Structured pigeonhole principle,
search problems and hard tautologies

Jan Krajicek*'

Abstract

We consider exponentially large finite relational structures (with
the universe {0,1}") whose basic relations are computed by polyno-
mial size (n®() circuits. We study behaviour of such structures when
pulled back by P/poly maps to a bigger or to a smaller universe. In
particular, we prove that:

1. If there exists a P/poly map g : {0,1}" — {0,1}'"", n < m,
iterable for a proof system then a tautology (independent of g)
expressing that a particular size n set is dominating in a size 2"
tournament is hard for the proof system.

2. The search problem WPHP, decoding RSA or finding a colli-
sion in a hashing function can be reduced to finding a size m
homogeneous subgraph in a size 22 graph.

Further we reduce the proof complexity of a concrete tautology (ex-
pressing a Ramsey property of a graph) in strong systems to the com-
plexity of implicit proofs of implicit formulas in weak proof systems.

The weak pigeonhole principle (WPHP) is the statement that no f :
{0,1}™ — {0,1}"™ can be injective if m > n. The dual weak pigeonhole
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principle (d{WPHP) is the statement that no g : {0,1}" — {0,1}™ can be
surjective if n < m. We study the proof complexity of WPHP and dWPHP
for P/poly maps f and g.

Some information is known. For example, it is a necessary condition for
a family of functions to be strongly collision-free that bounded arithmetic
theory S5 does not prove WPHP for functions in the family, ¢f. [10]. Or if
RSA were to be secure then WPHP for the modular exponentiation cannot
be proved in S; either, cf.[16]. In these results S; can be augmented by the
true VII3-theory of N; in particular, by the statements stating the soundness
of all propositional proof systems. Consequently we cannot expect to de-
rive hardness results for particular proof systems by appealing to witnessing
theorems in bounded arithmetic as such results would automatically apply
to all proof systems; we will get some hardness results for particular search
problems instead. But we find a link between these search problems and the
proof complexity of particular tautologies expressing a Ramsey property of a
graph. The main concept used in this link are the implicit proofs of implicit
formulas, cf.[13, 14].

For the dWPHP we do not know how to derive proof complexity hard-
ness of AWPHP for some P /poly map from some established computational
complexity conjecture. P/poly maps for which it is hard to prove (in propo-
sitional logic, see Section 1) dWPHP are called proof complexity generators.
Maybe the existence of good proof complexity generators is a hypothesis of
a different nature than those considered so far in complexity theory. But we
will be able to show that the hypothesis implies hardness of some specific
tautologies that are independent of any particular generator.

Our method is the “structured WPHP” approach introduced in [10]. In
this approach one studies how properties of structures change when the struc-
ture is pulled back by a P/poly map to a bigger or to a smaller universe. As
an example of this view a link between resolution complexity of the Ramsey
theorem and R(2)-complexity of (an instance of) WPHP have been demon-
strated in [10], studying structures on [n]| given by oraculi. Here we study
exponentially large finite relational structures (with the universe {0,1}")
whose basic relations are computed by polynomial size (n®") circuits.

We do not explicitly use bounded arithmetic (although it is the main
source of intuition for us) but occasionally we insert a comment on the
bounded arithmetic side of things. I do not recall definitions or facts from
bounded arithmetic at these occasions; the reader may find these in [9, 3, 4, 8].
Section 1 gives a very brief introduction to proof complexity generators.



1 Preliminaries: proof complexity generators

We shall consider propositional proof systems in the sense of [6]. We shall
often make an assumption that a proof system P contains resolution R. This
is needed for two reasons. The first one is that R proves (by polynomial size
proofs) that a computation of a circuit is unique. A circuit is encoded for R
using the extension variables for values of subcircuits and the “uniqueness”
just means that R proves that their value is unique. Hence R polynomi-
ally proves any true boolean sentences C(a) expressed using a circuit C
this phrase means that R proves that the value of the extension atom cor-
responding to the output of C' on input a € {0,1}" is 1. The second reason
for working with proof systems containing R is that that is the assumption
needed in Theorem 1.2.

Let g be a P /poly p-stretching map (cf.[12]). The later assumption means
that there is m = m(n), a function of n, such that m(n) > n and |g(x)| =
m(n) for all |z| = n. Necessarily m(n) = n®WM if g is P/poly. We will often
study g just on inputs from {0, 1}" in which case we denote m(n) simply just
m.

Let g : {0,1}" — {0,1}™ be a P/poly p-stretching map. Assume that g
restricted to {0,1}" is computed by a circuit Cp,, n > 1. Let b € {0,1}™\
Rng(g). The fact that b is outside of the range of g can be expressed by a
size m?() tautology denoted 7(C,,); the tautology is just C,(x) # b, where
x is an n-tuple of boolean variables. Although the tautology depends on
C,, and not just on ¢, the particular circuits C), often play no role and we
occasionally abuse the notation and write just 7(g),. Precisely this means
that any given statement about 7(g), is claimed for all 7(C,,),, for all P /poly
definitions {C,}, of g.

Proving 7(g),, any b € {0, 1}™, means proving, in particular, that g is not
surjective. Maps g (P/poly and p-stretching) for which it is hard to prove in
a proof system P these T-formulas are called proof complexity generators for
P. There are at least four different level of hardness of g w.r.t. P (cf.[12])
but we shall need here only two, whose definitions we recapitulate now.

For the second part of the following definition we write the 7-formulas as
7(g)s(x), showing explicitly the n-tuple of variables z corresponding to the
role of z in g(z) # b.

Definition 1.1 Let P be a proof system containing R. Let g be a P/poly
p-stretching map.



1. Map g is hard for P if for all polynomials p(m), for n large enough no
7(9)p for any b € {0,1}™\ Rng(g) has a P-proof of size at most p(m).

Map g is exponentially hard for P if there exists € > 0 such that for n
large enough no 7(g)y for any b € {0,1}™ \ Rng(g) has a P-proof of
size less than 2™ .

2. Map g is called iterable for P if for all polynomials p(n), for alln > 1
large enough the following holds:

Any disjunction of the form

(9)s @) V...v7(9)s(d, ..,

requires a P-proof of size at least p(n). Here k > 1 is arbitrary, and
By, ..., By are circuits with m outputs that are all just substitutions of
variables and constants for variables and such that By has no variables,
and variables of Bi1, are among q,...,q" fori < k, where ¢*, ..., q"
are disjoint m-tuples of variables.

Map g s called exponentially iterable for P if there exists € > 0 such
that the same holds with the lower bound p(n) replaced by 2™ .

Note that if g is (exponentially) iterable for P then it is also (exponen-
tially) hard for P.

The truth table function tt takes as an input a circuit C' with &k inputs and
of size at most 2¥/2 (as encoded by O(k2%/2) bits) and outputs the truth table
of C, i.e. 2F bits. Hence tt is an example of a P /poly (canonical circuits based
on “circuit-evaluation” compute tt) and p-stretching (n := O(k2*/2) bits
with a fixed O-constant are stretched to m := 2* bits) map. The following
theorem says that it is, in the sense of iterability, the hardest proof complexity
generator.

Theorem 1.2 ([12]) Let P be a proof system containing R. Assume that
there is a P /poly p-stretching map that is (exponentially) iterable for P.
Then tt is also (exponentially) iterable for P.

The 7-formulas have been defined in [10] and independently in [1]. The
theory of proof complexity generators is being developed, cf. [11, 22, 12, 23].
I shall not describe this development; this can be found in the introductions
to [12] or [23)].



2 Tournaments

Assume m = 2n. Let T be a tournament with the set of vertices {0, 1}™.
Every such tournament has a dominating set of size m and Erdos [7] has
shown that if the directions of the edges are chosen uniformly at random
the tournament will, with high probability, have no dominating set of size
n. Razborov [20] proved that there are size m®" circuits D,, with 2m
inputs computing the edge relation of a tournament on {0, 1}™ such that the
resulting tournament - which we shall denote 7, p, . - has no dominating set
of size n either.

Now let g : {0,1}" — {0,1}™ be a P/poly p-stretching map computed
by a circuit C),. Define 2n input circuit:

Dy (Cr(z), Crly)) if Cr(x) # Crly)
E.(x,y) =< 1 if Cp(z) =Chy) ANz <y
0 otherwise

where z,y are n-bit strings ordered lexicographically.
T..E, is a tournament and so it has a dominating set A,, C {0, 1}" of size
n. This can be expressed by a tautology oy, 4, .c,.D."

\/ z=aVE,(a,z)

acA,

(xz is an n-tuples of boolean variables). Now let B, := g(A,) be the image
of A, under g in {0,1}™. The size of B, is at most n and so B, cannot be
dominating in T,,, p,,. Let b € {0,1}™\ B, be any vertex not dominated by
B,.

Lemma 2.1 Assume that o, a,.c,.p, has a P-proof of size s. Then 7(g)s
has a P-proof of size at most s + n®0).

Proof :
Reason in P. Start with the size s proof of o, 4, ¢, .p,,- Using the defini-
tion of E,, formula o, says

\/ a=2zV D,(Cyla),Cpr(z))

ac€A,
which implies

Co(z) =b—=[\ a=aV Dy(Cyla),b)] .

acA,



All sentence D,,,(Cy(a),b) are false and can be disproved by evaluating them,
so we get

Co(z)=b—=[\ Cula)=1].

a€A,

But again all C,,(a) = b are false, and so we can derive

Co(z) # b

That is the formula 7(g);. The total size of the proof is s plus m@") = p©M),

q.e.d.
The following theorem is then clear.

Theorem 2.2 Assume that g is (exponentially) hard for P. Then the tau-
tologies on A, c,.D,, Tequire superpolynomial (resp. exponential) size P-proofs.

The tautologies oy, 4, c,.p,, do depend on a particular g. Using a stronger
hypothesis we get tautologies that are independent of the particular g.

Theorem 2.3 Assume that P admits (exponentially) iterable P /poly
[2] p-stretching maps. Then the tautologies on a, tt,p,, Tequire superpolyno-
mial (resp. exponential) size P-proofs.

Proof :

Assume that P admits (exponentially) iterable P /poly p-stretching maps.
By Theorem 1.2 also the truth-table function tt is (exponentially) iterable
for P. Hence tt is also (exponentially) hard for P and Theorem 2.2 applies.

q.e.d.

3 Vector spaces

Circuits D,, is Section 2 are not canonical and their existence is proved by
a probabilistic argument. In this section we use a very canonical structure,
the m-dimensional vector space over Fy, but the pull-back of the structure
is less elegant as ¢ may not be injective.

We will consider vector spaces over Fy in the following language: ternary
relation R(x,y, z) standing for the graph of the addition on the space, and
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binary relation S(x,y) computing (by its truth value) the scalar product.
The axioms of partial vector spaces are the usual axioms about addition and
scalar product in vector spaces rewritten using R and S. We do not include
the axiom Vz,ydz, R(z,y, z) that would say that the addition as given by
R is a total function. Note that all axioms of partial vector spaces are
thus universal sentences. A structure W = (X, R, S) in this language with
universe X is a partial vector space over F iff it satisfies all these universal
axioms.

Let ®,, and (, ) be the (coordinate-wise) addition and the scalar product
on the canonical vector space Vj, on {0,1}™, with 0 the zero vector and
(0,...,0,1,0,...,0)’s the basis vectors.

Now let g : {0,1}"* — {0,1}™ be a P/poly p-stretching map computed
by a circuit C,,. Define a structure W’ = ({0,1}", R}, S},) by:

R (x,y,z) iff Cp(z) @, Cr(y) = Cu(z)

and
S (x,y) iff (x,y)=1.

Structure W' is not necessarily a (partial) vector space because one point of
Vi could have been pulled-back to several points in {0,1}", as ¢ may not be
injective. This we remedy by taking a quotient of W’ modulo the equivalence
relation:

z~y iff C,(z)=Chy) .

Define R,, and S,, to be the quotients of R] and S| by ~ respectively, and
put W := ({0,1}"/ ~, R,,, Sy).

If W were a total vector space then there would exist uy,...,u, € {0,1}"
such that no vector in W could be orthogonal to all u;/ ~. If it were only a
partial vector space then there would be uy,us € {0,1}" such that R, (u;/ ~
,us/ ~, ¢/ ~) could hold for no ¢ € {0,1}".

Lemma 3.1 There is a sequence U, = (uy,...,u,) of n elements of {0,1}"
satisfying the following tautology py v, c,:

“Rn(ur/ ~yuz/ ~y) ~) v\ Sa(uf ~ ) )

uelU,

x and y being n-tuples of boolean variables.



Theorem 3.2 Assume p, u, c, has a P-proof of size s. Then there are b, c €
{0,1}™ such that the disjunction 7(g),V7(g). has a P-proof of size s +n°W).

In particular, if g is (exponentially) iterable for P then the formulas
Pn,Un.Cn TeQuiTe superpolynomial (resp. exponential) size P-proofs.

Proof :
Let ¢ := g(u1) @, g(us) and let b € {0,1}™ be an element orthogonal to
all g(u), u € Uy,. It exists as the dimension of V,,, is m > n.

Reason in P, starting with a proof of p, v, c,. Formula p,y, ¢, means,
by the definitions of R, and S,,:

g(u1) ®m g(us) #g(y) VvV (g y=1.
uclU,

As g(uq) @, g(ug) = c and V,ep, (g(u),b) = 0 are true boolean sentences, P
deduces:

g(z) #b V g(y) #c

which is just the formula 7(g), V 7(g)e.
The size of the whole proof is s + n?M),

q.e.d.

Analogously to Section 2 we can replace g by the canonical truth-table
function.

Theorem 3.3 Assume that P admits (exponentially) iterable P /poly maps.
Then the tautologies py v, w Tequire superpolynomial (resp. exponential) size
P-proofs.

4 Homogeneous subgraphs

We have studied maps for which it is hard to prove dWPHP, i.e. which
are good proof complexity generators, getting hardness of some tautologies
as a result. The disadvantage of that is that the existence of good proof
complexity generators has not been proved so far from any of the usual
complexity theoretic assumptions. In this section we will look at maps for
which the ordinary WPHP is hard to prove. Such maps are known to exists
under plausible assumptions. We get the hardness of search problems as a



direct result, not the hardness of tautologies. However, there is another less
direct link to hardness of tautologies; this will be in Section 6.

We shall consider unordered graphs with vertices {0, 1}" where the edge
relation is computed by circuits C' with 2n inputs. Such graphs will be
denoted G, ¢. By Ramsey theorem every such graph contains a homogeneous
set (a clique or an independent set) of size at least n/2. On the other hand,
as shown by Erdds [7], random graph has no homogeneous set of size 2n.
Razborov [20] has shown that there is a circuit R,, with 2n inputs and of size
n°M such that the graph G r, also does not have a homogeneous set of size
2n.

We shall define two particular search problems and later we discuss a
many-one reducibility among them, without defining a general notion of a
search problem. This does not seem to leave a room for a confusion but the
reader may find general definitions in [3, 2, 8].

Definition 4.1

1. The search problem RAM asks for the following. Given a pair 1™ (a
canonical string of length m) and a 4m-input circuit D find a homoge-
neous subgraph (by listing its vertices) of size m in Gap p.

2. The search problem WPHP asks for the following. Given a triple 1(),
1™ and a circuit E with m inputs and n outputs such that n < m, find
a pair u # v of distinct elements of {0,1}™ such that E(u) = E(v).

Theorem 4.2 The search problem WPHP can be P /poly many-one reduced
to RAM.

Proof :

Let n < m and F be an input to WPHP. By amplifying the map defined
by E if necessary we may assume that 4n < m. (This amplification is quite
standard and goes back to [18]. For example, if m = n+1 then a map defined
by E(E(x1,...,%Tni1), Tny2) maps {0,1}" 2 into {0,1}" and a collision in this
map yields a collision in E.)

Define a 2m-input circuit D by:

D(u,v) = R,(E(u), E(v))

where v and v are m-tuples of boolean variables.



Consider the graph G, p as an input to RAM and let H be a homogeneous
subgraph of G, p of size m/2 > 2n. As G, g, has no that large homogeneous
subgraphs the map F cannot be injective on H and the wanted collision of F
can be found among the elements of H (by exhaustive search in polynomial
time).

q.e.d.

Note that the non-uniform part of the reduction is only in the choice of
circuits R,,.

A family h,(z) of p-time functions from {0, 1}0¥D into {0, 1}40¥D-1 where
¢(n) is a polynomial, is a strongly collision-free family of hash functions
if there is no polynomial-time function f that on y computes z; < z9 €
{0, 1Y) with hy(z1) = hy(z2) (cf. [24]). An example of a family of func-
tions with this property (unless the discrete logarithm is tractable) is the
Cham - van Heijst - Pfitzman family, see [24, Chpt.7].

The following is an immediate corollary of Theorem 4.2.

Corollary 4.3 Finding collisions in a family h,(x) of p-time functions as
above can be P /poly many-one reduced to RAM.

Corollary 4.4 The task to decode RSA can be P /poly many-one reduced to
RAM.

Proof :
Let f.(a,b,x) be the function:

fola,b,z) = a® (mod b)

where a and b are two parameters of length n > 1 and x is arbitrary.

Put m := 4n. Let E, ,,(a,b, z) be some fixed canonical circuit computing
fn(a, b, z) on inputs of length m, for arbitrary a and b.

By Theorem 4.2 we can find, employing RAM, two distinct elements
u,v € {0,1}™ for which f,(a,b,u) = f,(a,b,v). Hence we also get a non-
zero w := u — v such that ¢ = 1(mod b).

It is known that having such w is enough to break the RSA (see [16,
Thm.3] for a similar argument).

q.e.d.
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It is known that in the oracle setting (circuit D is replaced by an oracle)
RAM is not even Turing reducible to PLS (polynomial local search), cf.[4].
It would be interesting (because of the bounded arithmetic consequences,
cf.[3, 4, 8]) to show that RAM cannot be reduced to GLS (generalized local
search, cf.[3]) or at least to MIN (finding a minimal element in a partial
ordering, cf.[3, 8]).

We leave it to the reader to investigate the pull-back of the canonical
vector space V,, on {0,1}" by f; the results stated above for RAM can be
analogously proved for the following search problem: Given string 1™ and
circuits computing relations R,,(z,y, z) and S,,(z,y) on {0,1}™ defining a
partial vector space find m distinct points in {0, 1}™ all orthogonal (as com-
puted by S,,;) to each other.

5 Intermezzo: implicit proofs

We need to recall the definition of implicit proofs before the next section.

By [6] a proof system is a polynomial-time function () whose range is
exactly the set TAUT of tautologies in the DeMorgan language. A Q-proof
of a formula 7 is any string 7 such that Q(w) = 7. The idea of implicit
proofs from [13] is that instead of representing 7 of length ¢ by writing down
all it’s ¢ bits m; we present a circuit 8 with log(¢) inputs that computes ;
from ¢ < /. This implicit description of 7 may be, in principle, exponentially
smaller than 7. The circuit S alone does not constitute a proof of anything
and in order to get a proof system in the sense of [6] we supplement § with
an ordinary P-proof « of the fact that S indeed describes a valid Q)-proof.

Let us describe this a some detail. Assume that the computations of ()
are done by a deterministic machine (also denoted ()) running in time n°.
We will represent the computation an input of size n by the list of all ¢ < n¢
instantaneous descriptions of the computation. This list can be represented
by an t x O(t) 0-1 matrix W: think of the ith row WW; as representing the ith
instantaneous description. We may assume that ¢ is a power of 2 and that
W is a t x t matrix (by increasing t to O(t) if needed). Let k := log(t) and
let B(4,7), i = (i1,...,ix) and i = (j1,..., i), be a circuit with 2k inputs.

Propositional formula C’orrectg is the canonical propositional formula
expressing that:

e The matrix W, ; := (i, j) satisfies all local conditions in order to be a
valid computation of @ on an input (encoded in the first row 7).
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The size of C’orrectg2 is O(|5]).

Definition 5.1 Let P, be any proof systems and assume that P contains
R. Proof system [P, Q)] is defined as follows: A [P, Q]-proof of 7 € TAUT is
a pair (a, B) such that:

1. B is a single-output boolean circuit in variables (i1, ..., %, J1,-- -5 Jk),
some k > 1.

2. B defines a valid computation W of Q (on some input) whose output
18 T.

3. a 18 a P-proof of the tautology Correctg.

Note that we need not to ask for a P-proof of the fact that the output of W
is 7 as that is a true boolean sentence.

In defining [P, Q] we have restricted to proofs of ordinary (explicitly given)
formulas 7. But in fact, we could have defined proofs of formulas themselves
given implicitly by a circuit; cf.[14]. We will not give a general definition
here but only two particular cases that we need in Section 6.

Let us fix a useful notation. Let n, m, s be three parameters. Let x be an
m-tuple of variables and w an s-tuple of variables. Ciry, ,, s(x, w) is a circuit
that interprets w as a code of a circuit C' with m inputs and n outputs, and
computes the value of C' on z. Hence Ciry, 4, s has n outputs. Note that the
size of Cirp ms is O(s) if n,m <'s.

Definition 5.2 1. Let 1 < n<m < s. Let i,5 be m-tuples of variables
and w an s-tuple of variables. Circuit

Vormos (1, W)

has 2m + s inputs. On an input 1, j,w the circuit outputs:

o Formula Cirp (i, w) # Cirpms(J, w), if i # j.

e Formula 1, if i = 7.

2. Let1 <m < s. Leti',...,i™ be 2m-tuples of disjoint variables, j a
single variable, and let w be an s-tuple of variables. Circuit:
Vol AM (L™, g, w)

is a circuit with 2m? + s + 1 inputs that outputs:
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o Formula \ycy<m Cir1ams(i*, % w), if j =1 and all i*,...,i™ are
distinct 2m-tuples.
o Formula V,cpcm ~Ciryam,s (i, 1, w), if j = 0 and all i*,...,i™

are distinct 2m-tuples.

e Formula 1, otherwise.

The size of v,V EHP is O(s) and the size of 7;BAM is O(m?s), if n <m < s.
Note the different role of variables in the y-formulas: variables ¢ and j are
used to enumerate clauses of the implicitly defined formula (set of clauses),
while variables w are free parameters.
We will use the following lemma in Section 6. Recall that R* is the

tree-like resolution.
Lemma 5.3 ([13, L.4.1]) If P contains R then [P, R*| p-simulates P.

Now we state a theorem that will be used only for an illustration in
Section 6, and so we only sketch its proof (using bounded arithmetic).

and V;Z%AM

Theorem 5.4 Assume 1 <n <m < s. Both formulas v, "’
have size s°Y) [EF, EF)-refutations.

Proof sketch :

It is shown in [13, Thm.2.1] that [E'F, EF| simulates bounded arithmetic
theory V). The simulation is done by a witnessing argument and applies
to simulations of proofs of sequents of E%’b—formulas (this is what is done
in the proof of [13, Thm.2.1] although the theorem is stated only for IT4-
consequences of V,'). For both WPHP and RAM the statements that these
search problems are defined on all inputs are expressed even by ¥2-formulas
and propositional translations of (negations of) these formulas are the im-
plicit formulas from Definition 5.2.

The theorem follows as it is trivial to see that V! proves that both WPHP
and RAM are defined everywhere.

q.e.d.

Simulations of bounded arithmetic theories using implicit proof systems
can be proved for much weaker theories than V! (in [13] we were interested
in strong theories). In particular, Theorem 5.4 holds with [P, Q)] in place of
[EF, EF] where both P and ) are much weaker than E'F.
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6 Ramsey graphs and hard tautologies

We will now reexamine RAM using the implicit formulas and proofs. Circuits
R, are those from Section 4. The size of the circuits, as computed in [20], is
O(n®logn) < nS.

Definition 6.1 Letz', ..., 2?" be n-tuples of distinct variables. The formula
Wn,R, 1S the formula:

Aot 25 o [V Rala,a?) v\ ~Rolal, )

i#j i#j i#j
where i, j range over {1,...,2n}.

The formula expresses that G, g, has no homogeneous subgraph of size 2n
and it is a tautology.

Formulas v"WPHP and ~ are sets of clauses formed by formulas
not by literals, but in the following theorem we shall speak about [P, Q]-
refutations of these formulas and () could be even R*. In such a case we
tacitly assume (but not include explicitly in the notation) that the formulas
in the clauses are reduced to literals using limited extension, as it is customary
in resolution, cf.[6].Alternatively one could think that the R*-refutations can
also operate (via Frege rules) directly with formulas but only with those
which appear as subformulas of some formulas in one of the original clauses

of yWPHP op nRAM yegpectively.

-RAM

Theorem 6.2 Let P, Q) be two proof systems, P containing R and ) con-
taining R*. Assume that:

o For any function n < s(n) < n°W there is a [P, Q]-refutation of'nyfM
of size n®0).

o There is a function n < t(n) < n°W) such that any [P, Q]-refutation of

'y;‘fgﬁfn)) must have the size n*Y | i.e. superpolynomial in n.

Then the formulas wy, g, require superpolynomial (size net) ) P-proofs.

Proof :

Let us take t = t(n) satisfying the second hypothesis, and let us fix
s = O(n® +t) such that any circuit of the form R,(E(z), E(y)) is encoded
by s bits if E is encoded by ¢ bits. So s is also n?W.
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To simplify the notation let us denote the circuit encoded by a t-tuple w
in vy, T simply by E,, instead of Cirp (@, w).

Define a circuit D,, with 8n inputs to be R, (E,(z), E,(y)), and let w’ be
the < s bits encoding it. The code w’ can be computed by a circuit from w,
say by S(w).

Now we use the first hypothesis and substitute everywhere in the [P, Q]-
refutation of ;7™ code S(w) in place of the s variables used in ;M for
the circuit encoding.

After this substitution the clauses of ;" become:

[V Ru(Bu(@),Eu(l) V. V —Ru(By(i), By(j))]

i#jeH i#j€H

where H ranges over all sets of 2n distinct vertices of {0,1}*". Call this
disjunction dp.

Let m be a P-proof of wy, g, of size £. We may substitute the 2n different
tuples of variables z* by the 2n tuples F, (i), for i € H. This would get us
a P-proof my of

N Eu() # Buo(j) = O -
i£jeH
The size of my is O(¢|E,|) = O(4t) = ¢n°0),

Now we would like to use proof 7 and to derive all clauses 65 of v57"
from formulas A, .;ey Ew(i) # Ew(j), and then continue in the refutation as
in the [P, Q]-refutation of v;'*. However, that would combine P-proofs
with @Q-proofs and we would not get a [P, Q]-refutation of W FH" as we
want. But we can proceed indirectly.

By Lemma 5.3 P is p-simulated by [P, R*]. Use this simulation to get
from P-proofs 7y [P, R*]-proofs 7}, (of the same formula) of size (/n)°™"), and
then proceed as described above to get a [P, Q]-refutation (here we use that @
contains R*) of formulas A, ;cy Fu(i) # Ey(j), one for each H. However, it
is easy to see that each of these formulas has a polynomial size R*-derivation
from clauses of 7;,?;5[{13 , and quite uniformly described in terms of H, and
hence we get a [P, Q|-refutation of ~, '} "/

The total size of this refutation is polynomial in ¢ and n (as both ¢(n)
and s(n) are), and so the theorem follows.

q.e.d.
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Judging from what is known about WPHP and RAM in bounded arith-
metic, it is consistent with the present knowledge that the two hypotheses in
Theorem 6.2 are fulfilled by some [P, Q], where @ is R or one of R(k) of [10],
with 1 < k < O(log2°™) = O(n). Having weak P would not be necessarily
bad as [P, Q] is p-equivalent to [[P, @], Q] for many natural P, Q) (see [13,
L.4.2] and the remark thereafter; this can be extended to proofs of implicit
formulas) and [P, Q] can be much stronger than P. These remarks will be
expanded upon elsewhere.
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