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Abstract

A classical flow is a nonnegative linear combination of unit flows
along simple paths. A multiroute flow, first considered by Kishimoto
and Takeuchi, generalizes this concept. The basic building blocks are
not single paths with unit flows but rather tuples consisting of £ edge
disjoint paths, each path with a unit flow. A multiroute flow is a
nonnegative linear combination of such tuples.

We present a simple combinatorial proof of the duality theorem
for multiroute flows and cuts and its corollary which characterizes
multiroute flows in terms of classical flows. Specifically, we show that
a (classical) flow of size F' is a k-flow if and only if the flow through
every edge is at most F'/k. This duality then immediately yields an
efficient algorithm.

1 Introduction

A classical flow is a nonnegative linear combination of unit flows along simple
paths. A multiroute flow, first considered by Kishimoto and Takeuchi [9],
generalizes this concept. The basic building blocks are not single paths with
unit flows but rather tuples consisting of k£ edge disjoint paths, each path
with a unit flow. Such a structure of k£ edge disjoint paths (from s to t),
each with a unit flow, is called an elementary k-flow. A multiroute flow
(or a k-flow) is a nonnegative linear combination of elementary & flows. We
postpone for later discussion what a size of a cut means for the multiroute
flow.

Whereas classical flow has the flezibility to split (and merge), k-flow has
the obligation to split. The motivation for enforced splitting comes from
communication applications: a multiroute channel is more tolerant against
link failures (cf. [3, 5, 7, 10]).

The celebrated Max-Flow Min-Cut theorem [6] occupies a central posi-
tion in classical flow theory. Is there an analogue for the multiroute flow?
Menger’s theorem immediately provides a necessary and sufficient condition
for a non-zero multiroute flow: it exists if and only if the source and tar-
get vertices are k-edge-connected. However, the question about the maximal
multiroute flow is more subtle and the answer is not obvious.

A 2-flow was first introduced by Kishimoto and Takeuchi in the early
90’s. Kishimoto and Takeuchi [9] and Kishimoto [8], and Aggarwal and Or-
lin [1] gave two efficient algorithms for finding a maximal k-flow. Given the



maximal k-flow, they both find a cut of the same size [9, 1], which implies
the duality of the general multiroute flows and cuts. A similar algorithm for
computing the minimal cut of a multiroute flow (and thus also an algorithm
for the maximal k-flow) is given by Aneja et al. [2] in the context of para-
metric analysis of minimal cuts (edge capacities depend to some extend on
a varying parameter). A discrete multicommodity variant of the multiroute
flow problem, namely the k£ Disjoint Flow Problem, was studied by Bagchi
et al. [4].

In this note, we present a simple combinatorial proof of the duality of
multiroute flows and cuts. As a by product of the duality theorem we get a
characterization of multiroute flows in terms of classical flows: A (classical)
flow of size F' is a k-flow if and only if the flow through every edge is at most
F/k (see Theorem 3.2). This duality also immediately yields an efficient
algorithm for finding the maximum k-flow. Although these results are not
new, a direct proof of the duality was not known before. Overall, our proofs
are significantly simpler than previously known. We believe that they provide
a valuable new insight into the structure of k-flows.

2 Preliminaries

A network is an undirected graph G = (V, E) together with a capacity func-
tion ¢ : ' — R and two distinguished vertices s and ¢ called the source and
the sink respectively.

An elementary s — t flow is a flow of one unit from s to ¢ along a simple
path. A famous result in classical flow theory says that every s — ¢t flow
can be decomposed into (a finite number of) s — ¢ paths and cycles, or in
other words, that every acyclic flow is a non-negative linear combination of
elementary flows. We take this approach to define to k-flows.

An elementary k-flow is an s — t flow along k edge disjoint paths from
s to t, each path carrying a unit of flow. A k-flow is any flow that is a
non-negative linear combination of elementary k-flows [8, 1].

As usual, an s — ¢ cut is a partition of vertices V' into two groups S and
S =V \ S such that s € S and t € S. Often we will just talk about a cut
and we will also often view the cut as a set of edges {(u,v) |u € SAv €
S} ={ei,---,e;}. The size C(S,V '\ S) of the cut is then equal to 3>'_, c(e;).
An alternative definition is that the size of the cut {e;,---, ¢} is the size of
the maximal flow in a simple network G’ where the source s’ and sink ¢’ are



connected by [ edges with respective capacities c¢(ey), - - -, ¢(e;). The meaning
is that the size of a cut is the maximal amount of flow that can get through
if there are no other restrictions.

For multiroute flows, we are going to define the k-size of a cut in an
analogous way. The k-size of a cut {ey,---,¢e;} is the maximal amount of
k-flow in a network where the source and destination are connected by [
edges with respective capacities c(e;), - - -, c(e;). Note that the k-size of a cut
depends only on the capacities of the [ edges. In the following, vx(c1,- -, ¢)
will denote the k-size of a cut {ey,- -, e}, ¢; = c(e;). Sometimes we will talk
about a k-cut instead of a cut to stress that we are interested in the k-size
of the cut.

To give an example, the size of a cut consisting of two edges with capac-
ities 1 and 100 is 101 but the maximal 2-flow that can pass through this cut
is only 2. Thus, the 2-size of this cut is two.

Our definition deviates from the original definition of Kishimoto [8] and
also from the definition given by Aggarwal and Orlin [1]. However, we think
that our definition provides a better insight in the meaning of the k-size of a
cut. Moreover, for k£ = 1 the k-size of a cut clearly coincides with the size of
the cut. The next lemma shows how to calculate the k-size of a cut and also
shows that our definition is equivalent to the previous one, as the previous
definitions essentially define the k-size as the value calculated in the lemma.

Lemma 2.1 Given a cut C with | edges, let cq,---,c; denote the edge ca-
pacities in nonincreasing order (i.e., ¢; > ¢iy1) and let M; = ﬁ 2:j+1 ;.
Then the k-size of the cut s

P —_— 1 M«.
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Furthermore, if the minimum is achieved at M;, then ¢; > M;/k > ¢y, for
any i < j and i > j, and

’Yk(cla ©t °7Cl) — ’Yk(Mj/ka ©t °7Mj/kacj+17 .. -acl)

Proof. Suppose that the minimum is achieved at M;. Obviously, no k-flow
is larger then M;: in each elementary k-flow, there are at least k — j edges
from cj;1,..., ¢ and their total capacity allows only a total flow of A;.

By the minimality of M, for any ¢ < j and ¢’ > j, we have ¢; > M, /k >
¢y, as otherwise M;_; or My would be smaller than A;. The last part of the
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Figure 1: Size of a cut {e1,---, ¢}, if c(e;) < %22:1 c(e;).

lemma follows by the definition of M}, as decreasing all ¢;, ¢ < j, to M;/k
does not change M; and does not decrease any other M; below M;.

It remains to construct a k-flow of size M;. We organize the capacity from
the smallest [ —j edges in a rectangle (k—j) x (M, /k) (k—j columns of height
M;/k). We “fill” the rectangle by the available capacity ¢;41 +¢jio+---+¢
by columns from left to right, in each column from top to bottom, starting
with ¢;4; in the leftmost column and ending with ¢; in the rightmost. The
rectangle can now be divided into some number of horizontal slices such that
in each slice the portion of capacity in each column comes from a single
edge. Moreover, since the edge capacities ¢;41,- -, ¢ are at most M;/k, in
each slice the k£ — j portions of capacities belong to distinct £ — j edges. Thus,
each slice corresponds to (a multiple of) an elementary (k — j)-flow, of size
proportional to the height of the slice. Together, we have a (k — j)-flow of
size Zi: ;41 Ci that does not use the j heaviest edges. Adding a flow of M;/k
along the j heaviest edges, we get a k-flow of size M;. O

3 Duality

We say that an (s,t)-flow of size F' is k-balanced, if every edge carries at
most F'/k units of flow. An edge e is critical if it carries F'/k units of flow.
A k-system is a set of k edge disjoint path between two vertices s and ¢; we



view a k-system as a set of edges. A technical observation crucially useful in
proving the duality theorem is the following lemma.

Lemma 3.1 For every k-balanced flow f without cycles there exists a k-
system that uses all critical edges in f.

Proof. Let F denote the size of the flow f. Let G' = (V', E', ') be a directed
network obtained from the flow f as follows. V' =V U {s,t'}, where s’ and
t' are new source and target vertices. The set of edges E’ contains (i) all
edges e € E with non-zero flow, their capacity ¢'(e) = f(e), i.e., the value of
the flow, and (ii) k¥ edges from s’ to s and k edges from ¢ to ¢', the capacity
of each edge e incident with s’ or ' is /(e) = F/k.

By the definition of s’, ¢’ and edges incident to them, and the assumption
that f is acyclic, a set of edges Q C E' is a k-system between s’ and ¢’ in
G' if and only if ) contains all k edges from s’ to s as well as all k edges
from ¢ to t', and at each node v € V' — {s',t'}, @ has the same in-degree
and out-degree (i.e., satisfies the flow conservation, if all the edges carry the
same flow).

Let @@ be the k-system in G’ that uses the largest number of critical edges
(among all possible k-systems). Towards contradiction, assume that there
exists a critical edge (u,v) € Q. Let S be the set of all vertices reachable
from v by an “augmenting” path of a special kind. The paths are allowed
to use two types of edges: (i) in forward direction, edges not used by @,
and (ii) in backward direction, edges used by @ but only if they are not
critical. Formally, the set S consists of all vertices reachable from v in a
graph G = (V',E, UE_) where B, = E' — Q and E_ = {(y,2)|(z,y) €
@ and (z,y) is not a critical edge}. Obviously, s’ and ¢’ are not in S as no
edges incident to them are in £, U E_.

We claim that u is not in S. Assume, towards contradiction, that u € S.
Since (u,v) € E,, by definition of S there is a cycle C' in G containing (u, v).
Add to @ all edges in C' N E, and remove all edges (z,y) € @ such that
(y,x) € C. The flow conservation is preserved, thus thus the new set is a k-
system. However, the number of critical edges increased: none was removed
and at least one, namely (u,v) was added. This is a contradiction with the
choice of () and we conclude that u ¢ S.

Finally, we get a contradiction by observing that the amount of flow f
flowing into the set S is larger that the amount of flow f flowing out of S.
Since s',t' € S, Q enters S exactly the same number of times as it leaves S.



By definition of E_, @) enters S along edges with flow F'/k. Therefore the
flow into S along edges from () is at least as large as the flow from S along
edges from ). There is also a flow of size F'/k going into S along the edge
(u,v) € Q. By definition of E, there is no outgoing flow from S along edges
not in ). Thus, the flow going into S is strictly larger (by at least F'//k) than
the flow out of S, a contradiction. We conclude that () contains all critical
edges. O

From Lemma 3.1 we almost immediately get the characterization of mul-
tiroute flows in terms of classical flows.

Theorem 3.2 A flow without cycles is k-balanced if and only if it is a k-flow.

Proof. Every k-flow is k-balanced by definition.

Given a k-balanced flow f, let () be the k-system that uses all critical
edges, obtained by Lemma 3.1. Let c¢g be the minimal flow on edges from
@ and let ¢ be the maximal flow on edges in £ — Q. In our flow f, we
subtract the value min{cg, F//k — ¢y} from each edge in Q). We observe that
the remaining flow is balanced again. Since either the number of edges used
by the remaining flow decreases or the number of critical edges increases,
eventually we distribute all the original flow into k-systems. More precisely,
let I be the number of all edges in f plus the number of non-critical edges
in f. In each iteration, I decreases by at least one, so in O(m) iterations we
find a complete decomposition in k-systems. O

Theorem 3.3 (Duality of k-flows and k-cuts) The size of the mazimal
k-flow in G is equal the size of the minimal k-cut in G.

Proof. The nontrivial part of the theorem is to find in G a cut with k-
size equal the maximal k-flow. Let f be the maximal k-flow in G, F' be
its size and let G’ be the network where all capacities larger than F'/k are
decreased to F'/k. Observe that f fits in G'. Moreover, the maximal flow in
G’ has size F' (larger flow would imply there is also a larger k-flow in G). Let
C = {e, --,e} be edges in a minimal cut in G’, ordered nonincreasingly
by their original capacities in G, and let 7 be the maximal index such that
¢; > F/k. Then kij Zi:j—HCi = F. Considering Lemma 2.1 we conclude
that C is a cut of k-size F', and thus a minimal k-cut in G. O

Finally, let us comment on the algorithmic issue. The duality in Theo-
rem 3.3 implies that a regular flow algorithm can be used to find a k-flow of
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a given size if it exists: knowing there is a k-flow of size F, it is sufficient
to restrict the capacity on each edge e to min{c(e), F/k} and then run the
regular flow algorithm. Moreover, the Lemma 2.1 implies that for networks
with integral capacities, the value of a cut is a rational number z/y < kU
with y < k, where U is the maximal capacity of an edge. This implies that
the maximal k-flow can be found by binary search, using O(log kU) runs of
maximum flow algorithms, as Kishimoto [8] and Aggarwal and Orlin [1] did.

Open problems

A lot of attention has been paid to max-flow min-cut theorems for multicom-
modity flows in the last ten years (cf. an excellent survey by Shmoys [11]).
This immediately raises the question: Is there an analogous max k-flow min
k-cut theorem for multicommodity multiroute flows? Though there is a clear
relation between single commodity (classical) flows and multiroute flows, the
above question is unanswered so far and the methods used to prove the min-
cut max-flow theorems for classical multicommodity flows do not seem to
apply easily to multiroute multicommodity flows.
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