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Abstract

An instance of a constraint satisfaction problem is /-consistent if
any [ constraints of it can be simultaneously satisfied. For a fixed con-
straint type P, p;(P) denotes the largest ratio of constraints which can
be satisfied in any [-consistent instance. In this paper, we study lo-
cally consistent constraint satisfaction problems for constraints which
are Boolean predicates. We determine the values of p;(P) for all [ and
all Boolean predicates which have a certain natural property which
we call 1-extendibility as well as for all Boolean predicates of arity at
most three. All our results hold for both the unweighted and weighted
versions of the problem.

1 Introduction

Constraint satisfaction problems form an important abstract computational
model for a lot of problems arising in practice. This is witnessed by an enor-
mous recent interest in the computational complexity of various constraint
satisfaction problems [2, 3, 4, 13]. However, some instances of real problems
do not require all the constraints to be satisfied but it is enough to satisfy
a large fraction of them. In order to maximize this fraction, the input can
be usually pruned at the beginning by removing small sets of contradictory
constraints. In this paper, we study for a fixed constraint type how large frac-
tion of the constraints can be simultaneously satisfied if no [ constraints are
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contradictory. Formally, an instance of the constraint satisfaction problem is
[-consistent if any [ constraints of it can be simultaneously satisfied.

This problem was first introduced and studied by Trevisan [11]. He
showed that for each fixed k£ > 2 and each [ > 2, if we allow as constraints
all Boolean predicates of arity k, then there exist [-consistent problems in
which the fraction of constraints which can be simultaneously satisfied does
not exceed 2'7% and the bound is tight. In the upper bound, he used only
a single type of predicate (the predicate P(z1,...,zx) = (21 & 22 & 13 &
-+» < xx)); his lower bound was based on a simple probabilistic argument
similar to that used by Yannakakis [14] for locally consistent CNF formulas.

The variant of the problem for locally consistent CNF formulas is ex-
tremely well-studied as witnessed by a separate section (20.6) devoted to
this concept in a recent monograph on extremal combinatorics by Jukna
[7]. A CNF formula ® is [-consistent if any [ clauses of & can be sat-
isfied. Formulas which are [-consistent are also called [-satisfiable. The
number pPAT denotes the largest fraction of clauses which can be satis-
fied in any Il-consistent CNF formula. Clearly, p$4T = 1/2. The value

PAT = @ ~ 0.6180 was determined by Lieberherr and Specker [9]. They

consequently established p3AT = 2/3 [10]. Later, Yannakakis [14] simplified

proofs of both the lower bounds on p;*T and p5*T using a probabilistic ar-

gument. The value pjAT =~ 0.6992 has been recently computed by one of

the authors [8]. Huang and Lieberherr [6] studied the asymptotic behavior

and they proved lim piAT < 3/4. The limit was settled by Trevisan [11] who
—00

showed lim pfAT = 3/4. Let us remark that the cases of 1, 2 and 3-consistent

CNF folr?noljlas somewhat unexpectedly differ from the case of [-consistent
formulas for [ > 4. First, ppAT = p»AT for | = 1,2,3 but piAT < p2SAT
where p?SAT is the largest fraction of clauses which can be satisfied in any
l-consistent 2-CNF formula, i.e., CNF formulas with clauses of sizes at most

two. We suspect the inequality to be strict for all [ > 4, i.e., ppAT < p?SAT

for all [ > 4. Second, the values piT for [ = 1,2, 3 coincide with the similar
values defined for a “fractional” version of the problem (which are known for
all [ > 1 [8] and are equal to so-called Usiskin’s numbers [12]) but the value
p3AT differs.

In the present paper, we study the more general problem of locally consis-
tent constraint satisfaction problems. We restrict our attention to problems
whose constraints are copies of a single Boolean predicate P. The arguments

of the predicates can be both positive and negative literals. Similarly as in



o(P) P |l=11>2
1 x| 1/2 1
1 zAy | 1/4 1
2 |zey 1/2
3 zVy 3/4

Table 1: The values p;(P) for all non-isomorphic essentially unary and binary
Boolean predicates.

the case of CNF formulas, p;(P) denotes the largest possible fraction of con-
straints which can be simultaneously satisfied in any [-consistent instance.
We determine the values of p;(P) for all [ > 1 and all Boolean predicates
P of arity at most three (see Tables 1 and 2) and for all Boolean predicates
which are l-extendable. A predicate P is said to be 1-extendable if it has
the following property: If we fix one of its arguments, we can choose the
remaining ones in such a way that the predicate is satisfied. Let us point out
a somewhat exceptional case of the predicate P(x,y,2) =z A (y V z) which
is not 1l-extendable (fix x to be false). Therefore, our general Theorem 1
does not apply. In Section 5, we show for this predicate that p,(P) = 3/8,
p2(P) = 2v/3/9 and somewhat surprisingly that p;(P) = p?5;" for all [ > 3.
Since the values p?5AT were exactly computed before only for [ = 1,2,3,
we have to prove a special result on structure of locally consistent 2-CNF
formulas (Lemma 8) which is later used in the analysis of the predicate
P(z,y,2z) = x A (y V z) and which also yields a formula for p?**T (Corol-
lary 1). Let us remark that all our results hold both for the unweighted
and weighted versions of the studied problems, i.e., the instances witnessing
the upper bounds contain each constraint at most once and our lower bound
proofs translate smoothly for instances with weighted constraints. From the
algorithmic point of view, our results can be interpreted in the following way:
The simplest probabilistic algorithms (of the kind used in [8, 11, 14]) are ap-
proximation algorithms for locally consistent CSPs with optimum worst-case
performance.



o(P) P =1 =2 [=3 I=4 1=5 [>6 |-
1 TAYAz 1/8 1 1 1 1 1 1
2 Teye 1/4 1/4 1/4 1/4 1/4 1/4  1/4

A (y < 2) 1/4  8/27 1/2 1/2 1/2 1/2  1/2

3 exactly one 3/8 3/8 3/8 3/8 3/8 3/8  3/8
A (yVz) 3/8 BB 12 Vil o9/ pSAT 34
(zeyAx=2)| 3/8 3/8 3/8 3/8 3/8 3/8 3/8

4 Ty 2 /2 1/2  1/2 1/2 1/2  1/2  1/2
(zAy) & 2 /2 1/2  1/2  1/2 1/2  1/2  1/2

at most one /2 1/2  1/2 1/2 1/2  1/2  1/2

one or three /2 1/2 1/2 1/2 1/2  1/2  1/2

5 — exactlyone | 5/8 5/8 5/8 5/8 5/8 5/8  5/8
TV (y A z) 5/ 5/8 5/8 5/8 5/8 5/8 58
(zey)V(zAz) | 5/8 5/8 5/8 5/8 5/8 5/8  5/8

6 ~(zeyez) | 3/4 3/4 3/4 3/4 3/4 3/4  3/4
V(Y e 2) 3/4 3/4 3/4 3/4 3/4 3/4  3/4

7 zVyVz 7/8 7/8 T/8 7/8 7/8 7/8  71/8

Table 2: The values p;(P) for all non-isomorphic essentially ternary Boolean
predicates.

2 Preliminaries

In this paper, we mainly deal with constraints which are Boolean predicates
and we prefer to call them predicates to emphasize their kind. If P is a
Boolean predicate, o(P) denotes the number of combinations of arguments
which satisfy P. If the constraint satisfaction problem consists of copies of
a single constraint P, its instances are called P-systems. The arguments
of the predicates may be both positive and negative literals, but a single
variable cannot be contained in two distinct arguments of the same predicate.
The goal is to find a truth assignment which satisfies the largest number
of the predicates. If ¥ is a P-system, then p(X) is the largest fraction of
the predicates of 3 which can be simultaneously satisfied. Hence, p;(P) =
inf p(X) where the infimum is taken over all [-consistent P-systems X.

Two Boolean predicates P and P’ are isomorphic if they differ by permu-
tation of the arguments and negations of some of them, e.g., if P(z1,x9) =
P'(x9,—x1), then the predicates P and P’ are isomorphic. Clearly, if P and
P’ are two isomorphic predicates, then p;(P) = p,(P’) for all [ > 1. A k-ary
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predicate is essentially k-ary if it depends on all its k arguments. If the
predicate P is not essentially k-ary, it is isomorphic to a predicate P’ such
that P'(z1,...,z1) = P"(x1,...,z5_1) for some (k — 1)-ary Boolean predi-
cate P". Tt is not hard to see that p,(P) = p(P') = p(P") for all [ > 1
in such case. Hence, in order to determine p;(P) for all unary, binary and
ternary Boolean predicates P, it is enough to compute the values for rep-
resentatives of isomorphism classes of essentially unary, binary and ternary
Boolean predicates.

We conclude this section by stating three simple observations on locally
consistent systems of Boolean predicates:

Lemma 1 Let P be a k-ary Boolean predicate P. It holds that p(P) >
a(P)/2F for all 1 > 1.

Proof: Let us consider a P-system Y with NV predicates and with n variables
Z1,...,T,. Choose each of the variables z;, 1 < ¢ < n, randomly and inde-
pendently to be true with the probability 1/2. Each predicate of the system
Y} is satisfied by the constructed random truth assignment with probability
o(P)/2k. Hence, the expected number of satisfied predicates is N - o(P)/2F.
Consequently, there is a truth assignment which satisfies at least N -o(P)/2*
of ¥ predicates and p(X) > o(P)/2*.

O

Lemma 2 [t holds that pi(P) = o(P)/2* for each k-ary predicate P.

Proof: By Lemma 1, p;(P) > o(P)/2*. We construct a P-system ¥ with
variables z1, . ..,z and with p(3) = o(P)/2F. Tt is enough to set 3 to be the
set consisting of all P(z{, ..., z}*) where (a1, ...,a;) € {0,1}* and 2 is —z;
and z] is x;. Clearly, each truth assignment satisfies exactly o(P) predicates
out of all the 2¥ predicates of 3. Therefore, p(X) = o(P) /2.

[

Lemma 3 Let P be a k-ary predicate with o(P) = 1. Then, p(P) = 27F
and py(P) =1 for every l > 2.

Proof: The equality p;(P) = 27* follows from Lemma 2. Let us consider a 2-
consistent P-system X.. Since o(P) = 1, each predicate of X forces the values
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to all its arguments. However, all the predicates must force the same value
to a single variable because X is 2-consistent. Therefore, the “forced” truth
assignment satisfies all the predicates of ¥ and p(¥X) = 1. This immediately
yields that p;(P) =1 for every [ > 2.

O

3 l-extendable Boolean predicates

In this section, we present an upper bound on p;(P) which holds for all 1-
extendable Boolean predicates. First, we introduce several concepts which
are used throughout this section. The dependence graph G(X) of a P-system
Y is the multigraph whose vertices are predicates of ¥ and the number of
edges between two predicates p; and py of ¥ is equal to the number of vari-
ables which appear in arguments of both the predicates p; and py (regardless
whether they appear as positive or negative literals). The girth of a P-system
Y is the length of the shortest cycle contained in G(X). In particular, if the
girth of ¥ is three or more, then G(X) contains no parallel edges. The fol-
lowing lemma relates the girth of a P-system with its consistency:

Lemma 4 Let P be a 1-extendable predicate and X a P-system. If the girth
of ¥ is at least | > 3, then X is (I — 1)-consistent.

Proof: We prove by induction on ¢ that any : = 1,...,] — 1 predicates of X
can be simultaneously satisfied. The claim trivially holds for ¢ = 1. Assume
now that ¢ > 1 and let py,...,p; be any ¢ predicates of ¥. Since the girth
of X is greater than 4, the vertices corresponding to py, ..., p; induce a forest
in G(X). We can assume without loss of generality that p; is a leaf or an
isolated vertex in G(X). Let x1, ..., z, be variables contained in the first i —1
predicates. By the induction hypothesis, there is a truth assignment for the
variables x4, . .., x, which satisfies all the predicates py,...,p;_1. Since p; is a
leaf or an isolated vertex in G(X), it has at most one variable in common with
the predicates py,...,p;_1. Hence, the truth assignment for z,,...,z, can
be extended to a truth assignment which satisfies all the predicates pq,...,p;

because P is 1-extendable.
J

Let us recall now Chernoff’s inequality [5]:
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Lemma 5 Let X be a random variable equal to the sum of N zero-one inde-
pendent random variables such that each of them is equal to 1 with probability
p. Then, the following holds for every § > 0:

52pN _ §%pN

Prob(X > (1+0)pN) <e 3  and Prob(X <(1—-0)pN)<e =2

We are now ready to determine the values p,(P) for all [ > 1 and all
1-extendable Boolean predicates P. Note that the proof of Theorem 1 gen-
eralizes the standard construction of “random” graphs with large girth.

Theorem 1 Let P be a k-ary Boolean predicate which is 1-extendable. Then,
pi(P) = a(P)/2* for all | > 1.

Proof: If [ = 1, the statement follows from Lemma 2. Fix a k-ary 1-
extendable Boolean predicate P and an integer [ > 2. By Lemma 1, p;(P) >
o(P)/2*. For each ¢ > 0, we construct an [-consistent P-system Y with
p(2) < (1+¢€)o(P)/2%. This will yield the equality p(P) = o(P)/2F.

Let us consider a positive real 6 > 0 whose exact value is chosen later.
Let n > 2k be an integer which will also be chosen later. We construct
an [-consistent P-system Y with variables xq,...,z,. Let S, be the set of
all possible predicates P with variables z1, ..., z,; the number of predicates
contained in S, is N = 2fn!/(n — k)!. Note that N > n* because n > 2k.
Construct a P-system Y, from S, by including each predicate of S, to g
randomly and independently with probability p = n=*~1)+1/2/ By Lemma 5,
the probability that the number |%,| of predicates of ¥y is smaller than
(1 — 0)pN is at most the following:

_ 52pN  §2p—(k=1)+1/21 .k  s2p141/21

Prob(|3] < (1 —0)pN) <e” 2 <e 2 <e —z (1)

Observe that G(S,) contains at most 28*k* k=1 cycles of length .
Thus, the expected number of cycles of length at most [ in G(¥g) does not
exceed:

! !
Z PRA A (k= DA < okl 21 Zn(k—l))\n—)\(k—l)—l—)\/% <
A=2 A=2

! !
okl 121 ZnA/zl < okl 1.21 an/Q < 2klk21ln1/2.
A=2 A=2
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By Markov’s inequality, the number of cycles of length at most [ in G(X,) is
smaller or equal to 2 - 2¥k?[n'/? with probability at least 1/2.

Each truth assignment for the variables z1, ..., z, satisfies o(P)n!/(n —
k)! = o(P)2 %N predicates of S,,. Fix any out of all 2" truth assignments for
the rest of this paragraph. We now bound the probability that the number of
predicates satisfied by the fixed truth assignment exceeds (1+6)o(P)2 *pN.
Since the expected number of such predicates is o(P)2~*pN, Lemma 5 im-
plies:

_32e(P)27FpN

Prob(# satisfied clauses > (1 +6)o(P)2 " pN) < e 5

e 3 = 3

Since there are 2" truth assignments, the probability that there is a sat-
isfying assignment which satisfies more than (1+ 8)o(P)27*pN predicates is
at most:

520 (Py2—Fkn1+1/21 520 (p)2—k
oM e~ a(P) T _ e(lng).n_ 0'(3) plt1/2l

(2)

We now choose the integer n to be any (large enough) integer that both
the upper bounds (1) and (2) are smaller than 1/4 and the last inequality in
(4) below holds. By (1) and (2), the random P-system X, has the following
three properties with positive probability:

e Y, contains at least (1 — §)pN predicates.
e G(X;) contains at most 2 - 2#'k?[n'/2 cycles of length at most 1.

e There is no truth assignment satisfying more than (1 + 6)o(P)2 *pN
predicates of Y.

Fix a P-system Y, which has these three properties. The desired P-system
Y} is obtained from Y, by removing all the predicates contained in all cycles
of G(Xy) whose length is at most /. Hence, G(X) contains no cycle of length
at most [ and its girth is at least [ + 1. Since P is l-extendable, X is [-
consistent by Lemma 4. In addition, the first two properties of ¥y imply
that ¥ contains at least (1 — §)pN — (2#+1k%[nl/2) . [ predicates. On the
other hand, the third property yields that no truth assignment can satisfy
more than (1 + 6§)o(P)27*pN predicates of 3. Hence:

(1+6)o(P)27*pN (14 0)o(P)
p(¥) < (1 — 8)pN — 2k+1E2[2p1/2 < (1—6)2k — 2kl+k+;l§5ll2n1/2 (3)




Observe that the following holds (the last inequality follows from the choice
of n):

2kl+k+1k2ll2n1/2 2kl—|—k+1 k?ll2n1/2 2kl+k+1l{22ll2

pN = np-E&=D+120pk  p1/241/20

< 52k (4)

The inequalities (3) and (4) yield the following:

(1+0d)o(P)  1+06 o(P)
(1—6)2k—628  1-25 2F °

p(X) <

Note that for each ¢ > 0, we can choose § > 0 so that 11_—+255 < 1+4e.
Thus, for such §, the obtained [-consistent P-system X satisfies that p(3) <
(1 +¢)o(P)/2F as desired.

]

4 2-CNF formulas

In this section, we study structure of 2-CNF formulas, i.e., CNF formulas
of clauses of sizes one and two. We first recall a well-known lemma about
unsatisfiable formulas with clauses of sizes two which can be found, e.g.,
in [1]. If ® is a 2-CNF formula with variables x1, ..., x,, then G(®) denotes
the directed graph of order 2n whose vertices correspond to literals x4, ..., z,
and —zy, ..., 1z, and whose edge set is the following: For each clause (aVb),
G(¢) contains an arc from the literal —a to the literal b and an arc from —b
to a (note that both a and b represent literals, not variables). For each clause
(a) (which can also be viewed as a clause (a V a)), we include an arc from
the literal —a to a.

Lemma 6 Let ® be a 2-CNF formula with variables x1,...,x,. Then, the
formula ® is satisfiable if and only if G(®) contains no directed cycle through
both the vertices x; and —x; for any i, 1 <1 < n.

An immediate corollary of Lemma 6 is the following:

Lemma 7 Fach minimal inconsistent set of clauses of a 2-CNF contains at
most two clauses of size one.



We now show that there exist extremal 2-CNF formulas in which each
small inconsistent set of clauses contains two clauses of sizes one:

Lemma 8 Let 2 <[ < L be any two integers. For each € > 0, there exists
a 2-CNF l-consistent formula ® with p(®) < p?SAT + ¢ such that each incon-
sistent set of L clauses contains at least two clauses of size one. Moreover,
® contains each single clause of size two at most once.

Proof: Fix integers [ > 2 and L > [ for the rest of the proof. Similarly,
0 < 1 is a positive real which will be chosen at the end of the proof. Fix
an [-consistent formula ®, with p(®y) < p?AT(1 + 6). We now classify the
variables contained in the formula ®,: The set A; is formed by variables x
contained in a clause of size one; we can assume without loss of generality
that each variable x € A; appears as a positive literal in the clause of size one.
The set A;, 2 < i < |I/2], consists of variables £ which are not contained in
any A;, 1 < j <i—1, and which are contained in a clause of the form (—yVz)
for y € A;_1. Since ® is [-consistent, we can assume that all the occurrence
of x € A; in the clauses (-y V x), y € A;_1, are positive: Otherwise, there
would be a set of at most ¢ clauses which force z to be true as well as a set
of at most ¢ clauses which force z to be false. The union of these two sets
of clauses consists of at most 2i clauses and it is clearly inconsistent. Since
i < |1/2], this is impossible. Finally, let Ay be the set of the remaining
variables of ®.

Let w;j, w;; and wy; be the number (sum of the weights) of the clauses of
the type (zVy), (mxVy) and (—zV-y), respectively, where x € A; and y € A;.
Similarly, let w; be the number (sum of the weights) of the clauses of the type
(x) where z € A;. We may assume that w; > 0. Otherwise, p(®y) > 3/4
and we can set ® to be an L-consistent P-system X with P(z,y) = (z V y)
with p(3¥) < 3/4 + € constructed in Theorem 1. Finally, W denotes the sum
of all wy, w;j, w;; and wy; for 0 < 4,5 < [1/2]. By the definition of the sets
A, ... AU/ZJ; =0 for all 1 <45 < |I/2] with i+ 1 < j. In addition,
since  is [- cons1stent wi; = 0forall 1 <4,j < [1/2] withi+j+1<1.

We now define W, to be the maximum of the sum:

wipr+ Y wypitpi—pip) twg(l—pip)+ Y wy(1—pitpip))
0<i<i<|1/2] 0<1,5<|1/2]
(5)

where the maximum is taken over all 0 < py, ..., py/2) < 1. Clearly, W,/W <
p(®o): Consider the probabilities py,...,pJ/2 for which the maximum in
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the above expression is attained. If each of the variables of the set A;,
0 < i < [l/2], is chosen to be true randomly and independently with the
probability p;, then the expected number (weight) of the satisfied clauses
is W,. Therefore, there is a truth assignment which satisfies at least this
number of clauses and consequently W,/W < p(®y).

Let n be an integer which we fix later. Let X;, 0 <1 < [1/2], be [1/2]+1
disjoint sets consisting of n variables each. We construct a 2-CNF formula
® with variables Xy U ---U X|;/5;. The formula ® contains n'/2L copies of
a clause (x) for each x € X;. The other clauses are included to the formula
® randomly and independently as follows: The clauses (z V y), (—z V y)
and (—z V —y) where z € X; and y € X; with ¢ # j are included to &
with the probabilities w;n /2L fwy, wyn™/2L Jwy and wzn= 125 fwy,
respectively. The clauses (z V y), (—z V y) and (—x V —y) where z,y € X;
are included to ® with the probabilities 2w;n="*/2F Jw,, wy;n=' /2" /), and
2wzn "' T12E [y, | respectively.

We claim that the number of clauses of ® is at least Wn!*1/2L(1 — §) /u,
and the number of clauses which can be simultaneously satisfied does not
exceed Wn'*1/2L(1 + §)/w, + 3Wn'*1/2L§ /w, with the probability which
tends to 1 as n goes to infinity. We show that each of the complementary
events, i.e., the “bad” events, for each separate types of clauses occurs with
the probability which tends to 0. Since the number of bad events is finite
(and independent of n), this yields the claim. As an example, we present the
analysis only for a single type of clauses, e.g., clauses (z V y) for x € X; and
y € X; with 4 # j for fixed integers ¢ and j. Namely, we aim to show that
the number of clauses of this type is smaller than wy;n'*'/25(1 — §) /w; with
probability tending to 0. In addition, the probability that there is a truth
assignment which assigns the true value to a fraction p;, p;, of the variables
of X;, Xj, respectively, and which satisfies more than w;;n'*¥/2L(1 — (1 —
pi)(1 = pj))(1 + 8)/wr + 3win 216 fwn = win' TV (p; 4+ p; — pip;) (1 +
§)/wy + 3w;;n 2L Jw, clauses of the considered type also tends to zero.

By Lemma 5, the probability that the number of clauses (z V y) with
z € X; and y € X; is smaller than wy;n'T/2E(1 — §) /w, is at most:

5211)1,jnl+1/2L/w1 14+1/2L
e 3 = ¢ O ) 0.

The second part of the statement is more difficult. We first prove the claim
for p; and p; where p; or p; is at least 4. Fix now a truth assignment
for X; U X, which assigns the true value to a fraction p;, p;, of the vari-
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ables X;, X, respectively. By Lemma 5, the probability that the number of
clauses of the considered type satisfied by this fixed truth assignment exceeds

141/2L . _
win' /2L (p; +p; — pip;) (1 + §)/w, is at most:
62w, ;n =1 H/2L foyy 02 (p4ps—pip ;) 83wy ;n /20 )y,
e_ J 3 J J < e_ J 3 _ e_@(nl—l—l/ZL).

Since there are at most 22" possible truth assignments the probability that
there exists a truth assignment with § < max{p;,p,}, which satisfy more
clauses than claimed is at most 27e=©®™"*"*") 5 0. We now show that if there
is no “bad” truth assignment with 6 < max{p;,p;}, then there is no “bad”
truth assignment with 0 < p;,p; < 4. Consider a truth assignment which
assigns the true value to at most on variables of each X; and X; and modify it
to a truth assignment which assigns the true value to [dn] variables of each X;
and X;. This modification can only increase the number of satisfied clauses
of the considered type. Since both the modified p; and p; are now larger than
§, the assignment satisfies at most w;;n!*/2(26+2/n—§2)(1+6) /w; clauses
(the additional factor 2/n comes from rounding). If n is sufficiently large,
then this expression is at most w;;n'*1/2£35 /w; as desired. This finishes the
proof of the claim.

Next, we bound the expected number of minimal inconsistent sets of
at most L clauses containing zero or one clause of size one. The number of
variables of the formula ® is N = (|//2|+1)n. By Lemma 6, there are at most
(2N)* minimal inconsistent sets of k clauses such that the size of each clause
is two and there are at most (2/N)*~! minimal inconsistent sets of k—1 clauses
such that the size of each clause is two except for precisely one clause whose
size is one. We omit a straightforward but little technical argument yielding
these upper bounds. Since each clause of size two is included to ® with
the probability at most W,n~'*1/2L /w,, the expected number of minimal
inconsistent sets of at most L clauses containing zero or one clause of size
one is at most the following:

L
Z(QN)kW;n—k+k/2L/wllc I (2N)k—1W;—ln—(k—l)—{—(k—l)/?L/wllc—l _
k=1

L
Z l/2 + 1 W;nkﬂL/Mf + (Q(U/QJ + 1))k—1W;—1n(k—1)/2L/w{c—l S

k=1

L
Z l—|—2 Wk k/QL/wl (l+2)k—1W;—1n(k—1)/2L/wf—l <
k=1
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2L(1+2)"Wrn'/? Jwl

By Markov’s inequality, the probability that there are more than 4L(l +
2)XWEn!/? Jwl minimal inconsistent sets of at most L clauses with zero or
one clause of size one is at most 1/2. Therefore, if n is sufficiently large (with
respect to a previously fixed § > 0), with positive probability, the random
formula ® has at least Wn'T1/2(1 — §) /w; clauses, at most Wn!*1/2E(1 +
§)/wy + 3Wn't/2L5 /w, clauses of ® can be simultaneously satisfied and @
contains at most 4L ([ + 2)LWan1/ 2 Jwl inconsistent sets of at most L clauses
with no or a single clause of size one. Fix such a formula ®. We obtain
@' from ® by removing all (at most 4L2(I + 2)“W}rn!/?/wl) clauses of size
two contained in an inconsistent set of at most L clauses with no or a single
clause of size one. This may decrease the number of clauses of ® by at most
AL2(1+2) WEn!/? Jwl. On the other hand, the number of clauses which can
be simultaneously satisfied cannot increase.

We now estimate p(®') (observe that W, > W/2):

(@) < Wpn 2L (1 + 6) fwy + 3Wn! V25 fwy
P = Wl PL(1U = §) fuwy, — AL2(1 + 2)EWEn 12wt

W,(146) + 36W < W,(1476)
W(1—6) —4L2(l + 2) ! Wlin=12712L [yt = W(1 = §) — O(n~=1/271/20)

Therefore, if n is sufficiently large, then:

W, (1 +75) 1476 or (14 6)(1 +76)
—_ < < .
W20 =P T g S 1-25

p(®') <

Hence, for each ¢ > 0, we can choose § > 0 small enough that p(®') <

pl?SAT + €.

Finally, we have to show that the formula &' constructed in the proof
is [-consistent. By Lemma 7, each minimal inconsistent set of clauses of @’
contains at most two clauses of size one. On the other hand, each inconsistent
set of at most L clauses contains at least two such clauses. Therefore, each
minimal inconsistent set of at most [ clauses of ® contains precisely two
clauses of size one. Fix such a set I' of clauses of &' and let (z1) and (y)
be the two clauses of size one contained in I'. Obviously, z;,y; € X;. By
Lemma 6, I' contains clauses of size two in which x; and y; appear as negative
literals. By the construction of @', such clauses can be only (—x; V x5) and
(—y1 Vyo) for some x5, yo € X5. By Lemma 6, T" has to contain clauses of size
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two in which x5 and y, appear as negative literals. By the construction of ®’,
such clauses can be only (—zVx3) and (—y2Vys3) for some x3,y3 € X3. In this
way, we continue until we reach the set X ;. By the minimality of the set I,
z; # y; forall 1 <1 < |l/2]. Therefore, if |I'| < 2[1/2]+1, then I" contains the
clauses (z1), (~z1VT2), ..., (721 VT /2)), (1), (FY1VY2), - (FY 211V
yU/gJ) and (_'xU/QJ V —lyU/QJ). If [ is even, then |I'| > [, and if [ is odd, then
Wiz = 0 and thus @' cannot contain the clause (—z /2] V =yy/2)). In
either of the cases, we showed that there is no inconsistent set of at most [

clauses.
]

A close inspection of the proof of Lemma 8 yields that for any weights
W1, Wij, Wy and Wi with w;; =0 foralll1 <:<j—1 and w; =0 for all
1 <id,5 <[l/2] with i+ j+ 1 <. there is an [-consistent formula ® with
p(®) < Wp/W + e where W = wy + >, (wi; + wy; + wy) and W, is the
maximum of the sum (5) taken over all 0 < py,...,p/2) < 1. Therefore, we
have the following formula for p?T for all [ > 2:

Corollary 1 For each | > 2, the following holds:

pZZSAT = min W,

0<w1 ,w;j W35 Wiz
w1+, i (wij+wy; twz)=1

where the minimum is taken over all combinations of weights with wy; = 0

for all1 <i <j—1andwg =0 forall 1 <id,j < [I/2] withi+j+1<1

and Wy, is the mazimum of the sum (5) taken over all 0 < po,...,pus2 < 1.

5 Unary, binary and ternary Boolean predi-
cates

As noted in Section 2, it is enough to determine the values p,(P) for rep-
resentatives of isomorphism classes of essentially unary, binary and ternary
Boolean predicates. The case of 1-extendable Boolean predicates was han-
dled in Theorem 1. The only essentially unary, binary and ternary Boolean
predicates which are not 1-extendable (upto isomorphism) are the following:
P(x) =z, P(r,y) =z Ay, Plz,y,2) =xAyAz Plr,y,z) =z A (y & 2)
and P(z,y,z) = x A (yV z). The first three of these predicates satisfy that
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o(P) =1 and so the values p;(P) for these three predicates were determined
in Lemma 3. Therefore, we know the values p;(P) for all essentially unary
and binary Boolean predicates (see Tables 1 and 2). We focus on [-consistent
P-systems with P(z,y,2) =z A (y < 2) and P(z,y,2) =z A (y V 2) in the
rest of this section. In the following two lemmas, we handle the case of
2-consistent systems:

Lemma 9 [t holds that po(P) = 8/27 for P(x,y,z) = x A (y < 2).

Proof: We first show that po(P) > 8/27. Let us consider a 2-consistent
P-system 3. Since X is 2-consistent, > does not contain two predicates such
that the first argument of one of them is x and the first argument of the
other predicate is —z. Therefore, we may assume that the first argument of
each predicate is a positive literal.

Choose now each variable of ¥ randomly and independently to be true
with the probability p = 2/3. The probability that any single predicate of
Y is satisfied is either p(p? + (1 — p)?) = 10/27, if the second and the third
argument are both positive or both negative literals, or 4p*(1 — p) = 8/27,
otherwise. Hence, the expected fraction of satisfied constraints is at least
8/27 and consequently p(X) > 8/27. Since the choice of a 2-consistent P-
system X was arbitrary, we can conclude that po(P) > 8/27.

It remains to show that py(P) < 8/27. For an integer n > 3, we consider
a P-system X, with the variables x1,...,z,. 3, is formed by all the n(n —
1)(n — 2) predicates P(z;,z;,~xy) for 1 < 4,5,k < n where all ¢, j and
k are mutually distinct. The P-system X is clearly 2-consistent. We now
compute p(X,). Consider a truth assignment which assigns the true value
to exactly n' variables of X,,. Then, the number of satisfied constraints is
precisely n'((n’ — 1)(n —n') + (n — n')(n’ — 1)). Thus, we can conclude that
(set g =n'/n):

gn((gn —1)(n — gn) + (n — gn)(gn — 1))

Pn) < J0o w1 ) -

201 1y_ 8 1
01235)(1261(1 q)—l—O(n —27—|—O )

Hence, po(P) < 8/27 as claimed.
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Lemma 10 It holds that py(P) = 2v/3/9 for P(z,y,2) =z A (y V 2).

Proof: We first show that py(P) > 2v/3/9. Let us consider a 2-consistent
P-system 3. Since ¥ is 2-consistent, X does not contain two predicates such
that the first argument of one of them is z and the first argument of the other
is —x. Therefore, we may assume that the first argument of each predicate
is a positive literal.

Choose now each variable of ¥ randomly and independently to be true
with the probability p = 37%/2 > 1/2. The probability that any single
predicate of ¥ is satisfied is at least p(1 —p?) = 21/3/9. Hence, the expected
fraction of constraints which are satisfied is at least 24/3/9 and consequently
p(X) > 2v/3/9. Since the choice of a 2-consistent P-system X was arbitrary,
we can conclude that py(P) > 21/3/9.

It remains to show that py(P) < 2v/3/9. For an integer n > 3, we
consider a P-system Y, with the variables x,,...,z,. X, is formed by all
the n(n — 1)(n — 2)/2 constraints P(z;, ~x;, ~xzx) for 1 < 4,5,k < n, i # j,
1t # k and j < k. The system X is clearly 2-consistent. We now compute
p(X,). Consider a truth assignment which assigns the true value to exactly
n' variables x1, ..., x,. Then, the number of satisfied constraints is precisely
the following n'((n—n')(n'—1)+(n—n')(n—n’'—1)/2). We can now conclude
that (set ¢ =n'/n):

gn((n —gn)(gn — 1)+ (n —gn)(n —gn —1)/2)
p(En) < Hax n(n— 1)(n—2)/2 -
q(1—q)g+ (1 —q)?/2 1) 2V3 1
R 12 *0(;) ZTW(;)-

Hence, py(P) < 24/3/9 as claimed.
[

We can now analyze locally consistent P-systems for P(z,y, 2) = zA(y <

2):

Theorem 2 If P is the predicate P(x,y, z) = tA(y < z), then the following
holds for all I > 1:
1/4  ifl=1,
p(P) =4 8/27 ifl=2,
1/2  otherwise.

16



Proof: It follows that p;(P) = 1/4 and py(P) = 8/27 from Lemmas 2 and 9,
respectively. Hence, we focus only on the case [ > 3. First, we show that
pi(P) < 1/2. Consider an [-consistent P'-system X' for P'(y,z) = (y & 2)
with p(X') < 1/2 + ¢ for a positive real € > 0. Such a P'-system X' exists
because p;(P') = 1/2 by Theorem 1. Let yy, ..., y, be the variables contained
in ¥'. We construct an [-consistent P-system X with p(X) = p(3X'). Introduce
a new variable z and for each predicate P'(y;, y;), P'(—vi, y;), P'(vi, ~y;) and
P'(—y;, ~y;) include a predicate P(z,y;,y;), P(x, v, v;), P(x, vy, y;) and
P(z,—y;, —y,) to X, respectively. Since ¥’ is [-consistent, the P-system ¥ is
l-consistent, too. It is also not hard to see that p(X) = p(X’). Therefore,
p(X) <1/2+¢ and p(P) < 1/2.

We now prove that p,(P) > 1/2 for [ > 3. Let ¥ be an [-consistent
P-system. Let X be the set of variables which appear as the first argument
in some of the predicates of ¥ and Y the set consisting of the remaining
variables. Since X is 2-consistent, we can assume that the first argument
of each predicate is a positive literal. In addition, since ¥ is 3-consistent it
contains neither a predicate P(z,z',—z") nor a predicate P(x,—z',z") for
some z, 7', 2" € X. Therefore, if we set each variable of X to be true, then
each predicate of ¥ is either satisfied (i.e., all its arguments are set and the
predicate is true) or at least one of its arguments contains a variable from
the set Y. Choose now each variable of Y randomly and independently to
be true with the probability 1/2. Each predicate, which was not satisfied
by fixing the values of variables from the set X, is now satisfied with the
probability 1/2. Therefore, on average, at least half of all the predicates are
satisfied. Hence, p(X) > 1/2 and consequently p,(P) > 1/2.

O

Before we analyze P-systems with P(z,y,2) = 2 A (y V z), we need to
provide a separate upper bound for 3-consistent P-systems:

Lemma 11 [t holds that p3(P) < 1/2 for P(xz,y,2) =z A (yV 2).

Proof: For each € > 0, we construct a 3-consistent P-system ¥ with p(X) <
1/2 + . Let n be an integer whose exact value will be chosen later. We
construct a P-system Y, with variables x; for 1 < i <2n+1 and yZA for1 <
i < 2n+1 where A ranges through all n-element subsets of {1, ..., 2n+1}\{:}.
The system ¥, consists of predicates P(x;, —z;,y;) forall 1 <i,j < 2n+1,
i # j and j € A and predicates P(x;, —xz;,—y ) for all 1 < 4,5 < 2n + 1,
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1 # 7 and j € A. In particular, the number of predicates contained in ¥, is
(2n+1)2n(*"). Clearly, &, is 3-consistent.

Let us consider a truth assignment which satisfies the most number of
predicates. Let n’ be the number of the variables zi,..., %9, 1 with the
true value. By symmetry, we can assume that the values of the variables
x1,...,%y are true and the values of z,1,...,x, are false. Observe that
all the predicates whose first argument is one of the literals z,/1,...,2,
are false. In particular, if n’ < n, then less than half of the predicates are
satisfied. We focus on the case n' > n in the rest of the proof.

Consider now an integer i, 1 < ¢ < n/, and an n-element subset A of
{1,....2n+ 13\ {i}. H|AN({1,...,n'}\ {i})| > (n' — 1)/2, then the truth
assignment (because it is optimal) assigns y* the true value and, otherwise, it
assigns y:! the false value. Hence, the number of predicates, which contain y;*
and which are satisfied, is (2n —n' + 1) + max{|[AN ({1,...,n'} \{i})],n' —
AN ({1,...,n'} \ {i})|}. For a fixed integer i, the number of n-element
subsets A of {1,...,2n+ 1} \ {¢} with max{|AN({1,...,n'}\ {¢})]|,n' —|AN
({1,...,n'}\{i})| > (1 +¢)(n' —1)/2} is at most the following:

(1_6)(271,:_1)/2 n'—1\(2n+1—-1n N 73_:1 n—1\[(2n+1-1n <
k n—k k n—k -

k=0 k=(14¢)(n'-1)/2

Z (TI// k— 1) 22n+1—n’ S

0<k<(1—¢)(n/—1)/2
(1+e)(n'—1)/2<k<n’'—1

2w —1)/2 2w -1
3 6

’ ’
26 2n —122n+1—n — 2277,—{—16

Hence, for a fixed 7, the number of satisfied predicates whose first argument
is x; is at most the following (recall that n + 1 < n'):

1 —1 2 e2(n/ -
<2n—n’+1+( +6);n )) ( n) + 222 tle = <

n
, —
(271 ool + 2n5) <2n> + 2n22n+16_52Tn <
2 2 n
—1 2 2n
<2n— n 5 +n5) ( n) + 2n2%tle="6
n



Consequently, the fraction of satisfied predicates of ¥,, does not exceed:

n' ((2n — 2=t one) () + 2n22”+1e_62Tn)

<
(2n+1)2n(*") -
2
((2n+ D)n+ nn'e) (") + 2nn'227He="6" <
(2n+1)2n(*") -
2

1 e 2Mle~% 1 ¢ 2n
4+ <4+ -422n+1)e b .
;T B <5tgt (2n+1)e” s

€2n
We now choose n to be an integer such that 2(2n + 1)e” s < ¢/2. Then,
each truth assignment with n’ > n satisfies at most the fraction of 1/2 + ¢ of
the predicates of ¥,,. Hence, p(3,) < 1/2 + ¢ as desired.
[

We are now ready to determine the values p;(P) for the predicate P(z,y, 2) =
zA(yV2):

Theorem 3 Let P be the predicate P(x,y,z) = x A (y V z). Then, the
following holds for all 1 > 1:

3/8 if l=1,
pi(P) =4 2v3/9 ifl=2,
pShT otherwise.

Proof: The equalities p;(P) = 3/8 and py(P) = 2v/3/9 follow from Lem-
mas 2 and 10, respectively. We first prove that p;(P) > p?5T for [ > 3. Let
Y. be an [-consistent P-system and let X be the set of variables of > which
appear as the first argument in some predicates of >. Since ¥ is 2-consistent,
we can assume that all the first arguments of the predicates of > are positive
literals. Let Y be the set of the remaining variables of .

We construct an auxiliary (I — 2)-consistent 2-CNF formula ® with the
variables Y as follows. Since X is 3-consistent, it does not contain a pred-
icate P(x,—z',—z") where z', 2" € X. For each predicate P(x,—z',y) and
each predicate P(x,y,—z') of ¥ with z,2’ € X and y € Y, we include
the clause (y) to ®. Similarly, for each predicate P(x,—z',—y) and each
predicate P(x,—y,—x') with 2/ € X, we include the clause (—y). For each

19



predicate P(z,y,y’) with z € X and y,y’ € Y, we include the clause (y V ¢')
to ®. We proceed analogously for predicates P(z,—y,y’), P(z,y,y') and
P(x,—y,—y'). Note that some of the clauses may be contained in the formula
® several times.

We claim that the formula @ is (I — 2)-consistent. If this is not the case,
let I' be the minimum inconsistent set of clauses of ®. By Lemma 7, T’
contains at most two clauses of size one. We now find an inconsistent set I
of at most |I'| + 2 predicates of X. For each clause of I' of size two, include
to [" the predicate of ¥ corresponding to that clause. For each clause (y),
(—y), of T', include to I the predicate P(x,y, —x'), P(x, ~y, -x'), respectively,
which corresponds to that clause, together with any of the predicates of X
whose first argument is z’. Since I' contains at most two clauses of size one,
IT'| < |T'| + 2 < I. Moreover, since I' is inconsistent, I is also inconsistent.
However, this contradicts the fact that X is [-consistent.

Since the formula ® is (I — 2)-consistent, there is a truth assignment
which satisfies the fraction of p(®) > p?4T clauses of ®. Extend this truth
assignment to all the variables of ¥ by assigning the true value to each
variable x € X. All the predicates of > whose arguments contain solely the
variables from the set X are satisfied and, in addition, the fraction of p(®) of
the remaining predicates are also satisfied. Therefore, p(X) > p(®) > p?9T.

Since the choice of a P-system ¥ was arbitrary, we can conclude that p;(P) >

2SAT
Pi—2 -

It remains to prove that p(P) < p?3T for [ > 3. If | = 3, the upper
bound follows from Lemma 11. For [ > 4, choose € > 0 and fix an (I — 2)-
consistent 2-CNF formula ® with p(®) < p?557 + € such that each minimal
inconsistent set of at most [ clauses contain two clauses of size one. Such a
formula ® exists by Lemma 8. Moreover, we can assume that each clause of
size two is contained in ® at most once. Let m' be the number of clauses
of @ of size one (counting multiplicities) and m the number of all clauses of
®. Since @ is 2-consistent, m’'/m < p(®). We now construct an [-consistent,
P-system ¥ with p(X) = p(®P).

Let y1,...,yn be the set consisting of the variables of the formula ®. The
system ¥ will contain (m + 1)n variables y] for 1 < i < nand 1 < j <
m + 1 and m + 1 variables 2/ for 1 < j < m + 1. Let C},...,C,, be the
clauses of ®. For each clause C, = (y; V ys), 1 < k < m, we include to
> predicates P(a?,y!,y}) for 1 < j < m + 1. Similarly, we proceed for
clauses Cy = (y; V ~yy) and Cp = (—; V —yy). If the clause Cy is of size
one, say Cy, = (y;), we include to X predicates P (a7, y], ngltk) mod (m+1)) for
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1 < j < m+ 1. Therefore, 3 consists of m(m + 1) distinct predicates.

First, we show that X is [-consistent. Assume the opposite and let T’
be the minimum inconsistent set of predicates contained in ¥, i.e., |I'| < [.
Observe that if we set all the variables z!, ..., z" to be true, then the system
Y reduces to m + 1 independent “copies” of the formula ®. Therefore, if I'
is a set of [ inconsistent predicates, it must contain predicates contained in
one of these copies of ® which correspond to an inconsistent set I'g of clauses
of ®. By symmetry, we can assume that predicates corresponding to I'g are
contained in the first copy of ®. Since ® is (I — 2)-consistent, |I's| > — 1.
On the other hand, |[I's| < |I'| < I. By the choice of @, each inconsistent set
of at most [ clauses of ® contains two clauses of size one. Let Cy = (y;) and
Cr = (yi) be these two clauses of size one, i.e., I' contains the predicates
P(z!, y;, ~atktD mod (m+1)) and P(g!, gy, mg® +1) med (n+1)) If T' is inconsis-
tent, it must contain a predicate whose first argument is z(FT1) mod (m+1) 5q
well as a predicate whose first argument is z(¥'+1) med (m+1)  Therefore, T’
contains at least |I's| + 2 > [ predicates.

We now show that p(X) = p(®). Since p(®) < p?>4T + ¢ and the choice of
e was arbitrary, this would yield p;(P) < p?5T. Fix a truth assignment such
that the fraction of p(X) predicates of the P-system X is satisfied. We claim
that there is an optimum truth assignment which assigns all the variables
z', ..., 2™ the true value. Indeed, if 27 is false, then change the value
of 27 to true. This causes at most m' previously satisfied predicates to be
unsatisfied (precisely those which contain —z/ as the third argument) and,
on the other hand, we can choose values of y{,..., 4 so that at least the
p(®)m predicates whose first argument is 27 are satisfied. Note that none of
these p(®)m predicates could be satisfied before the change of the value of
z?. Since p(®)m > m’ (recall that p(®) > m’/m), the number of satisfied
predicates is not decreased after the change. In this way, we can switch all
the variables z!, ..., 2™"! to true without decreasing the number of satisfied
constraints. Hence, we can assume that all the variables z!, ..., ™! are set
to be true by the considered optimum truth assignment. Then, the system X
is reduced to m-+1 independent “copies” of the formula ® (substitute the true
value for all the variables z', ..., ™). We can conclude that p(X2) = p(®).

O
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6 Conclusion

We studied instances of constraint satisfaction problems which are locally
consistent. There are several directions for possible future research. First, we
were not able to fully analyze Boolean predicates which are not 1-extendable.
The smallest two non-trivial such Boolean predicates, P(z,y, z) = 2A(y < 2)
and P(x,y, 2) = tA(yVz), already showed that the behavior of locally consis-
tent P-systems for such predicates P can be quite weird. Another direction is
to allow constraints of more types: In this setting, the previously most stud-
ied case of locally consistent CNF formulas can be viewed as a constraint
satisfaction problem where constraints are just disjunctions, e.g., the case of
2-CNF formulas corresponds to problems with the constraints P(x) = z and
P(z,y) = z Vy. The last possible direction is to consider constraints with
larger domains. Some of our results can be easily translated to this more
general setting, e.g., Theorem 1, on the other hand, their detailed analysis
even for small arities might be quite difficult because of their potentially rich
structure.
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