of G,
Xs(G) < X, (G \v) + 1.

Proof: Since any subcoloring of G\ v can be extended to a subcoloring of

G by using an extra new color on all edges incident with v. [
General lower and upper bounds for the subchromatic index are given

below. Let A(G) be the maximum degree of a vertex in the graph G.

Proposition 2 For any graph G with m edges on n wvertices,

~ <X(0) <A

Moreover, if G is triangle-free, x,(G) > = 4 1.
Proof: Since every color class consists of stars and triangles, it may contain

at most n edges. In the subcoloring each edge has to be colored and the
lower bound follows.



Note that a color class in a graph on n vertices can have n edges, iff n is
a multiple of 3 and the class itself is a covering of the vertices by 2 disjoint
triangles. Hence for triangle-free graphs the lower bound can be shifted by
at least 1.

To obtain the upper bound, we have from Fact 1: x.(G) = xs(L(G)) <
[%W +1= [%W +1 = A(G), where the inequality for the subchro-
matic number was shown in [2].

To find a valid subcoloring using at most A(G) edge colors efficiently
we may proceed greedily on the vertex set: With each new vertex u assign
colors to its adjacent edges as follows: for an edge (u,v) pick a color that is
not used on no already colored edge incident with v. Such a subcoloring is
triangle-free and all stars have the property that the center of the star is the

latest vertex of the star in the order. O]

Observe that the upper bound is attained e.g. for the 5-cycle x.(C5) =
2 = A(C5) or the Petersen graph x,(P) = 3 = A(P). The last property
follows for any cubic graph which contains C5 as an induced subgraph: it is
impossible to extend a valid 2-subcoloring to all edges incident to the cycle
Cs. See also Figure 1.

Corollary 1 For any r-regular graphs G, § < x,(G) < r. Moreover, if G is
triangle-free, 5 +1 < x4 (G) <.

2.1 Trees, cycles

For trees and cycles, the subchromatic index can be determined explicitely
as follows:

Proposition 3

(i) For any tree T, x,(T) = x*(G) < 2; X4(T') = 2 if and only if T is not
a star;

(ii) x4(C3) =1, XL(Cp) = x*(G) =2 for all n > 4.

Proof: Color greedily. [



2.2 Cacti

A cactus is a connected graph in which every block (maximal 2-connected
subgraph) is an edge or a cycle. Equivalently, a graph G is a cactus if and
only if every two cycles in G' are edge-disjoint.

Proposition 4 For all cacti G, x,(G) < x*(G) < 3. Moreover, an edge
3-subcoloring can be found in linear time.

Proof: Let T be a breadth-first search (bfs) tree of G, rooted at vertex v.
We claim that

all edges of G outside T" form a matching. (1)

During searching the graph, its vertices are be arranged into levels, based
on the distance from the initial vertex. Since G is a cactus, the tree T' misses
from each odd cycle the edge connecting the two vertices at the highest level,
while similarly in an even cycle one of the two edges incident with the vertex
at the highest level remains outside 7.

Then, given two edges e, e’ of E(G) \ E(T), either e is separated from e’
by the lowest vertex of the cycle containing e, or vice-versa.

Now, color T with two colors and the matching F(G) \ E(T) with the
third color showing x%(G) < 3. Since a bfs-tree can be performed in linear
time, Proposition 4 follows. l

We leave as an open problem whether cacti with subchromatic at most
2 by allow a simple structural description. Since all cacti have treewidth
bounded by 2, their subchromatic index can be computed in polynomial
time as we will show later in section 3.3.

Observe, that in any edge 2-subcolored graph G each vertex of degree
at least 3 is either a center of a monochromatic star or it belongs to a
monochromatic triangle. Let us further direct the edges of monochromatic
stars K1, k > 2 towards its center. (The other edges remain undirected.)
Clearly, no vertex of degree at least 3 in G is of outdegree 2 or more. Also
each directed cycle is of even length, since the colors of stars must alternate.
It follows straightforwardly that each component of the subgraph of G in-
duced by vertices of degree at least 3 may only contain at most one cycle.
(By the argument with directions, a little more discussion is needed to en-
compass also triangles.) Figure 1 shows some cacti G that do not fulfill these
necessary conditions and hence have x,(G) = 3.
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(k> 2) % i ;

Figure 1: Some cacti with subchromatic number exact 3

Moreover, if some vertices of degree at least 3 induce a cycle in a graph
of subchromatic index 2, its subcoloring can be almost uniquely determined:

Corollary 2 Let vertices of degree at least three induce a cycle C' in a graph
G of X,(G) = 2. Then either C' forms a monochromatic triangle in any edge
2-subcoloring of G, or C' is of even length and colors of its edges alternate.

2.3 Unicyclic graphs

A (connected) graph is unicyclic if it contains exactly one cycle. As we show
now all edge 2-subcolorable unicyclic graphs have a simple structure and
hence can be easily recognized in linear time.

Theorem 1 For any unicyclic graph G, x,(G) < 3. Moreover, x,(G) = 3 if
and only if the only cycle C' of G has length 2k + 1, k > 2 and all vertices
of C are of degree at least 3 in G.

Proof: Since unicyclic graphs are cacti, the first part follows from Proposi-
tion 4. We have shown above that if an odd cycle Cy,11, £ > 2 contains no
vertex of degree 2, G cannot be edge 2-subcolorable.

It suffices to construct an edge 2-subcoloring in all other cases. First
consider the case when C' is a triangle. We make it monochromatic (say
white) and then distribute all remaining edges of G into two color classes,
such that two edges belong to the same class if their distance from C' has
the same parity modulo 2. (The edge-distance being viewed as the distance
between the corresponding vertices in the line graph.)

Now assume that Cy;,; contains a vertex of degree 2. Let denote the
vertices of C' by vy, ve, ..., vo, 11, where deg(vy) = 2. We use the white color



on the pair of edges incident with v; and color the other edges of the cycle
alternately by black and white.

The remaining edges form a forest. We color them in a greedy manner,
such that the edges incident with a vertex v;, ¢+ odd should be all white,
whereas for even ¢ these should be all black. Similarly as above, inside the
same tree of the forest edge colors alternate in between different levels.

For an even cycle C, we first use alternate coloring of C'. Then we choose
colors of the remaining edges by the same parity principle as in the previous
case.

Observe first, that in both color classes, the edges outside C' induce a
disjoint union of stars. Moreover, this edge subcoloring is also valid if we
encounter the edges of C. ]

Clearly, C' can be found in G in linear time, Theorem 1 implies that
unicyclic graphs with subchromatic index at most 2 can be recognized in
linear time.

2.4 Complete bipartite graphs

Since complete bipartite graphs contain no triangle, subchromatic index co-
incides with the star chromatic index and we get the following results:

Proposition 5 ([11, 19]) For anyn > 1,

n, n <4
[%W +2, n>6

2.5 Cubes

Recall that the d-dimensional Cube ()4 has all 0,1 d-tuples as vertices and
two such d-tuples are adjacent in (), if and only if they differ in exactly one
position. Note that Q4 is d-regular, bipartite and has 2% vertices.

Proposition 6 ([19])

(i) For k > 2, X;(Q2k—2) = X*(sz—z) = 2k_1;‘

(ii) Fork >3, 2873 + 2 < xL(Qgr—2) = X*(Qor—2) < 283+ k — 2;



2.6 Complete graphs

Proposition 7 For anyn > 1, the subchromatic index of the complete graph
K,, is bounded by:

n—1
2

Moreover the lower bound is attained whenever n = 3* for some integer k.

<A < X (Kn) = [g] F1

Proof: The upper bound by x*(K,) = [§] + 1 was given in [1]. To prove
the low bound, we first construct optimal subcolorings for the case when n
is a k-th power of 3. We proceed by induction on k. Let the vertices of K,
be denoted by vy, ..., v, 1.

For each 7 € {1,...,%5% :

: 3 f i} we define a color class E; = {(v}, v44),
(vj5 vj—i)s (Vj4i,Vj—i) 2 J

0,3,6,...,n — 3} where all indices are counted

These 3 color classes cover all edges by disjoint sets of packing triangles.
The yet uncolored edges connect only vertices that are at distance divisible
by 3 and induce three vertex disjoint copies of the graph K, /3. By induction

hypothesis each of them can be colored 1ndependent1y by n/ 31— e 3 colors.
In total we get a subcoloring using 7 + *¢= 3 = 1 distinct edge Colors
A valid subcoloring of Ky is depicted i 1n F1g 2 [

,/\\// \\‘/<\\\
S A T T A e
! RN ' L ~ N o7
! | A5 v
‘ A e . : .. - . o _‘:¥ _/_/I_ e
Tl et : : v !
¢/’>:‘6 P o \.,
Figure 2: Showing x.(Ky) =4

This allows us to classify the subchromatic index for all complete graphs of
order at most ten. We first show that x’(Ks) = 4. Assume for a contradiction
that a valid 3-edge-subcoloring of K¢ exists. Then each color class may have
at most 6 edges, hence at least two of these two classes must have at least 5
edges since |Ek,| = 15. By a case study it is easy to determine that a color
class with at least five edges may only induce in K¢ a subgraph of one of the
possible three types: K3 U K3 or K3 U P or K; 5 U K;. (Here U stands for
disjoint union.) But it is impossible to find a pair of not necessarily distinct
types that would be edge disjoint, a contradiction.
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We summarize the values of chromatic index of small complete graphs
the following table:

Graph G Kl K2 K3 K4 K5 KG K7 Kg Kg KlO
X(G) |0 1|12 [3]4|4]4]4]5

The values for K; and Kg are majorized by x.(Ky), the remaining val-
ues follow from the monotone property of x. and other bounds which were
discussed above.

3 Computational complexity

Formally we define EDGE k-SUBCOLORABILITY as a decision problem which
for a given graph G (the instance) answers the question: “Is xL(G) < k?”

In the following sections we will show, that the problem is NP-complete in
general (obviously EDGE k-SUBCOLORABILITY € NP), but for a restricted
class of graphs of bounded treewidth a linear time algorithm exists. This
also imply that cacti of subchromatic index at most 2 can be recognized in
linear time.

3.1 NP-hardness of edge 2-Subcoloring

In this section we prove the following negative result.

Theorem 2  EDGE 2-SUBCOLORABILITY is NP-complete, even when res-
tricted to triangle-free graphs of mazimum degree three.

As all graphs with maximum degree at most 2 are edge 2-subcolorable,
Theorem 2 is best possible with respect to degree constraint.

Proof: We prove Theorem 2 by showing a reduction from the NOT-ALL-
EQUAL 3-SATISFIABILITY (NAFE-3SAT) problem, which has been shown to
be NP-complete by Schaefer [18] (see also [14, Problem LO3)).

This problem decides whether a Boolean formula ® in conjunctive normal
form satisfying such that each clause is a disjunction of three not necessarily
distinct variables allows a satisfying assignment for ® such that each clause
in ® contains at least one negatively valued literal. We denote the class of
all formulas that allow such an assignment by NAFE-3SAT.



Let a formula ® be an instance for the NAE-3SAT problem. Assume that
® consists of m clauses C1, (s, ..., C,, over variables x1, o, ..., z, such that
every clause C; contains exactly three variables, C; = (zj, V ;, V xj,).

We will construct a triangle-free graph H = H(®) of maximum degree
three such that H has an edge 2-subcoloring if and only if ® € NAE-35AT.
Clause gadget. Consider the graph G¢ depicted in Figure 3 (left) with
three labelled vertices a, b, c.

Figure 3: Clause gadget G¢ (left) with an edge 2-subcoloring (right)

a b ¢

Fact 2 (i) The graph G¢ is edge 2-subcolorable. In any edge 2-subcoloring,
the edges (a,b), (b,c) receive different colors.

(ii) Ewvery coloring of the two edges (a,b), (b, c) with two distinct colors can
be extended into an edge 2-subcoloring of the entire graph G¢, such that
the two edges incident with the verter a and the two edges incident with
c receive different colors (cf. Figure 3 (right)).

Fact 2 can be seen quickly by inspection, see also Corollary 2.

Variable gadget. Let k£ > 2 be an integer. Let G¥ be the graph depicted
in Figure 4 with k labelled vertices a, ..., a.

Figure 4: Variable gadget G%,
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Fact 3 The graph G% is edge 2-subcolorable. In any edge 2-subcoloring, the
thick edges receive the same color.

Again, Fact 3 can be seen easily by using Corollary 2.

Now, for the construction of H we take the incidence graph Gg. Vertices
of G represent variables and clauses of ®, and edges represent the incidence
relation. Since the same variable may appear in the same clause, multiple
edges may appear in Gg.

For the construction of H we replace each clause-representing vertex v;
of degree three with a unique copy of G¢, such that the three edges incident
with v are one-to-one incident with the vertices a,b and ¢ (i.e. each edge
chooses exactly one vertex).

Let further each vertex w; representing a variable x; with k; occurrences
be replaced by a unique copy G; of G"“}. Similarly as in the previous case,
the k; edges incident with u; become one-to-one incident with the vertices
Aty ..., Q,.

The construction of H is completely described. Since all gadgets have
maximum degree three and no triangles, and since labelled vertices in the
gadgets have degree one or two, H has maximum degree three and no trian-
gles, as well.

Suppose now that the edges of H can be subcolored by two colors, say
red and blue. For each 4, define ¢(z;) = true if the thick edges of G; are red;
and ¢(x;) = false otherwise. By Fact 3, ¢ is well defined. For each variable
gadget, the edges leaving the gadget G; from vertices aq, ..., ary must obtain
the same color, complementary to the color of the thick edges of G;. On
the other side, the edges pendant from a clause gadget cannot have all the
same color, since then a monochromatic P, would appear by Fact 2. Hence,
in each clause at least one variable is positively valued and at least one is
valued negatively by ¢ and ® € NAE-35AT.

In the opposite direction assume that ® € NAE-35AT for an assignment
¢. We derive an edge 2-subcoloring of H as follows. If ¢(z;) = true (false),
color the thick edges of the variable gadget G; red (blue, respectively). Then
extend this coloring into an edge 2-subcoloring of GG;. This is always possible
by Fact 3. As was mentioned in the previous paragraph, then the edges
stemming from the clause gadgets (i.e. the original edges of Gg) allow a
unique 2-subcoloring extension. Finally, complete the 2-subcoloring of H on
the clause gadgets according to Fact 2 (ii).

This argument completes the proof of Theorem 2. ]
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Corollaries. Since for triangle-free graphs G, x.(G) = x*(G), Theorem 2
implies

Corollary 3 Deciding if the star index of a given graph is two is NP-comp-
lete, even for triangle-free graphs with mazimum degree three.

We remark that it was first proved in [16] that deciding if the star index of
a triangle free graph is two is NP-complete. However, the graph constructed
in [16] does not have bounded degree while our NP-complete result for the
star index is best possible with respect to degree constraint.

In [12] it was shown that recognizing vertex 2-subcolorable graphs is NP-
complete, even for triangle-free planar graphs with maximum degree 4. The-
orem 2 and Fact 1 imply

Corollary 4 Recognizing vertex 2-subcolorable graphs is NP-complete, even
for line graphs (of triangle-free graphs) with mazimum degree 4.

An (ry,...,rg)-subcoloring of a graph G = (V| E) is a partition V;, ..., Vj
of V such that each V; consists of disjoint cliques each of which has cardinality
at most 7;. In [2] it was shown that all cubic graphs are (2, 2)-subcolorable,
and in [17] it was shown that deciding if a cubic graph is (1, 3)-subcolorable
is NP-complete. Theorem 2 and Fact 1 imply that a similar result holds if
we restrict ourselves to line graphs.

Corollary 5 Recognizing vertex (3,3)-subcolorable graphs is NP-complete,
even for line graphs (of triangle-free graphs) with mazimum degree 4.

3.2 NP-hardness of edge 3-Subcoloring

This section deals with the proof that EDGE 3-SUBCOLORING is NP-comp-
lete. Given a graph G we construct a graph H as follows. Take three copies
G1,Gs,G3 of G, take a triangle (vq, vo,v3) and, for each i = 1,2, 3, connect
v; with all vertices in (G;. Finally, take two vertices z,y and connect x to
vy, U9, v3 and y. See Fig. 5.
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Figure 5: The graph H obtained from the copies G1,G9, G5 of the given
graph G

In the graph H, the set of edges between v; and all vertices of G; is called
the (v;, Gj)-star. We now point out that x!(G) < 2 if and only if x,(H) < 3.

Assume that x,(G) < 2 and consider an edge 2-subcoloring of G with
colors c¢1,¢co. In H, color the three copies G; with this coloring and the
(v, G;)-stars with the third color ¢3. Color the triangle (vy, ve, v3) with color
c1 and the 4-star at  with color co. This yields an edge 3-subcoloring for H.

Assume that x.(H) < 3 and consider an edge 3-subcoloring of H with
colors ¢y, ¢, C3.

CrAM. One of the (v;, G;)-stars, i = 1,2, 3, is monochromatic.

PROOF OF THE CLAIM. Assume that the claim is false. Then no two edges
of the triangle (v, vs, v3) have the same color: For, if (vy,v,) and (ve, v3) are
colored with ¢, say, then the (v, G;)-star and the (vs, G3)-star must be
colored with ¢y and c¢3. This implies that the edge (v, vs) is also colored
with ¢; and the (vq, G5)-star is also colored with ¢, and ¢3. Now, the edges
(xz,v;), 1 = 1,2,3, must have color ¢y or ¢3 and there exists a P, with color
cy Or c3, a contradiction.

Thus, let without loss of generality that (v, ve) is colored with ¢1, (v, v3)
with ¢ and (vy,v3) with ¢3. If ¢; does not appear in the (vs, G3)-star then,
by assumption, the (v3, G3)-star is colored with ¢y and 3. Hence ¢, cannot
appear in the (vy, Gy)-star; otherwise there is a P, colored with ¢y. Therefore,
the (ve, Go)-star is colored with ¢; and c3, implying ¢; cannot appear in the
(v1, G1)-star; otherwise there is a P, colored with ¢;. Thus, the (v, G;)-
star is colored with ¢y and c¢3. But then there exists a P, colored with cs.
This contradiction shows that ¢; must appear in the (v3, G3)-star, and by
symmetry, co must appear in the (v;,Gp)-star and ¢z must appear in the
(Uz, G’z)—star.

In particular, for each v;, each color is appeared in the star at v; minus
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the edge (v;, x).

Thus, the edge (z,y) is colored differently with each of the edges (v;,x),
1 = 1,2, 3; otherwise there is a monochromatic P,. Now, as only two colors
are available for the edges (x,v1), (z,v2) and (z,v3), at least two of these
edges must have the same color. By symmetry, let (x,v,) and (z,v2) have
color ¢, say. Then ¢ = c¢y; otherwise there is a monochromatic P, in the K,
induced by the v; and z. Hence both the (vy, G)-star and the (ve, Go)-star
are colored with ¢y and c3. But, since ¢o or ¢3 appears in the (vs, G3)-star,
there exists a monochromatic P;. This last contradiction proves the claim.

By the claim we may assume that the (vy, Gy)-star is colored with ¢;. If
G1 has less than three vertices, clearly x.(G) < 2. If G; has at least three
vertices, then ¢; cannot appear in (G;; otherwise there is a P, colored with
¢i1. Thus, the restriction of the edge 3-subcoloring of H on G, is an edge
2-subcoloring for G.

From the reduction above and Theorem 2 we obtain

Theorem 3 EDGE 3-SUBCOLORABILITY is NP-complete. L]

3.3 Graphs of bounded treewidth

We note first, that for a fixed k£ the EDGE k-SUBCOLORABILITY problem can
be expressed in Monadic Second Order Logic (MSOL), hence the existence
of a linear-time algorithm for graphs of bounded treewidth [10].

Since this general method in inapplicable due to hidden constants, we
follow the usual scheme for constructing linear-time algorithms for graphs of
bounded treewidth, cf. [6, 7] and outline the main aspects of the dynamic
programming algorithm.

A nice tree decomposition of width at most ¢ of a graph G is a rooted tree
T, where nodes X; of T' represent subsets of vertices of G' according to the
following rules:

e For each edge (u,v) € E(G) there exists a node X; such that {u,v} C
X,

e For each vertex u € V(G) the nodes X; containing u induce a connected
subtree in 7.

e The size of each node |X;| <t + 1.

e Each node X, has at most two children, and
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— it is called a leaf node if it has no children and | X;| =1,

— or X; has one child Xj, then X; is either an introduce node if
X; = X; U{u} for some vertex v ¢ X;, or a forget node when
X; = X; \ {u} for some u € X},

— or X; has two children X, X, then it is called a join node and it
holds that XZ = X] = Xj/.

Theorem 4 For any fized k and t, the EDGE k-SUBCOLORING problem can
be solved in linear time for graphs of treewidth at most t.

Proof: For the dynamic programming we compute with each node X; of
T a table Tab; of the following contents: Each entry (¢,r) € Tab; consists
of an edge k-subcoloring ¢ of the graph G;, the subgraph of G induced by
the vertex set X; and of a ranking r : X; x {1,...,k} — {0,1,2,3,4} of
the following meaning: For any edge k-subcoloring 1 extending ¢ to the
subgraph of GG induced by the union of descendants of X;, we define

r(u,c) = 0 if no edge of color ¢ in ¢ contains the vertex w.

r(u,c) = 1 if u is incident with exactly one edge (u,v) of color ¢, and
v is incident to no other edge of color ¢ in .

r(u,c) = 2 if u is incident with exactly one edge (u, v) of color ¢, but v
is incident also with other edges of this color in .

r(u,c) = 3 if u belongs to a monochromatic triangle of color ¢ in .

Finally 7(u, ¢) = 4 if u is the center of a monochromatic star Kz, k > 2
of color ¢ in .

The evaluation of Tab; proceeds follows:

1.

2.

If X; is a leaf node, we let Tab; = (0, r(u,c) = 0), for {u} = X;,1 <
c<k.

If X; is a forget node with child X;, then we store in Tab; all pairs
(¢, 7) where both ¢ and r are restrictions to the subgraph induced by
X; (or to the subgraph induced by X;) of some (¢, 7") € Tab;.
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3. If X; is an introduce node with child X; and {u} = X;\ X}, we consider
all entries (¢',7') € Xj, and all possible extensions ¢ of ¢'. Here a pair
(¢, ) is feasible if for every color ¢

3a) either u is incident with no edge of color ¢, then r(u,c) = 0,

3b) or u is incident with only one edge (u, v) of color ¢, then r(u,c) =
r(v,c) = 1ifr'(v,¢) =0, or r(u,c) =2 and r(v,c) =4 if r'(v,¢c) €
{1,4},

3c) or w is incident with two edges (u,v)
¢(v,w) = ¢ and r'(v,¢) = r'(w,c) =
r(v,c) = r(w,c) =3,

, (u,w) of color ¢, where

1, then we let r(u,c) =

3d) or finally u is incident with ¢ > 2 edges (u,vs) of color ¢, where
r'(vg,¢) = 0for 1 < s < g. Then we let r(u, c) = 4 and r(vs, ¢) = 2
for 1 <s <g.

If not specified above we let 7(v, c) = r'(v, ¢) for all other v € X, and
store all feasible pairs (¢, r) in Tab;.

4. If X, is a join node with children X;, X;; we will keep in Tab; all pairs
(¢,r) for which exists (¢',7') € Tab,; and (¢",r") € Tabj; such that
¢ = ¢ = ¢" and moreover for each color ¢ and for every vertex u € X;
at least one of the following cases apply:

4a) either r(u, c¢) = max{r'(u,c),r"(u,c)}, when
min{r’'(u, c), " (u,c)} = 0,
4b) or r(u,c) = max{r'(u,c),r"(u,c)} if there exists unique vertex
v € X;, such that (u,v) is of color ¢, and r'(u, ¢), " (u, ¢) € {1, 2}.
4c) or r(u,c) =3 if
4ca) either there are v, w € X; such that u, v, w form a monochro-
matic triangle in ¢ (then r(u,c) = r'(u,c) = ... =r"(w,c)).
4cb) or there is a vertex v € X; such that ¢(u,v) = ¢ and r'(u, c) =
r'(v,c) # r"(u,c) = " (v, ¢) where {r'(u,c),r"(u,c)} = {1,3}
4d) or finally r(u,c) =4 if
4da) either max{r'(u, c),r"(u,c)} = 4 and min{r'(u, c), r"(u,c)} €
{1,4}

4db) or r'(u,c) = r"(u,c) = 1 and no edge of color ¢ is incident
with u in ¢.
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To argue the correctness of these rules consider any edge k-subcoloring
¥ of the subgraph induced by the subgraph of G induced by the union of
descendants of some node X;. We show that for ¢ there exists a record
(¢, 1) € Tab, if the table entries were evaluated recursively according to the
above rules. For leaf and forget nodes the statement is correct straightfor-
wardly.

Let X; be an introduce node for the vertex u. If u has no edge incident
of color ¢ in ¥, we get r(u,c) = 0.

If in ¢ u is incident exactly with one edge (u, v) of color ¢, then the value
of r(u,c) depends, whether v is incident with some other edges or not. If
v does not appear on X;, we keep the value 7’(c,u) according the rule 3a).
Else, the edge (u,v) is colored also by ¢ and the value of r(u,c) depends
whether v has been before incident with an edge of color ¢ by the rule 3b).
Note that in this case v cannot be a member of a monochromatic triangle
nor a leaf of a monochromatic star of color c.

If in ¢ the vertex u become a part of a monochromatic triangle u, v, w,
then (v, w) is the only edge of color ¢ in ¢ incident with v (or w resp.). This
is the only case how a monochromatic triangle may appear and is captured
by the case 3c).

Finally the case 3d) shows how a monochromatic star may appear with a
new vertex, clearly all ¢ leaves of this star cannot be incident with any other
edge of the same color.

Assume now that X; is a join node. We again distinguish five cases
according to the presence of edges colored in 1 by a color ¢ around a vertex
u. If there is no such an edge, we get r(u,c) = 0 and the same must hold
also by on the children nodes (hence rule 4a).

If w is incident with exactly one edge (u,v) of color ¢, and this is also the
only edge of color ¢ incident with v, either v € X; and the case 4b) apply
or v ¢ X; and we follow 4a). (Here v appears either in the subtree rooted
either in X, or in the subtree below X/, but not in both. Clearly ¢ cannot
contain any other edge incident with u of color c.)

Similarly, if the edge (u, v) belongs to a monochromatic star of color ¢ in
¥, either the center v and also no other edge of the star appears on X; —
case 4a), or v belongs to X; and the star also appears in some of the two
children of X; — case 4b).

If u is a member of a triangle in v, then either the entire triangle appears
in only one subtrees below X; or X, — case 4a), or it completely lies in X
— case 4ca) or possibly only one edge (u,v) of the triangle appears in Xj.
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This last case is captured in 4cb), here the edge (u,v) must be recognized
and the only edge of color ¢ incident with u and v in one of the subtrees,
while in the other subtree we must find the remaining vertex of the triangle.

Finally, if u is a center of a monochromatic star of color c, either the star
is completely placed in one of the subtrees and case 4a) apply. Or the star
appears as a union of a star with another star of with a new edge — case 4da)
or the star is formed out of two edges, each coming from different subtrees
below X; and X, and we get the case 4db).

The dynamic programming algorithm evaluates the tables Tab; in a bot-
tom-up manner. An edge k-subcoloring of the entire graph G exists if and
only if the table Tab, for the root node X, is nonempty. For each node, the
table may contain at most k9(*).5¢+Dk entries, each of length O(t2 log k+kt).
Both these values are bounded by a constant, since the treewidth ¢ and the
number of colors k are also bounded by a constant.

The evaluation of each table can be performed in time depending on k£ and
t only hence the entire complexity of the dynamic programming algorithm
depends only on the number of nodes of the nice tree decomposition 7'. As
it is mentioned in [7] a nice decomposition of width at most ¢ containing at
most O(|V(G)|) nodes exists for any graph of treewidth at most ¢, and can
be found in linear time [8] [

If we restrict the rankings r only to values {0,1,2,4}, the dynamic pro-
gramming will check for the existence of a edge k-subcoloring without mono-
chromatic triangles, i.e. for a star partition with at most k subsets. Hence
we can conclude that

Corollary 6 For any fized parameters k and t, the test whether x*(G) < k
can be performed in time linear in |V (G)| for any graph of treewidth at most t.

4 Conclusion

The concept of edge subcoloring of graphs is introduced for the first time in
this paper, motivated by the study of vertex subcolorings.
Among many interesting open questions we pose the following.

1. What is the exact value for . (K,)?
(Known for n < 10; see section 2)
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2. What is the computational complexity of EDGE 2-SUBCOLORABILITY

for planar graphs?

(Note that for all planar graphs G, x,(G) < x*(G) < 5; cf. [16].
Moreover the complexity of finding the ordinary chromatic index is
not yet determined for planar graphs. It is widely expected to be a
nontrivial problem since already the fact that any bridgeless cubic pla-
nar graph has chromatic index 3 is equivalent to the four color theorem,
see e.g. [13].)

What is the computational complexity of EDGE K-SUBCOLORABILITY
for fixed k > 47

(We have proved that EDGE 2-SUBCOLORABILITY is NP-complete for
triangle-free graphs with maximum degree 3; see Theorem 2 and that
EDGE 3-SUBCOLORABILITY is NP-complete; see Theorem 3)

References

1]

J. AKiYAMA, M. KANO, Path factors of a graph, In: Graphs and Ap-

plications, Proceedings of the 1st Symposium on Graph Theory (Wiley,
New York, 1984)

M. O. ALBERTSON, R. E. JAMIsON, S. T. HEDETNIEMI, AND S. C.
LOCKE, The subchromatic number of a graph, Discrete Math., 74 (1989),
pp- 33—49.

I. ALGOR, N. ALON, The star arboricity of graphs, Discrete Math., 75
(1989), pp. 1122,

N. ALoN, C. McDiIARMID, B. REED, Star arboricity, Combinatorica,
12 (1992), pp. 375 380.

Y. Aoki1, The star-arboricity of the complete regular multipartite graphs,
Discrete Math., 81 (1990), pp. 115-122.

S. ARNBORG, A. PROSKUROWSKI, Linear time algorithms for NP-hard
problems restricted to partial k-trees, Discrete Appl. Math., 23 (1989),
pp. 11-24.

19



[7]

[13]

[14]

[15]

[16]

[17]

18]

H. L. BODLAENDER, Treewidth: Algorithmic Techniques and Results,
In: Mathematical Foundations of Computer Ccience, MFCS’97, 1997,
pp- 19-36.

H. L. BODLAENDER, A linear time algorithm for finding tree-decompo-
sitions of small treewidth, STAM J. Comput., 25 (1996), pp. 1305-1317.

H. BROERSMA, F. V. FoMmIN, J. NESETRIL, AND G. J. WOEGINGER,
More about subcolorings, Computing, 69 (2002), pp. 187-203

B. COURCELLE, Graph rewriting: an algebraic and logical approach, in
Handbook of Theoretical Computer Science, volume B, (1990), pp. 192
242.

Y. Ecawa, M. URABE, T. FUKuDA, AND S. NAGOYA, A decompo-

sition of complete bipartite graphs into edge-disjoint subgraphs with star
components, Discrete Math., 58 (1986), pp. 93-95

J. FIALA, K. JANSEN, V. B. LE, AND E. SEIDEL, Graph subcolorings:
Complezity and algorithms, SIAM J. Discrete Math., 16 (2003), pp. 635—
650

S. F1orINI, R. J. WILSON, Edge-colourings of graphs, Pitman, London,
1977

M. GAREY, D. S. JOHNSON, Computers and Intractability: A Guide
to the Theory of NP-completeness, W.H. Freeman, San Fransisco, 1979

J. GIMBEL, Various remarks on the subchromatic number of a graph,
KAM-DIMATTA Series — Technical Reports, 493 (2000).

S.L. HAKiMI, J. MITCHEM, E. SCHMEICHEL, Star arboricity of graphs,
Discrete Math., 149 (1996), pp. 93-98

H.-O. LE, V. B. LE, The NP-completeness of (1,r)-subcolorability of
cubic graphs, Information Processing Letters, 81 (2002), pp. 157-162

T. J. SCHAEFER, The complezity of the satisfability problem, In: Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing,
1978, pp. 216-226.

20



[19] M. TRUSZCZYNSKI, Decomposing graphs into forests of stars, Congres-
sus Numerantium, 54 (1986), pp. 73-86

21



