1

We consider the following fundamental problem in the area of real-time
scheduling. The input is a collection of jobs with equal processing times p,

Online Scheduling of Equal-Length Jobs:
Randomization and Restarts Help

Marek Chrobak* Wojciech Jawor* Ji¥{ Sgall
Tomas Tichy!

Abstract

We consider the following scheduling problem. The input is a set
of jobs with equal processing times, where each job is specified by its
release time and deadline. The goal is to determine a single-processor,
non-preemptive schedule of these jobs that maximizes the number of
completed jobs. In the online version, each job arrives at its release
time. We give two online algorithms with competitive ratios below
2 and show several lower bounds on the competitive ratios. First,
we give a g—competitive randomized algorithm. Our algorithm needs
only one fair random bit, as it chooses one of two (nearly identical)
deterministic algorithms, each with probability % We also show a
lower bound of % for barely random algorithms, that (with arbitrary
probability) choose one of two deterministic algorithms. Next, we
give a deterministic %-competitive algorithm in the model that allows
restarts, and we show that in this model the ratio % is optimal. For
randomized algorithms with restarts we show a lower bound of g.

Introduction

*Department of Computer Science, University of California, Riverside, CA 92521. Sup-

ported by NSF grants CCR-9988360 and CCR-0208856. {marek,wojtek}@cs.ucr.edu

tMathematical Institute, AS CR, Zitna 25, CZ-11567 Praha 1, Czech Republic. Par-
tially supported by Institute for Theoretical Computer Science, Prague (project LNO0OA056

of MSMT CR) and grant A1019401 of GA AV CR. {sgall,tichy}@math.cas.cz

where each job j is specified by its release time r; and deadline d;. The desired
output is a single-processor non-preemptive schedule. Naturally, each sched-
uled job must be executed between its release time and deadline, and different
jobs cannot overlap. The term “non-preemptive” means that each job, must
be executed without interruptions (in a contiguous interval of length p). The
objective is to maximize the number of completed jobs.

In the online version, the jobs arrive over time. Each job j arrives at time
r;, and its deadline d; is revealed at this time. The number of jobs and future
release times are unknown. At each time step when no job is running, we
have to decide whether to start a job, and if so, to choose which one, based
only on the information about the jobs released so far. An online algorithm
is called c-competitive if on every input instance it schedules at least 1/c as
many jobs as the optimum.

It is known that a simple greedy algorithm is 2-competitive for this prob-
lem, and that this ratio is optimal for deterministic algorithms.

Our results. We present two ways to improve the competitive ratio of 2.
First, addressing an open question in [6, 7], we give a g—competitive random-
ized algorithm, Interestingly, our algorithm needs only one fair random bit;
it chooses with probability % one of two deterministic algorithms. These two
algorithms are, in fact, two independent copies of the same algorithm that
use a lock mechanism to break the symmetry and coordinate their behaviors.
We are not aware of previous work that uses such inter-process coordination
mechanisms in the design of randomized online algorithms — and thus this
technique may be of its own, independent interest. We then show a lower
bound of % on the competitive ratio of barely random algorithms that (with
arbitrary probability) choose one of two deterministic algorithms.

Next, we give a deterministic %—competitive algorithm in the preemption-
restart model. In this model, an online algorithm is allowed to abort a job
during execution, in order to start another job. The algorithm gets credit
only for jobs that are executed contiguously from beginning to end. Aborted
jobs can be restarted (from scratch) and completed later. Note that the
final schedule produced by such an algorithm is not preemptive. Thus the
distinction between non-preemptive and preemption-restart models makes
sense only in the online case. (The optimal solutions are always the same.)
In addition to the algorithm, we give a matching lower bound, by showing

3

that no deterministic online algorithm with restarts can be better than -

competitive. We also show a lower bound of g for randomized algorithms

with restarts.

We remark that both our algorithms are natural, easy to state and im-
plement. The competitive analysis is, however, fairly involved, and it relies
on some structural lemmas about schedules of equal-length jobs.

In a recent paper, Goldwasser [8], introduces the concept of algorithms
that immediately, upon release of a job, commit if they will be completed or
not. Although we do not formulate our algorithms explicitly in this form,
they can be easily reformulated to satisfy this useful property.

In the paper we assume the model with integer release times and dead-
lines, which implicitly makes the time discrete. In the literature, some au-
thors work with continuous time and assume that jobs have unit lengths.
Both our algorithms can be easily modified to the continuous time model
without any changes in performance, at the cost of somewhat more technical
presentation of the analysis.

Previous work. The problem of scheduling equal-length jobs to maximize
the number of completed jobs has been quite well studied in the literature.
In the offline case, an O(nlogn)-time algorithm for the feasibility problem
(checking whether all jobs can be completed) was given by Garey et al. [5]
(see also [12, 3].) The maximization version can be also solved in polynomial
time [4, 1], although the known algorithms' are slower than the one in [5].

For the online version, Goldman et 10 ; 2p+l
al. [6] gave a lower bound of § on the o 1 p+l :
" : : | | 2p
competitive ratio for randomized algo- : 3 ‘p p‘

rithms and the tight bound of 2 for de-
terministic algorithms. To provide the
reader with better intuition, we briefly ADv2
outline these lower bound proofs. Let
p > 2. The jobs used in the instance,
written in the form j = (rj,d;), are 1 = (0,2p+1),2 = (1,p+1), 3 = (p, 2p),
see the figure. In the deterministic case, release job 1. If at time 0 the online
algorithm starts job 1, then release job 2, otherwise release job 3. The online
algorithm completes only one job. As the optimum is 2 in both cases, the
competitive ratio is no better than 2. For the randomized case, we use Yao’s
principle. We release job 1, and then randomly choose between jobs 2 and

ADV1 |

2 1 1

Figure 1: Lower bound proof

LCarlier [3] claimed an O(n? logn)-time algorithm for the maximization version but, as
pointed out in [4], his algorithm is not correct.

3, each with probability % The expected number of completed jobs of any
deterministic algorithm is at most 1.5, as on one of the instances it completes
only one job. Thus the competitive ratio is no better than 12—5 = %.

Goldman et al. [6] show that the lower bound of 2 can be beaten if the jobs
on input have sufficiently large “slack”. Specifically, they prove that a greedy
algorithm is %—competitive for instances where d; — r; > 2p for all jobs j.
This is closely related to our algorithm with restarts: On such instances, our
algorithm never uses restarts and becomes identical to the greedy algorithm.
Thus in this special case our result constitutes an alternative proof of the
result of [6]. Exploring this direction, Goldwasser [7] introduced a notion of
patience and obtained a parameterized version of this result: if d; —r; > Ap
for all jobs 7, where A > 1 is an integer, then the competitive ratio decreases
to 1+ 1/

In our brief overview of the literature given above we focused on the case
when jobs are of equal length and the objective function is the number of
completed jobs. We need to stress though that, in addition to the work
cited above, there is vast literature on real-time scheduling problems, where
a variety of other models is considered. Other or no restrictions can be
placed on processing times, jobs may have different weights (benefits), we
can have multiple processors, and preemption may be allowed. For example,
once arbitrarily processing times and /or weights are introduced, no constant-
competitive algorithms exist. Therefore it is common in the literature to
allow preemption with resume, where a job can be preempted and later
started from where it was stopped.

The model with restarts was studied before by Hoogeveen et al. [9]. They
present a 2-competitive deterministic algorithm with restarts for jobs with ar-
bitrary processing times and objective to maximize the number of completed
jobs (i.e., no weights). They also give a matching lower bound. However,
their algorithm does not use restarts on the instances with equal processing
times, and thus it is no better than 2-competitive for our problem.

Real-time scheduling is an area where randomized algorithm have been
found quite effective. Most randomized algorithms in the general scenarios
use the “classify-and-randomly-select” technique introduced by Lipton and
Tomkins [10]. In general, this method decreases the dependence of compet-
itive ratio from linear to logarithmic in certain parameters (e.g., the ratios
between the maximum and minimum weights.) This technique seems to
be of no use for our case of equal length (and equal weight) jobs, and our

randomized algorithm is based on entirely different ideas.

Barely random algorithms are an interesting concept recently introduced
in the area of online algorithms. The first work on barely random scheduling
algorithms we are aware of is that of Seiden [11], who obtained significant
results in the area of makespan scheduling. Bartal et al. [2] show that barely
random online algorithms are also useful for the k-server problem.

The area of real-time scheduling is of course well motivated by multitudes
of applied scenarios. In particular, the model of equal-length jobs — without
or with limited preemption — is related to applications in packet switched
networks. When different weights are considered, the problem has further
connections to the “quality of service” issues (recently a fashionable phrase.)
Nevertheless, we shamelessly admit that this work has been partially driven
by plain curiosity. It is quite intriguing, after all, that so little is known
about the competitiveness of such a fundamental scheduling problem.

2 Preliminaries

Notation and terminology. The instance on input is a set of jobs J =
{1,2,...}. Each job j is given by its release time r; and deadline d;. All jobs
have processing time p. (We assume that all numbers are positive integers
and that d; > r; + p for all j.) The expiration time of job j is z; = d; — p,
i.e., the last time when it can be started. A job j is called available at time
tifr; <t <wx;. Ajob jis called tight if z; —r; <p.

A non-preemptive schedule A assigns to each completed job j an interval
[S]A, C’]A), with r; < SJA < z; and CJA = S]’-4 + p, during which it is executed.
These intervals are disjoint for distinct jobs. SjA and CjA are called the start
time and completion time of job j. Both are assumed to be integer, w.l.o.g.
We adopt a convention that “job running (a schedule being idle, etc.) at time
t” is an equivalent shortcut for “job running (a schedule being idle, etc.) in
the interval [t,¢ 4+ 1)”. Given a schedule A, a job is pending at time ¢ in A
if it was not completed yet and r; < ¢ < x;. The benefit of the schedule,
denoted |A|, is the number of completed jobs.

A set of jobs P is called feasible at time ¢ if there exists a schedule which
completes all jobs in P such that no job is started before t. A set of jobs P
is flexible at time ¢ if it is feasible at time ¢ 4+ p. We say that a job started
by a schedule at time t is flexible if the set of all jobs pending at ¢ is flexible;
otherwise the job is called urgent.

An online algorithm constructs a schedule incrementally, at each step ¢
making decisions based only on the jobs released at or before . Each job
j is revealed (including its deadline) to the algorithm at its release time
rj. A non-preemptive online algorithm can start a job only when no job is
being running; thus, if a job is started at time ¢ the algorithm has no choice
but to let it complete by the time ¢ + p. An online algorithm with restarts
can start a job at any time. If we start a job j when another job, say k,
is running, then k is aborted and started from scratch when (and if) it is
started again later. The unfinished portion of k is removed from the overall
schedule (so the schedule is considered to be idle during this time interval.)
Thus the schedule generated by an online algorithm with restarts is also a
non-preemptive schedule.

An online algorithm is called c-competitive if, for any instance (set of jobs)
J and any schedule ADV for .J, the schedule A generated by the algorithm
on J satisfies |[ADV| < ¢|A|. If the algorithm is randomized, the expression
|A| is replaced by the expected (average) number of jobs completed on the
given instance.

Some properties of schedules. For every instance J, we fix a canonical
linear ordering < of J such that j < j’ implies d; < dj. In other words, we
order the jobs by their deadlines, breaking the ties arbitrarily but consistently
for all applications of the deadline ordering. The term earliest-deadline, or
briefly ED, now refers to the <-minimal job.

A schedule A is called EDF (earliest-deadline-first) if, whenever it starts
a job, it chooses the earliest-deadline job of all the pending jobs that are
later completed in A.

A schedule is normal if (i) whenever it starts a job, it chooses the ED job
from the set of all pending jobs, and (ii) whenever the set of all pending jobs
is not flexible, it starts a job. Both conditions (i) and (ii) are reasonable,
in the sense that any algorithm can be modified, using a standard exchange
argument, to satisfy them without reducing the number of scheduled jobs.
(We omit the proof, as we do not need this fact in the paper). Furthermore,
the rules can be guaranteed by an online algorithm; indeed, all our algorithms
generate normal schedules. Obviously, any normal schedule is EDF, but the
reverse is not true. The following property is useful.

Lemma 2.1 Suppose that a job j is urgent in a normal schedule A. Then
at any time t, SJA <t < xj;, an urgent job is running in A.

6

Proof: Let P be the set of jobs pending at time SjA. Towards contradiction,
suppose that there is a time ¢, SjA <t < zj, when Ais idle or starts a flexible
job at . Then the set @ of jobs pending at time ¢ is flexible at ¢ and, since
j is the ED job from P (by normality of A),) contains all the jobs from P
that are not completed in A before ¢t. Since @ is flexible at ¢, we can schedule
all jobs of @ from t + p, start j at ¢t and schedule all jobs in P — @Q — {j} as
in A. This shows that P is flexible at time S]A — a contradiction. O

Two schedules D and D' for an instance J are called equivalent if D starts
a job at t if and only if D’ starts a job at ¢; furthermore the job started in D
is flexible if and only if the job started in D’ is flexible. Obviously, |D| = |D'|
for equivalent schedules.

For the purpose of our analysis, we modify normal schedules into equiva-
lent EDF schedules with better structural properties. In particular, the next
lemma gives us more control over the choice of jobs that are scheduled, if
there are more equivalent choices. The idea of the construction is straight-
forward: keep a list of jobs we want to schedule to satisfy the requirements;
verifying all the details is tedious.

Lemma 2.2 Let A be a normal schedule for a set of jobs J. Let f(j) :J — J
be a partial function such that if f(j) is defined then j is scheduled as flexible
in A and ;) < CJ-A < wy;). Then there exists an EDF schedule A" equivalent
to A such that:
(1) All jobs f(j) are completed in A’
(2) If j is available at time t when A’ is idle or starts a flexible job then
j is completed in A’
(3) Let j be a job completed in A, let t = SjA, and let R be the set of all
jobs j' with vy < t + p that are pending at t + p. If R is feasible at
t + p then all the jobs in R are completed in A’.

Proof: We iteratively produce the schedule A’, while maintaining a feasible
set P, of pending jobs at each time ¢t when A is idle or starts a job. In parallel
with the construction, we prove inductively that P; is an C-maximal feasible
subset of the jobs pending at time ¢, for each schedule A or A’. Note that
if P, is flexible, then its maximality implies that P; is equal to the set of all
jobs pending at t, both for A and A’. We now describe the construction.

Initially, choose P, as an arbitrary maximal feasible set of jobs released
at time 0.

Suppose we have already defined P;. If A is idle at ¢, we let A’ idle and
choose an arbitrary P;,; O P, by adding the newly arrived jobs as long as
the set is feasible. Since A is idle, P, is flexible at ¢ and thus (i) P, contains
all the pending jobs at ¢, in each schedule A or A’, and (ii) P; is feasible at
t+ 1. This implies that the constructed set P, is a maximal feasible set at
t+ 1, both for A and A'.

If A starts a job j at time ¢, A’ starts the earliest-deadline (more precisely,
~<-minimal) job k from P;. Since P; is a maximal feasible set both for A and
A’, it is non-empty whenever A starts a job. Furthermore, we have the
following equivalences: the job started in A is flexible at ¢ iff P; is flexible at
t iff k is flexible at ¢ in A’.

Let @ = P, — {k}. We claim that the following properties hold for each
schedule A and A’

(Q1) Each job i €) is pending at time ¢ + p,

(Q2) Q is feasible at time t + p, and

(Q3) @ is C-maximal among all sets of jobs that satisfy conditions (Q1)
and (Q2).

By the definition of @, (Q2) holds (for both A and A’) and (Q1) holds
for A’. No job k' € P, can be feasibly added to Q at time ¢ + p, as otherwise
it could be feasibly added to P; at time t. Thus, for A’, @) satisfies (Q3), i.e.,
is maximal. If P; is flexible, then P; contains all jobs pending at ¢ both for
A and A’, thus j = k and @ satisfies (Q1) and (Q3) for A. If k is urgent,
then j < k since k is available to A and A schedules the ED pending job (as
A is normal); thus, for A, all jobs in) are pending at ¢ + p and (Q1) holds.
Furthermore, P; is not feasible at ¢ + p (as otherwise P, would be flexible
contradicting the assumption that & is urgent). Thus (Q3) holds also for A,
as adding both £ and a job not in P; leads to a non-feasible set.

Now we construct P;i, from) by adding the newly arrived jobs in a
particular order. First, if defined, we add f(j): in this case P, is flexible at
t and thus @ is flexible at ¢ + p, so f(j) can always be added to @ if it is
pending and not yet in () (which is the case if r;;y < ¢). Then we add all
the jobs j' with ¢t < rj <t 4+ p, in an arbitrary order, adding each job only
if the set is feasible. Finally, we add all the jobs j' with rjy = ¢+ p, in an
arbitrary order, adding each job only if the set is feasible. The maximality
of () and the construction implies that P, is a maximal feasible set of jobs
pending at ¢t + p, both for A and A’.

This completes the construction. Obviously, A and A’ are equivalent.
Also, A" is EDF since the ED job of P; is scheduled and no jobs j' & P,

8

pending at ¢t are added to Py, t' > t.

By the construction, A’ schedules all the jobs that are in some plan P;.
At any time ¢ when A’ is idle or starts a flexible job, plan P; is flexible and
thus contains all pending jobs. This proves (2). Since f(j) € P, for t = C}},
it also implies (1). Finally, to show (3), recall that when constructing Py,
for t = S]-A, we are first adding to Py, all the jobs j' with r; < ¢+ p (by the
assumption of the lemma, j' = f(j) satisfies this); if they are all together
feasible then they are all added and thus R C P;,,. O

Lemma 2.2 gives an easy proof that any normal schedule A schedules
at least half of the jobs of any schedule ADV for the same instance. Take
the modified schedule A’ from Lemma 2.2. Charge (i.e. map) any job j
completed in ADV to a job completed in A’ as follows: (i) If A’ is running
a job k at time SHPV, charge j to k. (ii) Otherwise charge j to j. This is
well defined, since if j is available at SV and if A’ is idle, A" completes j
by Lemma 2.2(2). Furthermore, only one job can be charged to k using (i),
as all jobs have the same processing time and only one job can be started in
ADYV during the interval when k is running in A’. Thus overall at most two
jobs are charged to each job in A" and |ADV| < 2|A'| = 2|A|, as claimed.

This shows that any online algorithm that generates a normal schedule is
2-competitive. In particular, this includes the known result that the greedy
algorithm which always schedules the ED pending job when there are any
pending jobs is 2-competitive. We use similar but more refined charging
schemes to analyze our improved algorithms.

3 Randomized Algorithms

3.1 A 2-Competitive Algorithm

In this section we present our g—competitive barely random algorithm. This
algorithm needs only one random bit; at the beginning of computation it
chooses with probability % between two schedules. We also later show a
lower bound for barely random algorithms: any randomized algorithm that
randomly chooses between two schedules has ratio at least %

Algorithm RANDLOCK. The algorithm runs two identical processes, A and
B, sharing a common lock. Each process computes one schedule of its own
copy of the given instance J. (This means that with the exception of the
lock, the processes are independent; e.g., a given job can be executed by

both processes at the same or different times.) The algorithm chooses with
probability % each process.

Each process works as follows:

(1) If there is no pending job, wait for the next arrival.

(2) If the pending jobs are not flexible, execute the earliest-deadline pend-
ing job.

(3) If the pending jobs are flexible and the lock is available, acquire the
lock (ties broken arbitrarily), execute the earliest-deadline pending
job, and release the lock upon its completion.

(4) Otherwise wait until the lock becomes available or the pending jobs
become not flexible (due to progress of time and/or job arrivals).

Before we analyze the algorithm, we illustrate the behavior of the algo-
rithm on the instance in Figure 2. Both processes schedule only 3 jobs out
of optimal 5, thus the algorithm is not better than g—competitive.

Let A and B denote the schedule generated by the corresponding pro-
cesses on a given instance J. It is easy to see that RANDLOCK is a non-
preemptive online algorithm and both schedules are normal. Fix an arbitrary
schedule ADV for the given instance J.

We start our proof by modifying the schedules A and B according to
Lemma 2.2. We define partial functions f?, D € {A, B}. Define fP(j) =k
if j is a flexible job completed in D and k is a job started in ADV during the
execution of 7 in D and available at the completion of 5 in D, i.e., such that
SP < SpPY < OF < xy. Otherwise (if j is not flexible or no such k exists),
fP(4) is undefined. Note that if k exists, it is unique for a given j.

Let D' be the schedule constructed in Lemma 2.2 using f = fP. We
stress that D’ is not actually constructed by the algorithm (in fact, it cannot
be constructed online as its definition depends on ADV); it is only a tool for
the analysis of RANDLOCK. Since D’ is equivalent to a normal schedule D,
Lemma 2.1 still applies and the number of completed jobs remains the same
as well.

To avoid clutter, we slightly abuse the notation and from now on we use
A and B to denote the modified schedules A’ and B’. Whenever D denotes
one of the processes or schedules A and B, then D denotes the other one.

Observation: An important property guaranteed by the lock mechanism is
that if D is idle at time ¢ and the lock is available (i.e., D is idle or executing
an urgent job), then all jobs j available at ¢ are completed by time ¢ in D, as
otherwise D would schedule some job. Furthermore, any such j is executed

10

as flexible: otherwise by Lemma 2.1 D cannot be idle at time ¢, SJD <t<u;.

The charging scheme. Let j be a job started at time ¢ = S;*PV. This
job generates several charges of different weights to (the occurrences of) the
jobs in schedules A and B. There are two types of charges: self-charges from
job 7 to the occurrences of j in A or B, and up-charges, from j to the jobs
running at time ¢ in A and B. (See Figure 3.) The total of charges generated
by 7 is always 1.

Case (I): Both schedules A and B are idle. By the observation above, j is

completed in both A and B. We generate two self-charges of % to the two
occurrences of j in A and B.

Case (IT): One schedule D € {A, B} is running an urgent job k£ and the other
schedule D is idle. By the observation, j is completed by time ¢ in D. We

generate one self-charge of % to the occurrence of 7 in D and one up-charge
of % to kin D.

Case (III): One schedule D € {A, B} is running a flexible job k and the other
schedule D is idle. We claim that j is completed in both A and B. This
follows from Lemma 2.2(2) for D and also for D, if r; < SP. If z; > CP
then fP(k) = j and D completes k by Lemma 2.2(1). In the remaining case,
we have SP < r; <t < x; < OP; thus j is a tight job and D cannot be idle
at t, contradicting the case condition.

In this case we generate one up-charge of % to k£ in D and two self-charges
of % and % to the occurrences of j according to the subcases as follows. Let
E € {A, B} be the schedule which starts j first (breaking ties arbitrarily).

Case (IITa): If E schedules j as an urgent job and the other schedule F
is idle at some time t' satisfying SJE < t' < zj, then charge % to the
occurrence of 7 in F and % to the occurrence of j in F. Note that
by Lemma 2.1, E is running an urgent job at ¢ < z;, and by the
observation above, j is flexible and completed in E before t'.

Case (ITIb): Otherwise charge 1 to the occurrence of j in E and ; to the
occurrence of j in F.

Case (IV): Both processes A and B are running jobs k4 and kg, respectively,
at time t. We show in Lemma 3.1 that one of k4 and kp receives a self-charge
of at most é from its occurrence in ADV. This job receives an up-charge of %
from 7 and the other one of k4 and kg an up-charge % from j. No self-charge
is generated.

11

Lemma 3.1 In case (IV), one of ka and kp receives a self-charge of at most
1

6
Proof: Assume, towards contradiction, that both k4 and kp receive a self-
charge of % At least one of k4 and kp is scheduled as urgent in the corre-
sponding schedule, due to the lock mechanism. Thus k4 # kg, as (I) is the
only case when two self-charges % to the same job are generated and then
both occurrences are flexible. Furthermore, if j = kp, D € {A, B}, then kp
has no self-charge. Thus k4, kg and j are three distinct jobs.

Claim: If kp, D € {A, B}, receives a self-charge of 1 in case (IIIb) (applied
to kp) and SpPV < ¢ —p (ie., kp is scheduled before j in ADV), then
k[) < kp.

Proof of Claim: If (IIIb) applies, generating a self-charge of $ to kp then D
schedules kp after k. Furthermore, S,?D >t—p > SpPV >y, and thus kp
is pending in D when kp is started. Since D is EDF, we have kp < kp, as
claimed.

Choose D such that kp is urgent in D (as noted above, such D exists).
The only case when an urgent job receives a self-charge of 3 is (IIIb). Since
by Lemma 2.1, D executes urgent jobs at all times ¢, ¢ < t' < x,, and
j # kp, it follows that SV < ¢ —p. By the claim, k5 < kp and x5, < 24,
Furthermore, since (IIla) does not apply, D is also not idle at any time #',
t S ! S Lkp-

If k5 is self-charged 3 in cases (I), (II), (IIla) or the subcase of (IIIb) when
Sﬁgjv > ¢, then at least one process is idle at some time ', ¢ < ¢’ < x5, < ,,,
which is a contradiction with previous paragraph. If kp is self-charged % in
the subcase of (IIIb) when SEPYV < ¢, then SPPV <t —p as j # kp, and the
claim above applies to kp; however the conclusion that kp < kp contradicts
the linearity of < as kp # kp and we have already shown that k5 < kp. We
get a contradiction in all the cases, completing the proof of the lemma. O

Finally, we show that the total charge to each occurrence of a job in A
or B is at most %. During the time when a job is running in A or B, at
most one job is started in ADV, thus each job gets at most one up-charge in
addition to a possible self-charge (in certain degenerate cases these two may
come from the same job in ADV). The weight of a self-charge j is always

either 1 or L. In particular, if a job does not receive any up-charge, it is

2 6
charged less than 2. If a job k in D receives an up-charge in (II), it is a tight

job and, since the D is idle, it is already completed in D; thus the self-charge

12

is at most é and the total is at most é + % < %. If a job k£ in D receives
1

an up-charge in (III), the up-charge is only 3 and thus the total is at most
$+3 =2 TIfajob k in D receives an up-charge in (IV), Lemma 3.1 implies
that the up-charges can be defined as claimed in the case description. The
total charge is then bounded by % + % = % and % + % = %, respectively.

The competitive ratio of g follows by summing the charges over all jobs
and observing that the expected number of jobs completed by RANDLOCK

is 5(|A] +|B]).

Theorem 3.2 RANDLOCK s a g—competz'tz've non-preemptive randomized

algorithm for scheduling equal-length jobs.

3.2 A Lower Bound for Barely Random Algorithms

Theorem 3.3 Suppose that A is a barely-random non-preemptive algorithm
for scheduling equal-length jobs that chooses one of two deterministic algo-
rithms. Then A is not better than %—competz'tz’ve.

Proof: Assume that we have two deterministic algorithms, A and B, of which
one is chosen as the output schedule randomly, with arbitrary probability.
Let p > 3 and write the jobs in the format j = (rj,d;). We start with
job 1 = (0,4p). Let ¢ be the first time when one of the algorithms, say A,
schedules job 1. If B schedules it at t as well, release a job 1’ = (t+1, t+p+1);
obviously the optimum schedules both jobs while both A and B only one, so
the competitive ratio is at least 2.

So we may assume that B is idle at ¢. Release job 2 = (¢t +1,t+ 2p + 2).
If B starts job 2 at t + 1, release job 3 = (t + 2,t 4+ p + 2), otherwise release
4= (t+p+1,t+2p+1). By the choice of the last job, B can complete only
one of the jobs 2, 3, 4. Since A is busy with job 1 until time ¢+ p, it also can
complete only one of the jobs 2, 3, 4, as their deadlines are strictly smaller
than ¢+ 3p. So both A and B complete two jobs. The optimum can complete
all three released jobs. If 3 is issued, schedule 3, 2, back to back, starting at
time ¢t + 2. If 4 is issued, schedule 2,4, back to back, starting at time ¢ + 1.
In either case, both jobs fit in the interval [t + 1,¢+ 2+ 2p). Ift > p — 1,
then job 1 can be scheduled at time 0, otherwise, it can be scheduled at time
3p > t+ 2+ 2p. Thus the competitive ratio is at least % a

13

4 Scheduling with Restarts

4.1 The %-Competitive Algorithm

Our algorithm with restarts is very natural. At any time, it greedily schedules
the ED job. However, if a new tight job arrives and it would expire before
the running job is completed, we consider a preemption. If all pending jobs
can be scheduled, the preemption occurs. If not, it means that some pending
job is necessarily lost and the preemption would be useless—so we continue
running the current job and let the tight job expire.

We need an auxiliary definition. Suppose that a job j is started at time
s by the algorithm. We call a job k a preemption candidate if s < rp < zp <
s+ p.

Algorithm TiGHTRESTART. At time t:

(1) If no job is running, start the ED pending job, if there are any pending

jobs, otherwise stay idle.

(2) Otherwise, let j be the running job. If no preemption candidate is
released at ¢, continue running j.

(3) Otherwise, choose a preemption candidate k released at t (use the
ED job to break ties.) Let P be the set of all jobs pending at time ¢,
excluding any preemption candidates (but including 7). If P is feasible
at t+ p, preempt j and start k£ at time ¢. Otherwise continue running
].

Preliminary considerations. Let A be the non-preemptive schedule gen-
erated by TIGHTRESTART (after removing the preempted parts of jobs.) We
stress that we distinguish between A being idle and TIGHTRESTART being
idle: at some time steps TIGHTRESTART can process a job that will be
preempted later, in which case A is considered idle but TIGHTRESTART is
not.

Obviously, TIGHTRESTART is an online algorithm with restarts, and any
job it starts is the ED pending job. To prove that A is a normal schedule,
we need a few more observations:

(1) A job j that was started as urgent is never preempted: Let R be the
set of pending jobs at time ¢’ when j is started, and suppose that at
time ¢ a preemption candidate arrives. If x; < ¢ then j itself is not
feasible at ¢. Otherwise all jobs in R are pending at ¢ (as j is the ED
job in P) and thus P O R cannot be feasible at t + p since already R
is not feasible at t' +p <t + p.

14

(2) If j is preempted, then this happens on the first release of a preemption
candidate: the condition in step (1) only gets stronger with further
jobs released, using also the fact that j is flexible by (1) and thus no
job available at its start expires.

(3) If A is idle at ¢’ but a job j is running at ¢’ and preempted at time
t > t', the set R of all jobs pending at time t' is flexible: Since j is
flexible and R does not contain any preemption candidates by (2), we
have R C P where P is the set in step (3) of the algorithm at time
t. If 5 is preempted at time ¢, P is flexible at ¢, thus R is flexible at
t <.

Summarizing, A always starts the ED pending job; if a preemption occurs,
we use (2) and the choice of the scheduled preemption candidate to see that
it is ED. (1) implies that if an urgent job is started, it is also completed, and
(3) implies that if A is idle then the set of pending jobs is flexible. Thus A
is a normal schedule and we can proceed towards application of Lemma 2.2.

Define a partial function f : J — J as follows. Let j be a job scheduled
as flexible in A.

o If at some time t, S;* <t < C/', ADV starts a job k which is not a
preemption candidate then let f(j) = k.

e Otherwise, if there exists a job k with S]A <1 < CJA < xj such that
ADV does not complete k, then let f(j) = k (choose arbitrarily if
there are more such £’s).

e Otherwise, f(j) is undefined.

Let A’ be the schedule constructed in Lemma 2.2 from A and the function
f. As before, we abuse A to denote the modified schedule A’ as well.

Call a job j scheduled in ADV a free job if TIGHTRESTART is idle at time
SJADV. This implies that at time SfDV no job is pending in A; in particular,
j is completed by time S#PV in A. (These jobs need special attention, as
TIGHTRESTART was “tricked” into scheduling them too early.)

If a job j in ADV is started while a job k£ is running in A, we want to
charge j to k. However, due to preemptions, the jobs can become misaligned,
so we replace this simple matching by a slightly more technical definition. We
match the jobs from the beginning of the schedule, a job k£ in A is matched
to the next job in ADV, provided that it starts later than k; an exception is
that if k£ is free then we prefer to match it to itself rather than to another
job that starts much later.

Formally, define a partial function M : J — J which is a matching of
(some) occurrences of jobs in A to those in ADV. Process the jobs k scheduled

15

in A in the order of increasing Si'. Let j be the first unmatched job started in
ADV after Si!, i.e., a job with smallest S;*V among those with SV > S
and not in the current range of M (i.e., for no k' with S{ < S, 7 = M(k')).
If no such j exists, M (k) is undefined. If k£ is a free job, not in the current
range of M, and S;*PV > Cf!, then let M (k) = k. Otherwise let M (k) = ;.

The definition implies that M is one-to-one. Furthermore, for any j
scheduled in ADV, if A is executing a job k at S;*PV, then j = M(k') for
some k': if j is not in the range of M before k is processed then M (k) is
defined as j.

Lemma 4.1 If j is free and f(j) is undefined then j is in the range of M.

Proof: Since j is free, it is completed in A before it is started in ADV. Let k
be the job started in ADV at some time ¢, SjA <t< CjA. If no such k exists
or M(j) # k then j is in the range of M and the lemma holds: if j is not in
the range of M before j is processed, then M (j) is defined to be j.

Since f(j) is undefined, k is a preemption candidate. Thus it remains to
handle the case when k is a preemption candidate, yet TIGHTRESTART does
not preempt, and M(j) = k.

The idea is this: We show that after j, A schedules many jobs that, in
the definition of M, could be matched to jobs in ADV scheduled after &, so
they cannot be all matched before we try to match to 7 in ADV. This gets
a bit technical, e.g., we need to verify that these jobs are not free.

Let K = {j' | S < ry < C#* < xj} be the set of all jobs released
during the execution of j in A, excluding preemption candidates. Since
f(4) is undefined, all these jobs are completed in ADV, and obviously they
cannot be completed before SpPV. Thus K is feasible at C2PV and also at
CA < CpdY,

7 = Yk

Let P be the set of all jobs pending at r; in A excluding all preemption
candidates (but including j). Let R= PUK — {j} and u = |R|. Since A is
an EDF schedule and all jobs j' € J — K are available at S]-A, they all have
djy > dj > C]-A. Thus R is exactly the set of all jobs pending at C]A in A with
Ty < CJA

Suppose, towards contradiction, that R not feasible at CjA. Since K is
feasible and all jobs in j' € J — K have dy > d;, TIGHTRESTART is then
executing urgent jobs from CjA until at least the time x;. Thus A is not
idle at time S;*PV < z; and j is not free. Thus R is feasible at C! and
by Lemma 2.2(3), A completes all jobs in R. Furthermore, all jobs in R

16

are scheduled between C' and S?PV, as TIGHTRESTART is idle at S;PV.
Consequently, SHPYV — (ﬂZ > up.

Next we claim that (i) SV —CpPY < up and (ii) ADV does not schedule
any of the jobs in R after j. If either of the items is violated, R U {j} is
feasible at C2PV: First we schedule K, which is feasible at CADV and then
the remaining jobs from R. If (i) is violated, we can complete all jobs in R
by the time S*PV, which is smaller than the deadlines in P — K, and start j
at SADV If (11) is violated, let j’ be the job in R scheduled after j in ADV.
We know that S;PY — CADV > SAPV — C4 —p > (u — 1)p, thus we can
complete all JObS in R — { 7'} by the time SADV and schedule j and j' as
ADV. Consequently, P C RU{j} is feasible at re +p < CPAPVY, contradicting
the assumption that k£ did not cause preemption.

Now we show that no job in R is free. If any of j' € R is scheduled in
ADV, using (ii) and (i) above we have S3PV < SAPY —p < CPPV 4 (u—1)p <
C’A + up, but at this time TIGHTRESTART is not idle as there is not enough
time to complete all u jobs in R between C;' and S;PV.

Summarizing, A completes at least u JObS that are not free between C4
and SHPV, while ADV schedules at most u — 1 jobs between Ci*PV and SAD{’
(using (i)). Since M (j) = k, the definition of M implies that j is in the range
of M. O

Charging scheme. Let j be a job started at time ¢ in ADV. Note that
case (I) below always applies when A is not idle at ¢, so the cases exhaust all
possibilities.

Case (I): j = M(k) for some k: Charge j to k.

Case (IT): Otherwise, if A and TIGHTRESTART are idle at ¢, i.e., j is free:

Since (I) does not apply, Lemma 4.1 implies that f(j) is defined. Charge 5

of j to the occurrence of j in A and % of j to the occurrence of f(j) in A.
Case (ITT): Otherwise, if A is idle at ¢, but TIGHTRESTART is running a job
k' which is later preempted by a job k: By Lemma 2.2(2), j is completed in
A. The job k is urgent and thus it is completed as well. Charge % of 7 to k
and 3 of j to the occurrence of j in A.

Analysis. We prove that each job scheduled in A is charged at most % Each
job is charged at most 1 in case (I), as M defines a matching,.

We claim that the total charge from cases (IT) and (III) is 5. The jobs
j receiving charges in cases (II) and (III) are obviously distinct. The case
analysis below shows that the other jobs receiving charges in (II) and (III)

can uniquely determine the corresponding j and that if they are scheduled

17

in ADV then (I) applies to them and thus they cannot play the role of j in
(IT) and (II).

In (IT), f(4j) either is started in ADV during the execution of j in A, or it
is not executed in ADV at all and arrives during the execution of j in A; this
uniquely determines the corresponding j. Also, in the first case, at S?(IJ?)V ;A
is running 7, and thus (I) applies to f(j). By the definition of f, it is not a
preemption candidate, so it cannot play the role of & in (III).

In (IIT), job k, as a preemption candidate, is tight, and since it preempts
another job, Si* = ry. Thus if ADV schedules k, at SpPV, A is executing k,
and (I) applies to k. The corresponding job j is uniquely determined as the
job 7 running in ADV at time 7.

We conclude that each job completed in A gets at most one charge of %
and thus is charged a total of at most % The competitive ratio of % now
follows by summing the charges over all jobs.

Theorem 4.2 TIGHTRESTART is a 3-competitive algorithm with restarts

2
for scheduling equal-length jobs.

4.2 A Lower Bound

Theorem 4.3 For scheduling equal-length jobs with restarts, no determinis-
tic algorithm is less than %—competitive and no randomized algorithm is better
than g—competz'tz've.
Proof: For p > 2, consider four jobs given in the form j = (r;,d;): 1 =
(0,3p+1),2=(1,3p), 3= (p,2p), 4 = (p+1,2p+1). There exist schedules
that schedule three jobs 1,3,2 or three jobs 2,41, in this order. (See Fig. 4.)

In the deterministic case, release jobs 1 and 2. If at time 1, job 2 is
started in the online algorithm, release job 3, otherwise release job 4. The
online algorithm completes only 2 jobs. As the optimum is 3, the competitive
ratio is no better than 3.

For the randomized case, we use Yao’s principle. Always release jobs 1 and
2, and then a randomly chosen one job from 3 and 4, each with probability
%. The expected number of completed jobs of any deterministic algorithm is
at most 2.5, as on one of the instances it completes only 2 jobs. Thus the

3 6

competitive ratio is no better than % = <. O

18

5 Conclusions

For equal processing times, closing the gap between our upper bound of %
and the lower bound of % is a challenging open problem. It would also be
interesting to close these gaps for barely random algorithms which — in our
view — are of their own interest (even in the case when we use one fair random
bit.)

Beyond our simple lower bound of £,
of allowing both randomness and restarts.

nothing is known about the effect

References

[1] P. Baptiste. Polynomial time algorithms for minimizing the weighted number
of late jobs on a single machine with equal processing times. Journal of
Scheduling, 2:245-252, 1999.

[2] Y. Bartal, M. Chrobak, and L. L. Larmore. A randomized algorithm for two
servers on the line. Information and Computation, 158:53-69, 2000.

[3] J. Carlier. Problémes d’ordonnancement & durées égales. QUESTIO,
5(4):219-228, 1981.

[4] M. Chrobak, C. Diirr, W. Jawor, L. Kowalik, and M. Kurowski. A note on
scheduling equal-length jobs to maximize throughput. manuscript, 2004.

[6] M. Garey, D. Johnson, B. Simons, and R. Tarjan. Scheduling unit-time tasks
with arbitrary release times and deadlines. SIAM Journal on Computing,
10(2):256-269, 1981.

[6] S. A. Goldman, J. Parwatikar, and S. Suri. Online scheduling with hard
deadlines. Journal of Algorithms, 34:370-389, 2000.

[7] M. H. Goldwasser. Patience is a virtue: The effect of slack on the competi-
tiveness for admission control. Journal of Scheduling, 6:183-211, 2003.

[8] M. H. Goldwasser and B. Kerbikov. Admission control with immediate noti-
fication. Journal of Scheduling, 6:269-285, 2003.

[9] H. Hoogeveen, C. N. Potts, and G. J. Woeginger. On-line scheduling on a
single machine: Maximizing the number of early jobs. Operations Research
Letters, 27:193-196, 2000.

19

[10] R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th Symp.
on Discrete Algorithms (SODA), pages 302-311. ACM/SIAM, 1994.

[11] S. Seiden. Barely random algorithms for multiprocessor scheduling. Journal
of Scheduling, 6:309-334, 2003.

[12] B. Simons. A fast algorithm for single processor scheduling. In IEEE 19th An-
nual Symposium on Foundations of Computer Science, pages 246-252, 1978.

20

0 5p+l

1 3p-1
2 p
+1 2p+l
3P p
2p+1 5p-1
4P p
3p+l 4p+1
5P p

A I —

1 2 4
B

2 1 4
ADV 1
2 3 4 5 1

Figure 2: An instance on which RANDLOCK schedules 3 jobs out of 5. Job
1 is executed as flexible by both processes, the other jobs are executed as
urgent.

1 flexible I urgent 1 flexible or urgent % idle busy
j k j
!—\ 3 D [
| j \1/2 U3S /6 /
[B [
BTN \ ‘ / j
1/2 | /
() (na ‘ 12
t j Xj
j k j k j
!—\ — D L :
1/3\ / 1/2
:I D :L

L 16
(l1bl (111b2)

—l

zs/i

to]

Figure 3: Illustration of the charging scheme in the analysis of Algo-
rithm RANDLOCK. The figure gives examples of different types of charges.
In case (IIIb), there are several illustrations that cover possibilities playing
a different role in the proof.

21

0 3p+l

1
2 1 3p
3 p 2 ‘
4 - ptl 2pt+1
ADV1 |
; 1 3 2
ADV2: |
‘ 2 4 1

Figure 4: Instances used in the lower bounds with restarts.

22

