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ABSTRACT. We define the notions tree depth and upper chromatic
number of a graph and show their relevance to local - global prob-
lems for graphs partitions. Particularly we show that the upper
chromatic number coincides with the maximal function which can
be locally demanded in a bounded coloring of any proper minor
closed class of graphs. The rich interplay of these notions is ap-
plied to a solution of bounds of minor closed classes satisfying local
conditions. This solves an open problem and as an application it
yields the bounded chromatic number of exact odd powers of any
graph in an arbitrary proper minor closed class.

1. INTRODUCTION

This paper combines techniques related to graph colorings, local
- global phenomena, graph minors and graph decompositions (tree
depth). The main result (Theorem 1.2) is achieved by a combina-
tion of all these texniques and in this section we explain some of the
background.

1.1. Subgraph coloring. How to color a graph optimally? Can we
guarantee that we use globally as few colors and locally as many colors
as possible? This mainstream problem of graph theory is approached
here from yet another point of view using the notion of upper chromatic
number and minimum elimination tree height (called tree depth) of a
graph. To motivate these notions we consider the following situation:

Let to any graph H be assigned a positive integer f(H), f(H) <
|V(H)|. Such a function is called a graph function. We want to color
a graph G by N colors such that any subgraph H' of G which is iso-
morphic to H gets at least f(H) distinct colors. Clearly N = |V(G)]
colors suffices and the minimal such N we denote by x(f, G).

This definition may seem to be arbitrary but in fact it captures sev-
eral of the variants of chromatic number which were recently intensively

studied:
1
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Define functions f17 f27 f37 f4, f57 gk(k 2 1) by

, if H ~ C, for some n if H ~ K,

1, otherwise 1, otherwise
(92, if H~ Ky 92, if H~ Ky
fs(H) =<3, ifH~C,forsomen fi(H)=1{3, ifH=~DP,
|1, otherwise 1, otherwise
(2, if H~ Koy
f5(H) = < X(H)+1, if KX(H) ZH gk(H) :min(k,tW(H))+1.
L1, otherwise

(The symbol = denotes the homomorphism equivalence, see the next
section for the undefined notions.)

It appears that the numbers x(f;, G) are some of the well known
graph invariants:

x(f1,G) is equal to the point-arboricity of G (i.e. to the smallest
size of a vertex partition whose parts induce forests);

X(f2, G) is equal to the chromatic number of G;

x(f3,G) is equal to the acyclic chromatic number of G (i.e. to the
smallest number of colors needed for a proper coloring so that no cycle
gets just 2 colors). See e.g. [5, 1])

X(f1, G)is equal to the star-coloring number of G (i.e. the smallest
number of colors needed for a proper coloring so that no path of length
3 gets 2 colors only. See e.g. [2, 14]).

The number x(f5, G) was studied in [13] in the context of bounds for
graph classes in the coloring (homomorphism) order. This connection
is explained in Section 7 of this article and in this context we solve the
main problem posed in [13], Conjecture 1. The main result is discussed
in this introduction and formulated as Theorem 1.2 below. This appli-
cation provided a motivation for our study of numbers x(f,G) in the
context of minor closed classes.

1.2. Minors. Why minor closed classes? It may be seen easily (ap-
plying for example some Ramsey type argument) that all the above
variants x(f, G) of the chromatic number are unbounded for general
graphs and share many properties with the chromatic number. (See
[11] for local - global context of colorings of general graphs.) A bit
more interestingly all the numbers x(f;,G),i = 1,...,5, are bounded
for every class of graphs which does not contain a fixed minor. While
for 1 =1, 2, 3,4 this is well known, for f5 this was proved only recently
in [13] (see also [14]) by an involved argument. In the other words,
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the numbers x(f;,G),i € {1,...,5}, are all bounded for every proper
minor closed class of graphs (i.e. a minor closed class of graphs which
differs from the class of all finite graphs).

Returning to the above definition of x(gx, G) we have the following
recent result due to Devos, Oporowski, Sanders, Reed, Seymour and
Vertigan [7]:

Theorem 1.1 ([7]). For every k > 1 and for every proper minor closed
class K is the number x(Fg, G) bounded for all graphs G € K.

Explicitly: For every proper minor closed class IC and integer k > 1,
there are integers iy = iy (K, k) and ip = ig(KC, k), such that every
graph G' € IC has a vertex partition into 1y graphs such that any 7 < k
parts form a graph with tree-width at most j — 1, and an edge partition
into iy graphs such that any 7 < k parts form a graph with tree-width
at most j.

We shall make use of this result in the proof of Theorem 4.7.

It seems that minor closed classes are a proper context for this type
of questions (local - global phenomena). Viewing all this it is perhaps
surprising that in this paper we solve the dual problem ezactly for every
minor closed class. More precisely, we determine the maximal graph
function f(H) such that, for any graph function g bounded by f and
some fixed integer, the numbers x(g, G) are bounded for all graphs in
a fixed (but arbitrary) proper minor closed class K of graphs. Thus we
are not interested in actual value of x(g, G) but merely in the question
whether this number is bounded for any minor closed class of graphs.
We completely characterize (Theorem 1.2) this maximal graph function
f in terms of the minimum elimination tree height, the tree depth. This
notion is introduced in section 2 and connected to ordered coloring
(also known as t-ranking). In Section 4 we give a few consequences
which provided a motivation for our research. The definitions we give
provide a rich spectrum of results which fit naturally to our local -
global framework.

1.3. Homomorphisms bounds. Let F be a finite set of graphs. By
Forb(F) we denote the class of all graphs G' which satisfy

F -G

for every F' € F. Here F' -» G denotes the non-existence of a homo-
morphism F' — G.

Thus for F = {K3} we get the class of all triangle-free graphs and
for F = {C5} we get the class of all graphs with odd-girth > 5. Now
we can formulate the main result of this paper:
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Theorem 1.2. For every finite set F of connected graphs and for every
minor closed class K there exists a graph H = H(IKC, F) € Forb(F) such
that G — H for any G € K N Forb(F).

In the other words the class K N Forb(F) is bounded in the class
Forb(F). See [15, 13] where this is stated as a problem and the bound-
edness is related e.g. to the Hadwiger conjecture. One can interpret
Theorem 1.2 as a finite approximation to Hadwiger conjecture. See
Section 6 of this paper.

1.4. An application - exact powers. We now explain a consequence
of our main result in a greater detail. Let G' be a graph, p a positive
integer. Denote by G® the graph (V, E') where {z,y} is an edge of
E' iff the distance dg(z,y) = p. The graph G® could be called ezact
p-power of G. Clearly graphs G® and G®,p even, have unbounded
chromatic number even for the case of trees (consider possibly subdi-
vided stars), and the only (obvious) bound is x(G®) < A(G)? + 1.
Similarly, for any odd p there are graphs G for which is the chromatic
number x® arbitrarily large. However for p odd and arbitrary proper
minor closed class we have the following (perhaps surprising):

Theorem 1.3. For every p odd and every minor closed class KC there
exists an integer N = N(p,K) such that all the graphs G®),G € K and
odd —girth(G) > p have chromatic number < N.

This is a generalization of [14] where this is proved for p = 3 by a
different method. This result is non-trivial even for planar graphs and
we obtained only a very rough bounds even for this particular case.
See [12] for better bounds for planar graphs.

It is easy to see that Theorem 1.2 implies Theorem 1.3:

Proof. Let p be odd > 1. Put F = {C,}. Let H satisfies Theorem
1.2. Put explicitly H = (V, E),|V| = N. Then any homomorphism
f : G — H satisfies f(z) # f(y) whenever dg(z,y) = p (as in this
case the image of G under f contains an odd cycle of length < p which
is contradiction with H € Forb(F)). Thus the homomorphism f may
be thought of as an N-coloring of the graph G®), ]

Theorems 1.2 and 1.3 motivated the present paper.

The paper is organized as follows: In Section 2 we introduce tree
depth of a graph and derive some properties of this concept relevant
in our context. In Section 3 we prove some finiteness and reduction
theorems which will unveil the efficiency of tree-depth. In Section 4 we
introduce centered colorings, relate them to vertex rankings and use
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Theorem 1.1 to prove that local centered colorings (p-centered color-
ings) may be obtained in proper minor closed classes with a bounded
number of colors. In Section 5 we deal with subgraph colorings. It is
here where we define the notion of upper chromatic number and prove
that this coincides with the tree depth. In Section 6 we deal with
homomorphisms and prove Theorem 1.2. In Section 7 we state some
remarks and open problems. All the graphs considered in this paper
are simple and finite.

Let us recall right at this place that a coloring of a graph G is an
assignment of colors to the vertices of the graph, one color to each
vertex. A coloring is proper if each the vertices of any K5 in G gets at
least 2 colors. The minimum number of colors required for a proper
coloring of G is the chromatic number of G, denoted x(G).

2. TREE-DEPTH

Advancing proof of Theorem 1.2 we develop fragments of a theory of
tree-depth. It will appear that this parameter can be defined equiva-
lently in several seemingly different ways and we shall make use of this
in our proofs.

2.1. Tree-depth and Elimination Trees. A rooted forest is a dis-
joint union of rooted trees. The height of a rooted forest F' is the
maximal number of vertices of a path from the root of a tree of F' to
one of its leaf and is noted height(F'). The height of a vertex z in a
rooted forest F'is the number of vertices of a path from the root (of the
tree to which = belongs to) to z and is noted height(x, F'). The closure
clos(F) of a rooted forest F' is the graph with vertex set V(F) and
edge set {{z,y} : = is an ancestor of y in F,z # y}. A rooted forest F’
defines a partial order on its set of vertices, which comparability graph
is clos(F): z <p y if x is an ancestor of y in F.

Definition 2.1. The tree-depth td(G) of a graph G is the minimum
height of a rooted forest F' such that G C clos(F).

This definition is analogous to the definition of rank function of a
graph which has been recently used for analysis of countable graphs,
see e.g. [16].

Let G be a connected graph. An elimination tree for G is a rooted
tree Y with vertex set V(G) defined recursively as follows. If V(G) =
{z} then Y is reduced to {z}. Otherwise choose a vertex r € V(G) as
the root of Y. Let G1,...,G, be the connected components of G — r.
For each component G; let Y; be an elimination tree. Y is defined by
making each root r; of Y; adjacent to r.
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Lemma 2.1. Let G be a connected graph. A rooted tree Y is an elim-
ination tree for G if and only if G C clos(Y). Hence td(G) is the
manimum height of an elimination tree for G.

Proof. We prove the lemma by induction over the order of G. This is
true if V(G) = {z}. Otherwise let r be the root of Y and let G4, ...,G,
be the connected components of G — r. Then Y is an elimination tree
for GG if and only if the connected components of Y — r may be labeled
Yi,..., Y, in such a way that, for any 1 < i < p, Y; is an elimination tree
for GG;. By induction, this is equivalent to the existence of a labeling
Y1, ..., Y, of the connected components of G—r such that G; C clos(Y;),
for any 1 <4 < p and this is obviously equivalent to G C clos(Y). O

2.2. Basic Properties. From Lemma 2.1 we deduce the following in-
ductive form of the tree-depth:

Lemma 2.2. Let G be a graph and let Gy,...,G, be its connected
components. Then:

1, if V(G)] = 1;
td(G) = { 1 + min,ey(g) td(G —v), ifp=1 and |V(G)| > 1;
max’_, td(G;), otherwise.

Proof. We shall prove the lemma by induction on td(G). It is straight-
forward for graphs having tree-depth 1. Assume the lemma has been
proved for graphs with tree-depth at most ¢t — 1 and assume td(G) = t.

If G is connected and has tree-depth ¢, there exists a rooted tree
Y of height ¢ such that G C clos(Y). Let r be the root of Y and
let Y — r denote the rooted forest of height ¢ — 1 obtained from Y
by removing r and considering the sons of r in Y as roots. Then
td(G—r)<t—1asG—r Cclos(Y —r) and td(G) > td(G —r) + 1.
Conversely, let v be any vertex of G and let F' be a rooted forest
of height td(G — r) such that G — v C clos(F'). Let Y be the tree
obtained from F' by adding r adjacent to the roots of the components
of F. Rooting Y at r we get G C clos(Y) thus td(G) < td(G —r) + 1.
Hence td(G) = min,ey (g td(G — v).

If G is disconnected, it is obvious that the minimum height rooted
forest F' such that G C clos(F') is the union of those computed for each
connected components of G. Hence td(G) = max; td(G;). O

We shall also stress a fundamental property of tree-depth - its mo-
notony according to minor ordering:

Lemma 2.3. If H is a minor of G then td(H) < td(G).
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Proof. Let F' be a rooted forest of height td(G) such that G C clos(F)
and let e = {z,y} be an edge of G, where z is an ancestor of y in
F. Let m(y) be the father of y in F. Then G — e C clos(F) and
G/e C clos(F/1y,m(y)})- ]

Although there is an (easy) polynomial algorithm to decide whether
td(G) < k for any fixed k, if P#NP then no polynomial time approx-
imation algorithm for the tree-depth can guarantee an error bounded
by n¢, where € is a constant with 0 < € < 1 and n is the order of the
graph [4].

2.3. Tree-depth and Vertex Separators. Let GG be a graph of order
n. An a-verter separator of G is a subset S of vertices such that every
connected component of G — S contains at most an vertices.

Lemma 2.4. Let G be a graph of order n and let sq : {1,...,n} = N
be defined by

sq(i) = &1&}; min{|S| : S is a }-vertez separator of G[A]}
AgV_(Z‘)
Then:
logy n n
td(G) < —
@< 3 sol3)

Proof. We prove the lemma by induction on n. The lemma is straight-
forward if n = 1. Assume the lemma has been proved for graphs of
order at most n — 1.

By definition of sg, G has a %—vertex separator S of size at most
sq(n). Let Gy,...,G), be the connected components of G — S. Then,
according to Lemma 2.2 and the fact that the function s¢, correspond-
ing to (; is obviously bounded by sg:

log,(n/2) log, n
n/2 n
td(G) < |S| +mzaxtd(Gi) < sg(n)+ ;:1 sq < > ) < E sa (§>

1=

]

Corollary 2.5 (see also [4]). For any connected graph G of order n,
td(G) < (tw(G) + 1) log, 1.

Proof. 1t is proved in [18] that any graph of tree-width at most &k has

a -vertex separator of size at most k + 1. Hence s¢(i) < tw(G) + 1

for all 2. The result follows. ]
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Notice that this result is somehow optimal for tree-depth, as shown
by the example of paths of length n: tw(P,) = 1, but td(P,) =

[log,(n + 1)].

Corollary 2.6. FEvery graph G of order n with no minor isomorphic
to Ky, has tree-depth at most (2 + \/i)\/ h3n.

Proof. 1t is proved in [3] that a graph of order i with no K} minor has
a separator of size at most v/ h3i. Hence sg(i) < v h?i and:

td(G) < kf:ns(; (%) < mkin (%)Z < (2+V2)Vhin

3. REDUCTIONS AND FINITENESS

In this section we shall prove two powerful reduction theorems (and
finitness results) related to tree-depth.

Let G be a graph. Note Y(G) the set of the couples (Y, f) such
that Y is a rooted forest and f an injective homomorphism from G
to clos(Y). As shown before, td(G) = mingy,sey(e) height(Y). An
element (Y, f) € Y(G) defines a coloration A,z of vertices of G as
follows:

Av,p)(z) ={height(z,Y)} x {(height(u, Y), height(v,Y")) :
f(u) <y f(v) <y f(z) and {u,v} € E(G)}

Definition 3.1. Let G be a graph. An automorphism f : G — G
has the fized point property if, for every connected subgraph H of G,
f(H) N H is either empty or contains a fixed point of f.

Theorem 3.1. There exists a function F : Nx N — N with the follow-
ing property: For any integer N, any graph G of ordern > F (N, td(G))
and any mapping g : V(G) — {1,..., N}, there exists a non trivial in-
volutive g-preserving automorphism p : G — G with the fixed point
property (a homomorphism p is g-preserving if 1o g = g).

Proof. We prove the lemma by induction over td(G). If td(G) = 1,
the lemma is straightforward as G' has only isolated vertices. Hence if
n > N the graph G has two vertices with the same g-value and any
automorphism has the fixed point property. Thus F(N,1) = N will
do. Assume the lemma has been proved for graphs of tree-depth at
most ¢ > 1 and let G be a graph of tree-depth ¢ + 1.

If G is connected, there exists a vertex r such that td(G —r) = t. Let
G, ...,Gp be the connected components of G —r. Define the mapping
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g on V(G —r) by
g(x),1), if{x,r} e E(G
g,(x)_{m ), if {a,r} € B(G)

(9(z),0), otherwise

If n > F(2N,t)+1 then, by induction, G —r has a non-trivial involutive
g'-preserving automorphism g’ having the fixed point property. Define
e as the extension of u' to V(G) such that u(r) = r. By construction,
i is a non-trivial involutive g-preserving automorphism of G, and it
has the fixed-point property: if H is a connected subgraph of G and
p(H)NH # 0 then either r € H or H C G —r and hence p has a fixed
point in H.

Assume G is not connected and let G4, ..., G be the connected com-
ponents of GG. If one of the connected components has order greater
than F (2N, t) + 1 then, according to the previous case, it has a non-
trivial involutive g-preserving automorphism p' with the fixed-point
property. Extending u to V(G) by the identity, we still have a non-
trivial g-preserving automorphism with the fixed-point property. Oth-
erwise, as there exists at most NV k2(k—2H) N-colored graphs of order at
most k. Hence, if p > NECND+9(TE) there exists 1 <i<j<p
and a g-preserving isomorphism from G; to G;. This isomorphism ob-
viously defines a non-trivial involutive g-preserving automorphism g of
G with the fixed-point property: assume G has a connected subgraph
H such that u(H) N H # 0 and H contains no fixed point of . Then
H meets G; and G; but include no vertices outside G; U G;. As H is
connected and as there are no edges between vertices in GG; and vertices
in G, we are led to a contradiction.

F (2N, )+2

Thus defining £ (N, t+1) = (F (2N, t) + ) NE VDD 2(" 577 iy
do. ]

The following two consequences indicate that tree-depth is a good
“scale” for rigid graphs and even cores: For each given tree-depth we get
only finitely many cores. (Note that this does not hold for tree width
in a very strong sense: According to [10] the class of series parallel
graphs is (countably) universal.)

Corollary 3.2. Any rigid graph of tree-depth t has order at most

F(1,t).

Corollary 3.3. For any graph G and any mapping g from V(G) to a

set of cardinality N, there exists a subset A of V(G) of cardinality at

most F (N,t), such that G has a g-preserving homomorphism to G[A].
In particular, any graph G is hom-equivalent to one of its induced

subgraph of order at most F (1,td(G)).
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Proof. If G has order n > F (N, t) then there exists, according to The-
orem 3.1, a non-trivial g-preserving automorphism p of G with the
fixed-point property. Let F' be the set of the fixed points of u. As u
has the fixed point property, V(G) \ F may be partitioned into comple-
mentary subsets A and B such that B = p(A) and such that no edge
exists between a vertex in A and a vertex in B.

Define f : V(G) - V(G) \ A by

p(x), ifeeA
fle)=qu(z)=z, ifzeF
x, ifreB

As there is no edge between vertices of A and p(A), {z,y} € E(G)
imply that either {z,y} C AUF, in which case f(z) =z and f(y) =y
thus {f(x), f(y)} € E(G), or {z,y} € F U B, in which case we get
f(z) = p(x) and f(y) = p(y) thus {f(2), f(y)} € B(G). Altogether,
f is a homomorphism from G to one of its proper induced subgraph
(as p is non-trivial, A is not empty). Iterating this construction, we
eventually get a sequence of homomorphisms whose composition is a

homomorphism from G to one of its induced subgraph of order at most
F(N,t). W

Corollary 3.4. Let k > 1 be an integer. Then, the class Dy, of all
graphs G with td(G) < k includes a finite subset Dy such that, for
every graph G € Dy, there exists G € Dy which is hom-equivalent to G
and isomorphic to an induced subgraph of G.

Advancing yet another finitness result (Theorem 3.6) we take time
out for a lemma:

Lemma 3.5. Let G be a tree of size m having p leaves and tree-depth
k. Then, m < (28=1 — 1)p.

Proof. We prove the inequality by induction over k. The inequality is
obviously true for £ = 1 and we now assume it is true for £ — 1. Let
Y be a rooted tree of height k£ such that G C clos(Y) and let v be the
root of Y. The graph G — v has connected components G, ..., Gqw)
which are trees of order my, ..., mgq) having pi,..., pgy) leaves, where
m = d(v)+Y_,m;and p < Y .(p;—1). By induction, m; < (2872 —1)p;.
Hence, m < d(v)+ (p+d(v))(282? 1) = (p+d(v))2*~2 — p. Moreover,
p > d(v) has each G; includes at least one leaf of G. Thus, m <
2-lp— p= (2571 — 1)p. 0
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Theorem 3.6. There exists a function u : N — N, such that any
graph G has a connected subgraph H C G, so that td(H) = td(G) and
|E(H)| < p(td(G)).

Proof. td(G) = 1 means that G is isomorphic to K,,, thus we can choose
any vertex subgraph for H and put p(1) = 0. Assume td(G) > 2
and let £ = td(G). According to Lemma 2.3, the class Dy = {G :
td(G) < k — 1} is a proper minor closed class of graphs. Thus, (using
Robertson - Seymour minor graph theorem) there exists a finite set
Fi_1 of forbidden minors for the class Dy_1. As G &€ D;_1, there exists
K € Fj,_1, so that K is a minor of G. Moreover, we may assume
that G' is minimal in the sense that any edge deletion decreases the
tree depth of G. Thus G is connected and, for any edge e, K is not
a minor of G — e. Hence, K is obtained from G by contracting some
connected trees into single vertices, and deleting at most one edge for
any connected components of K but one. By minimality of G, each
vertex v of K is obtained by contracting a tree G, of G of tree-depth
at most k£ — 1 having at most d(v) extremal vertices. According to
Lemma 3.5, G, has size at most (2872 — 1)d(v). Altogether, G has
at most 2*72|E(K)| + c¢o(K) — 1 edges, where cy(K) is the number
of connected components of K. Put u(k) = maxger, 287 2|E(K)| +
Co(K) — 1. ]

4. CENTERED COLORINGS

4.1. Centered Colorings and Vertex Rankings.

Definition 4.1. A centered coloring of a graph G is a vertex coloring
such that, for any (induced) connected subgraph H, some color ¢(H)
appears exactly once in H.

Note that a centered coloring is necessarily proper. We can relate
the minimum number of colors in a centered coloring to the notion
of vertex ranking number which has been investigated in [6],[19]: The
vertex ranking (or ordered coloring) of a graph is a vertex coloring by
a linear ordered set of colors such that for every path in the graph
with end vertices of the same color there is a vertex on this path with
a higher color. A vertex-coloring ¢ : V(G) — {1,...,t} with this
property is a vertex t-ranking of G. The minimum ¢ such that G has a

vertex t-ranking is the vertex ranking number of G and is noted x,(G)
(see [6],[19]).

Lemma 4.1. Any vertex ranking is a centered coloring and conversely
any centered coloring defines a vertexr ranking with the same number
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of colors. Thus x,(G) is the minimum number of colors in a centered
coloring of G.

Proof. Assume ¢ is a vertex ranking of a graph G and let H be a
connected subgraph of G. Let i = max,cy(g)c(v). Then H has at
most one vertex colored ¢ as for otherwise the path linking them would
include a vertex with color j > 1.

Conversely, assume f is a centered coloration of G using ¢ colors.
We shall prove by induction over ¢ that f defines a vertex t-ranking of
G. As we may consider independently each connected component of
G, we may assume G is connected. As f is a centered coloring there
exists a color @ which appears exactly once in G, at a vertex v. As
the restriction of f to G — v is a centered coloring using ¢ — 1 colors, it
defines (by induction) a vertex (¢ — 1)-ranking ¢ of G —v. We extend ¢
to G by defining ¢(v) = t. Now any path linking two vertices with the
same c-color 7 is either a path of G — v (so includes a vertex of c-color
j > 1) or includes v which has c-color t. ]

Lemma 4.2. Let G be a graph. Then, td(G) is the minimum number
of colors in a centered coloring of G.

Proof. Notice that the minimum number of colors in a centered color-
ing of G is the maximum of the minima computed on the connected
components of G. As td(G) is the maximum tree-depth of the con-
nected components of G, we may restrict our proof to the case where
G is connected.

We first prove that td(G) is at most equal to the number of colors
in any centered coloring of GG, by induction on the number £ of colors
in the centered coloring. If £ = 1, G = K; and thus td(G) = 1.
Assume we have proved td(G) < k if k < ko, and assume k = kg + 1.
There exists a color ¢y which appears only once in G, at a vertex
v9o. Each of the connected components Gi,...,G, of G — vy has a
centered coloring using £ — 1 colors, and thus has depth at most k£ — 1.
Let Yi,...,Y, be trees rooted at rq,...,r,, such that G; C clos(Y)
and height(Y;) = td(G;). Then the tree Y with root vy and subtrees
Y1,...,Y, is such that G C clos(Y) and height(Y) < k + 1. Thus,
td(G) < k+ 1.

Now, we prove the opposite inequality, that is that td(G) is at least
equal to the number of colors in some centered coloring of G: Let Y
be a rooted tree of height td(G), such that G C clos(Y). Color each
vertex by its height in Y, thus using td(G) colors. According to the
structure of clos(Y), any connected subgraph H of clos(Y') (and thus
any connected subgraph of GG) has a vertex which is minimum in Y.
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The color assigned to this vertex hence appears exactly once in H, and
the constructed coloring is thus a centered coloring of G. [

Remark 4.3. According to the construction used above, if G has a
centered coloring and e = {z,y} is an edge of G, then the graph G/e
has a centered coloring. This can be deduced by modifying a centered
coloring of GG: the vertex corresponding to x and y has either the color
of  or the color of y and all the other vertices of G/e have the same
color they have in G.

In the case (G is connected, we obtain:

Corollary 4.4. Let G be a connected graph. Then, td(G), x,(G), the
manimum height of an elimination tree for G and the minimum number
of colors in a centered coloring of G are equal numbers.

Remark that the equality of x,(G) and of the minimum height of an
elimination tree ! already appears in [6], but we reproved it here for
completeness.

4.2. p-centered colorings of minor closed classes. We introduce
p-centered colorings, as a local approximation of centered-colorings:

Definition 4.2. A p-centered coloring of a graph G is a vertex coloring
such that, for any (induced) connected subgraph H, either some color
c(H) appears exactly once in H, or H gets at least p colors.

We are aiming for Theorem 4.7. The proof will be an easy combina-
tion of finiteness Theorem 3.6 and of the following lemmas.

Lemma 4.5. Let G, Gy be a graph, let p = td(Gy), let ¢ be a g-centered
coloring of G where ¢ > p. Then any subgraph H of G isomorphic to
Gy gets at least p colors in the coloring of G.

Proof. We prove the lemma by induction on the order of Gy. If Gy =~
K, the lemma is straightforward. Assume the lemma has been proved
for graphs Gq of order at most n — 1 and let G, be a graph of order
n > 1.

If GGy is not connected, the tree-depth of Gy equals the tree-depth
of one of its connected components whose copies, by induction, get at
least p colors. So we are done.

Otherwise, let H be a subgraph of G isomorphic to Gy. According
to the definition of a g-centered coloring, either H gets at least ¢ > p
colors, or there exists a color which appears only once on V(H), at

n [6], the “height” is the maximum length of a path from the root to a leaf,
that is 1 less than given by our definition.
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a vertex 7. According to Lemma 2.2, td(H) < 1+ td(H — r) thus
td(H —r) > p — 1. By induction, H — r gets at least p — 1 colors in
the coloring of G. Hence H gets at least p colors. ]

Lemma 4.6. Let p, k be integers. Then, there exists an integer N (p, k),
such that any graph G with tree width at most k has a p-centered col-
oring using N(p, k) colors.

Proof. 1t is sufficient to prove the lemma in the case where G is a k-tree.

As G is a k-tree, it has an acyclic fraternal orientation, that is an
acyclic orientation such that (z,z) € F(G) and (y, z) € E(G) implies
(z,y) € E(G) or (y,z) € E(G). In such an orientation, vertices have
indegree at most £ — 1.

Let G be the directed graph obtained from G by adding an arc (z, y)
if  and y are not adjacent and if there exists in G' a directed path of
length at most p from x to y. This way, the in-degrees increase by at
most k7, and thus the chromatic number of G is bounded by a function
N(p, k). In the following we consider a coloration of the vertices of G
induced by a proper coloration of G* using at most N(p, k) colors.

Consider a connected induced subgraph H of G and the partial order
induced by the orientation of G. As all the in-neighbors in H of a vertex
of H form a clique, they are comparable and thus each vertex has a
unique predecessor in the partial order. The arc joining a vertex to its
predecessor defines a tree Y C H (by connectivity of H) and the arcs
entering a vertex x only comes from ancestors of x.

On the one hand, if a vertex = of H has at least (p — 1) ancestors in
Y, it is the endpoint of a directed chain of G of length p (as Y C G). In
this case GT[V (H )] includes a clique of size p, and hence V (H) receives
at least p colors in a proper coloring of G7.

On the other hand, if no vertex of H has at least (p — 1) ancestors
in Y then GT[V(H)] = clos(Y) and the root of ¥ has a color which
appears exactly once in H.

Altogether, the coloration of G deduced from a proper coloration of
G™ (using at most N(p, k) colors) is a p-centered coloration. O

After all these steps we arrive to the following:

Theorem 4.7. For every graph K and integer p > 1, there exists
integer py = pv(K,p), such that every graph with no K-minor has a
p-centered coloring using py colors.

Proof. Let G be a graph with no K-minor. According to Theorem 1.1,
there exists a vertex partition into iy = iy (K, p + 1) parts, such that
any p parts form a graph of tree width at most p — 1. Let G; be the
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graph induced by all the parts but the ith (for 1 <4 < iy ). According
to Lemma 4.6, each of the G; has p-centered coloring using N(p,p—1)
colors. Take the product of the coloring of G' by 4y colors and of the
colorings of the G; as a new coloring of G (with py = iy N(p,p — 1)¥
colors). Let H be a connected subgraph of G. Then, either G gets at
least p colors, or V(H) is included in some subgraph G; of G induced
by p — 1 parts. In the later case, some color appears exactly once in
H. ]

We shall prove that Theorem 4.7 is optimal in the following sense:

Proposition 4.8. For any integers p, k, N, for any graph H with tree
depth p, there exists a graph G with no K, minor, such that for any
N-coloring of the vertices of G, there exists a subgraph of G isomorphic
to H that receives at most p colors.

Proof. The class Dy = {G : td(G) < p} has K1 as a forbidden mi-
nor. According to Ramsey theorem, any sufficiently “large” N-colored
rooted forest Y of height p contains a “large” sub-forest Y’ of height p
(such that H C clos(Y")) whose levels are monochromatic. Thus, this
subgraph receives at most p colors. ]

Remark 4.9. Notice that this coloring is actually p-centered.

5. SUBGRAPH COLORING

Our way of generalizing proper colorings is to consider, (for a given
graph function f) the minimum number of colors required, so that any
subgraph H of G gets at least f(H) colors. (Recall for instance that
the star coloring corresponds to the graph function where any P, gets
at least 3 colors.)

As explained in the introduction, in this context “natural” families of
graphs are proper minor closed classes of graphs. These families have
bounded density, bounded chromatic number, bounded star coloring
number, etc. This boundedness property is captured by the following
definition:

Definition 5.1. The upper chromatic number of a graph H is the
greatest integer x(H ), such that, for any proper minor closed class of
graph K, there exists a constant k(K, H), such that any graph G € K
has a coloring using at most k(/C, H) colors so that any subgraph of G
isomorphic to H gets at least X (H) colors.

A bit surprisingly the upper chromatic number is not a new param-
eter and it can be determined by means of results of previous section:
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Theorem 5.1. For any graph G, X(G) = td(G).

Proof. According to Proposition 4.8, there exists a proper minor closed
class of graph such that, for any integer NV, there exists a graph in the
class which will include a copy of G with at most td(G) colors, whatever
N-coloration we choose on the graph. Thus X (G) < td(G).

Let p = td(G). According to Theorem 4.7, for any proper minor
closed class K of graphs, there will exist a integer py such that any
graph X € K has a p-centered coloring using py colors. According to
Lemma 4.5, any copy of G will get at least p colors. Thus Y(G) >
td(G). ]

. From the elementary properties of td(G), we get:
Corollary 5.2. If H is a minor of G, then X(H) < X(G).

It follows that X is a minor monotone invariant (as opposed to the
chromatic number). But there seems to be even more structure here
as indicated by the following:

Given a graph GG, we may also be concerned by the minimum number
of colors ensuring that any subgraph has many colors. More formally,
we shall introduce the following family of chromatic numbers:

Definition 5.2. Let G be a graph of order n and let k£ be an integer.
The kth chromatic number xx(G) is the smallest integer IV, such that
G may be N-colored in such a way that, for any H C G, H gets at
least min(k, x(H)) colors.

Thus:
(1)
1= x1(G) < x(G) = x2(G) < x3(Q) <+ < Xa(G) = -+ = Xoo(G)

It follows that Theorem 4.7 may be reformulated as follows:

Corollary 5.3. For any proper minor closed class of graphs IC and for
any fized integer p > 1, x,(G) is bounded on K.

The following theorem justifies the term of “upper chromatic num-
ber” and the restriction that p shall be bounded in the previous corol-
lary:

Theorem 5.4. For any graph G, X (G) = X(G).

Proof. On one hand, considering H = G in the definition, we get
Xoo(G) > X(G). On the other hand, let Y be a rooted forest of height
td(G) = X(G) (according to Theorem 5.1). Then, G C clos(Y'). Color
the vertices of Y according their height in Y (thus, with X(G) colors).
Then, for any connected subgraph H C G, let Y’ be the subgraph of Y
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with vertices having the same color than at least one vertex in V(H).
Then, H C clos(Y"') and thus, choosing the connected components of
Y’ whose closure include H, we may get a sub-forest Y” of Y, such
that H C clos(Y"), and thus td(H) < height(Y"). As height(Y") is
the number of colors in H, H gets at least td(H) colors. O

6. HOMOMORPHISMS

We found useful to define the following “truncated” products. This
construction is similar to those given in [13, 14].
Definition 6.1. Let K be a finite graph and let p > 2 be an integer.
The p-extension KT is the graph with vertex set W, U- - - UW,, where
i—1 p—i

W; =V(K) % - x V(K) x{w} x V(K) x --- x V(K)
{(z1, ..., Tic1, W, Tig1, ..., 2p) 12 € V(K) for k # i}

and
E(Kﬂp) ={{(z1, ..., Tic1, W, Tit1, ..., Tp),

(Y153 Yjm1, W Yjg1s -5 Yp) }
i#j7and Vk & {i,j}, {zk,yx} € E(K)}

Lemma 6.1. Let F be a finite set of finite graphs, let G be a graph
and let p be an integer strictly greater than max{|V(K)|: K € F}.
If G € Forby (F), then G € Forby, (F).

Proof. Assume there exists an homomorphism ¢ : K — G, where
K € F. As |V(K)| < p, there exists k, such that ¢(x) ¢ W, for
all x € V(K) (recall Wy is the set of the vertices of G having w
at position k). Hence, denoting ¢x(x) the kth coordinate of ¢(z), we
have {¢x(x), dr(y)} € E(G) for any edge {x,y} of K. Thus, ¢ o fx
is a homomorphism from K to G, a contradiction. Hence, G ¢
FOI‘bh(f). O]

Lemma 6.2. Let U be a graph and let p > 1 be an integer.
Assume a graph G has a p-proper coloring inducing a vertex partition
V(G) =WV U---UV, such that G[V(G)\ Vi] = U, for any 1 <i <p.
Then, G — U™,

Proof. Let f; (1 < i < p) be an homomorphism from G[V(G) \ V] to
U.
Let f:V(G) — V(U™) be defined on V; by

f(:l?) - (fl(x)a KRR fi—l(‘r)’wa fi+1(x)’ SRR fp(x)}
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Let {z,y} be an edge of E(G), x € Vi, y € V; (i # j as the coloring
is proper). Then, for any k ¢ {i,j}, as fr is an homomorphism from

GIV(G) \ Vi] to U, {/r(2), fe(y)} € E(U)}. Hence, {f(z),f(y)} €
E(U"), what proves G — UT?, O

Lemma 6.3. Let F be a finite set of finite graphs, let U be a graph in
Forby (F), let p, q be integers such that ¢ > p > max{|V(K)|: K € F}.
Assume a graph G has a g-proper coloring inducing a vertex partition
V(G) = ViU ---UV, such that any subgraph of G induced by p colors
has a homomorphism to U.
Then, U' = UNP+D-14 45 sych that U' € Forby(F) and G — U’

Proof. We prove this lemma inductively on ¢ — p. If ¢ = p + 1, this is
Lemma 6.2 and Lemma 6.1.

Assume the lemma has been proved for ¢ — p = a and assume ¢ =
p+a+1. According to Lemma 6.2 (considering the subgraphs induced
by p colors of a subgraph of G induced by (p+1) colors), any subgraph
H of G induced by p + 1 colors has a homomorphism to UM+ and,
according to Lemma 6.1, UMP+1) € Forby, (F). Thus, the result follows
from the induction hypothesis applied on F, UT?*1) (p+1) and q. O

Actually, we are now able to prove that the problem of finding a
universal graph for I N Forby,(F) only needs a resolution for the cases
where K is a class of graph with bounded tree depth:

Theorem 6.4. Let F be a finite set of finite connected graphs. Then,
for any proper minor closed class of graph K there exists a finite graph
U(KC,F) € Forby(F) such that any graph of K N Forby(F') has a homo-
morphism to U(IC, F).

Proof. Let p = maxger |V(K)| + 1. There exists an integer N, such
that any graph G € K has a proper N-coloring in which any p colors
induce a graph of tree depth at most p. According to Corollary 3.4,
there exists a finite set Dy of graphs with tree depth at most k, so that
any graph with tree-depth at most k£ is hom-equivalent to one graph
in the set. Let U(Dy, F) be the disjoint union of the graphs in Dy N
Forby (F). According to Lemma 6.3, U(K,F) = U(Dy, F)Ne+)-ON
will work. ]

Corollary 6.5. For any proper minor closed class K and any odd in-
teger p > 1, there exists an integer N(KC,p) so that, for any G € K:

odd —girth(G) > p = x(G®) < N(K, p)

Proof. Let U be a graph in Forby(C,) which is universal for
IC N Forby(C,). Then, for any G € K with odd girth strictly greater
than p, G — U. Thus, G® — U® and hence x(G®) < x(U®). O
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7. REMARKS AND OPEN PROBLEMS

Some of the results of this paper may be formulated (and in fact
are motivated) by the quasiorder (and partial order) induced by the
existence of a homomorphism:

Given graphs G, H we denote by G < H the existence of a homo-
morphism G — H. Clearly < is a quasiorder. If we consider isomor-
phism types of cores then we obtain a partial order. This quasiorder
(and partial order) is called colouring order (or homomorphism order)
and it is denoted by C. We also denote by < the strict version of <.
For a graph H we denote by Cy the principal ideal determined by H:
Cy ={G;G < H}. Cy is also called a colour class. This name is justi-
fied by interpreting homomorphisms as generalized colourings: Indeed,
a homomorphism G — K} is a just a (proper) k-colouring of graph G
and, more generally, a homomorphism G — H is called a H—colouring.
Thus Cg is the class of all H-colourable graphs; hence the name colour
class. It follows that the question whether G < H is difficult to decide
(and it is NP-complete in a very strong sense).

It is perhaps surprising how many fine combinatorial questions are
captured by order — theoretic properties of the colouring order C. Our
paper is related to extremal elements of this order: greatest and max-
imal elements, suprema and (upper) bounds in general. It appears
that these extremal graphs capture various problems which are as re-
mote as duality theorem ([17]) and Hadwiger conjecture (as shown in
[15]). These interpretations also lead to some, hopefully interesting,
problems.

Given a class IC of graphs it is usually a difficult question to find a
graph H which is maximal (or greatest, or supremum) of K in C as
such a result yields maximal chromatic number of a graph in K. We
review these familiar concepts in the setting of colouring order C:

A graph H is said to be an (upper)bound of K if every graph G € K
satisfies H < (. If in addition H € K then H is said to be greatest
graph in .

A graph H is said to be mazimal of I if H € K and no graph G € K
satisfies G < H.

A graph H is said to be supremum of K if G < H for every G € K
and if for every graph H' < H there exists a graph G € K such that
G £ H'.

For example, using this terminilogy, the 4-colour theorem says that
K, is the greatest graph in the class of all planar graphs. This obviously
cannot be improved. On the other hand, Grotzsch’s theorem says that
K3 is an upper bound of the class of all planar K3;—free graphs. However
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this may be improved as K3 fails to be a supremum of this class. Indeed,
by [14] and also by Theorem 1.2, there exists a graph H which is triangle
free and which is an upper bound for the class of all triangle free planar
graphs. Then the graph H' = H x K3 is also a bound which moreover
satisfies H' < Kj.
Note, that in this case we do not know whether a supremum exits.
Using this terminology Theorem 1.2 may be formulated as follows:

Theorem 7.1. For every finite set F of connected graphs and for every
minor closed class K the class I N Forb(F) is bounded in the class
Forb(F).

This results also nicely complements a similar result obtained for classes
of bounded degree graphs (instead of proper minor closed classes), see
[8, 9].Perhaps more interestingly, each of the classes Forb(F) NCy has
supremum H.

As pointed above the Hadwiger conjecture amounts to the fact that
any minor closed class IC of graphs has greatest element (in the ho-
moorphism order) and this element is the complete graph. If true then
it follows that K} is a bound for a minor closed class K of graphs where
h = h(K) is the Hadwiger number of . While this is an open problem
we at least found a bound not containing Kj ;.

Note that for undirected graphs (without structural restrictions) the
class Forb(F) is bounded only in trivial cases (bipartite graphs). Per-
haps more interestingly, each of the classes Forb(F)NCy has supremum
H, see [14].

REFERENCES

[1] N. Alon,C. McDiarmid and B. Reed, Acyclic colouring of graphs, Random Struc-
tures and Algorithms 2 (1991), 277-288.

[2] N. Alon, C. McDiarmid and B. Reed, Star arboricity, Combinatorica 12 (1992),
375-380.

[3] N. Alon, P. Seymour, and R. Thomas, A separator theorem for nonplanar
graphs, J. Amer. Math. Soc. (1990), no. 3, 801-808.

[4] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks, Approzimating
tree-width, pathwidth, frontsize, and shortest elimination tree, Journal of Algo-
rithms.

[5] O. V. Borodin: On acyclic colorings of planar graphs, Discrete Math., 25, 3
(1979), 211-236.

[6] J.S. Deogun, T. Kloks, D. Kratsch, and H. Muller, On vertexz ranking for per-
mutation and other graphs, Proceedings if the 11th Annual Symposium on The-
oretical Aspects of Computer Science, Lecture Notes in Computer Science, vol.
775, Springer, 1994, pp. 747-758.



TREE DEPTH, SUBGRAPH COLORING AND HOMOMORPHISM BOUNDS 21

[7] M. Devos, B. Oporowski, D.P. Sanders, B. Reed, P. Seymour, and D. Vertigan,

Ezluding any graph as a minor allows a low tree-width 2-coloring,
http://www.math.lsu.edu/ preprint/2001/bs02001b.pdf, 2001.

[8] P. Dreyer, Ch. Malon, J. Nesettil: Universal H-colourable graphs without a
given configuration, Discrete Math. 250 (2002), 245 — 252.

[9] R. Haggkvist, P. Hell: Universality of A-mote graphs, European J. Comb.
(1993), 23-27.

[10] J. Hubicka, J. Nesetfil: Universal partial order represented by means of trees
and other simple graphs, ITT Series 2003-128 (to appear in European J. Comb.).

[11] N. Linial: Local-global phenomena in graphs, Comb. Prob. Comp. 2 (1993),
491-503.

[12] R. Naserasr: Homomorphisms and Edge Colorings of Planar Graphs (submit-
ted).

[13] J. Nesetfil and P. Ossona de Mendez, Folding, submited, 2002.

[14] J. Nesettil and P. Ossona de Mendez, Colorings and homomorphisms of minor
closed classes, The Goodman-Pollack Festschrift (B. Aronov, S. Basu, J. Pach,
and M. Sharir, eds.), Algorithms and Combinatorics, vol. 25, Discrete & Com-
putational Geometry, 2003, pp. 651-664.

[15] J. Nesetril and P. Ossona de Mendez, Cuts and bounds, Discrete Mathematics
ACCOTA special issue (2003), accepted.

[16] J. Nesetril and S. Shelah, Order of countable graphs, European J. Comb. (2003),
no. 24, 649-663.

[17] J. Nesetril, C. Tardif: Duality Theorems for Finite Structures (Characterizing
Gaps and Good Characterizations), J. Comb. Th. B 80 (2000), 80-97.

[18] N. Robertson and P.D. Seymour, Graph minors 11. Algorithmic aspects of tree-
width, J. Algorithms 7 (1986), 309-322

[19] P. Schaffer, Optimal node ranking of trees in linear time, Information Process-
ing Letters 33 (1989/90), 91-96.

DEPARTMENT OF APPLIED MATHEMATICS, AND, INSTITUTE OF THEORETICAL
CoMPUTER SCIENCE (ITI), CHARLES UNIVERSITY, MALOSTRANSKE NAM.25,
11800 PrAHA 1, CzZECH REPUBLIC

E-mail address: nesetril@kam.ms.mff.cuni.cz

CENTRE D’ANALYSE ET DE MATHEMATIQUES SOCIALES, CNRS, UMR 8557,
54 BD RASPAIL, 75006 PARIS, FRANCE
E-mail address: pom@ehess. fr



