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Abstract

In the minimum path coloring problem, we are given a graph and
a set of pairs of vertices of the graph and we are asked to connect
the pairs by colored paths in such a way that paths of the same color
are edge disjoint. In this paper we deal with a generalization of this
problem where we are asked to connect each pair by a k edge disjoint
paths of the same color. The objective is to minimize the number
of colors. The reason for multiple paths between the same pair of
vertices is to ensure fault tolerance of the connections. We propose an
O(k?F) = O(k* Aa™! log n) approximation algorithm for this problem
where F' is the flow number of the graph, A is the maximum degree
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and « is the expansion. This is an improvement even for the special
case k = 1 where, to our knowledge, the best bound known previously
is weaker by a factor of logn.

The underlying problem is that of finding several disjoint path be-
tween a given pair of vertices. Menger’s theorem provides necessary
and sufficient condition for existence of k such paths. However, it does
not say anything about the length of the paths whereas in communi-
cation problems the number of links used is an issue. We show that
any two k-connected vertices are connected by k edge disjoint paths
of average length O(kF) which improves an earlier result of Galil and
Yu [16] for several classes of graphs. In fact, this is only a corol-
lary of a stronger result for multicommodity flow on networks with
unit edge capacities: any multicommodity flow with k units for each
commodity can be rerouted such that the flow for each commodity
is shipped through k-tuples of edge disjoint paths of average length
O(kF) without exceeding the capacity constraints significantly.

1 Introduction

The goal of this paper is to design efficient and reliable (fault-tolerant) algo-
rithms for network communication problems. We consider optical networks
in which faults may appear on any link (edge), possibly on several links. The
main idea is to reserve several disjoint communication channels (paths) for
a single connection (request). If there appears a fault on some of the links
then it is still possible to keep the connection alive along the remaining paths.
The necessary condition for this strategy to work is that the paths reserved
for the same connection (request) are disjoint.

To be more specific, we consider a generalization of the well known Min-
imum Path Coloring Problem (MPCP) [31], namely the coloring k-edge dis-
joint path systems problem (k-EDPCOL): An undirected graph G = (V, E)
and a (multi) set of request pairs {(s;,t;)|s;,t; € V} are given. For each
request pair 4, find k edge disjoint paths (called a k-system, for short) that
connect s; and ¢;. Assign a color to each k-system such that no two k-systems
that share an edge, have the same color. The objective is to minimize the
number of colors used.

The minimum path coloring problem (i.e., 1-EDPCOL in our terminol-
ogy), which is a variant of the edge disjoint paths problem (EDP), is known
to be NP-complete. Therefore, we deal with approximation algorithms in



this paper. Because the best possible approximation for the 1-EDPCOL on
directed graphs, in terms of m = |E|, is Q(m'/?>7¢), ¢ > 0 (by a straight-
forward reduction from the hardness of the EDP [20]) we parametrize the
performance of our algorithms by the flow number F' or the expansion a of
the graph, instead of the number of edges or vertices. The definition of the
flow number is postponed to the next section, here we just recall that the
flow number is always bounded by O(Aa~!logn), where A is the maximal
degree.

The main algorithmic result of this paper is an O (k*F) = O(k*Aa ™" logn)
approximation algorithm for the k-EDPCOL problem. It is worth mention-
ing that this is an improvement even for the special case £ = 1: An important
observation by Aumann and Rabani [3] for the path coloring problem shows
that any algorithm for the EDP with approximation ratio ¢ can be turned
into an algorithm for the MPCP with approximation ratio O(clogn). Since
the best approximation for EDP in terms of F' is O(F) [26], the resulting
approximation for 1-EDPCOL is O(F'logn) whereas our upper bound on the
approximation ratio is O(F'). In a similar way, a recent O(k3F) approxima-
tion algorithm for the k-Edge Disjoint Paths problem (see below) [6] which is
a generalization of the EDP, can be turned into O(k?F logn) approximation
algorithm for the k-EDPCOL. Compared to this the results in this paper are
better by a factor of klogn.

Short Disjoint Paths. The underlying problem of the k-EDPCOL is that
of finding k disjoint path between a given pair of vertices. Menger’s theorem
provides necessary and sufficient condition for existence of k£ such paths.
However, it does not say anything about the length of these paths. A bound
on the number of edges in the paths can be very useful in communication
problems where links (edges) are rare resources [6] or in cases where security
is required against an adversary who can listen to communication across
edges [4].

Galil and Yu [16] worked on short length versions of Menger’s theorem
and proved that for any two k-connected vertices in a graph, there are k
edge-disjoint paths between them of average length O(n/v/k). Henzinger et
al. [21] gave a simpler proof of the same bound. Karger and Levine [22]
generalized this result in two directions. First, they proved that for any two
vertices in a unit-capacity graph with a flow v between them, the v units
of flow can be send along paths of average length O(n/y/v). Second, they



showed that this holds for capacitated graphs as well.

In this paper we take a slightly different approach. Since the O(n/vk)
bound is very weak for many graphs (though it is the best possible in general,
in terms of k& and n) we try to give bounds on the path length in terms of
different parameters like the expansion or the flow number F' of the graph.
The main result in this respect is that any two k-connected vertices are con-
nected by k edge disjoint paths of average length O(kF'). This result falls
out as a corollary of a general result regarding multicommodity flows on net-
works with unit capacities. Specifically, we show that any multicommodity
flow with k£ units for each commodity can be rerouted such that the flow for
each commodity is shipped through k-tuples of edge disjoint paths of average
length O(kF') and the capacity constraints are exceeded by a constant only.
A weaker bound of a similar form, that is, an upper bound O(k*F) average
path lengths, was implicitly contained in a recent paper on fault-tolerant
routing [6].

The k-EDPCOL problem is related also to the & edge-disjoint paths prob-
lem (k-EDP) [6]. In k-EDP, we are given a graph G = (V, E) and a set
of requests 1", and the task is to find a maximum subset of the pairs in T’
for which it is possible to select paths such that each pair is connected by
k edge-disjoint paths and the paths for different pairs are mutually disjoint.
For k = 1, this is the well know edge disjoint path problem. As a by product
of our results we get an improvement, by a factor of &k, on the online approxi-
mation of the k-EDP. We show that there is a deterministic online algorithm
with competitive ratio O(k*F') whereas the previous bound was O(k3F).

Previous work on path coloring. To fully set out the context of our
work, we conclude this section with a brief discussion of relevant known
results about path coloring. We refer the reader to a survey by Beauquier et
al. [10] for more results about the path coloring problem.

The MPCP was first mentioned in the context of routing in optical net-
works [30]. As already mentioned, a simple reduction from the disjoint paths
problem shows that this is an NP-hard problem on general graphs. A re-
sult of Golumbic and Jamison [19] implies that this problem is NP-complete
on arbitrary tree topologies, although it was later shown that on trees of
bounded degree the problem can be solved efficiently [14]. Erlebach and
Jansen showed that path coloring was also NP-complete on cycles [13].

One of the first papers on MPCP was by Aggarwal et al. [1]. They



showed that O(logn) colors are sufficient to route a permutation in hyper-
cubic networks, improving a bound of Pankaj [30]. Raghavan and Upfal [33]
gave several approximation algorithms for this problem including a constant
factor approximation for trees, rings and trees of rings. Mihail et al. [28]
proved that a constant factor approximation can also be achieved for directed
versions of these topologies. Kleinberg and Tardos [25] gave an O(logn) ap-
proximation algorithm for meshes and other certain classes of planar graphs.
Rabani [31] showed that a constant factor approximation is also possible for
mesh topologies, improving previously known bounds [24, 3]. We refer the
reader to a survey by Beauquier et al. [10] for other results about the path
coloring problem.

Bartal and Leonardi [9] gave an O(logn) competitive online algorithms
for all the topologies mentioned above (i.e., meshes, trees, rings, ...) and
showed that it was not possible to do better for meshes in the online setting.
They also presented an Q(lolgol%) lower bound on the competitive ratio of any
deterministic algorithm on trees. Later, also a randomized lower bound of
(logd), for any online algorithm for the MPCP on a tree with diameter d =
O(logn) [27], was given. Gerstel et al. [18] considered the problem on rings
and trees and gave O(logn) competitive algorithms. Bartal et al. [8] showed
that a polylogarithmic competitive ratio is not possible for this problem on

general topologies.

Outline of the paper. Since the outlined problems are clearly related to
flow problems it is not surprising that we use some results from this area, e.g.,
Shortening Lemma and the Duality of so-called multiroute flows and cuts.
The other techniques that are used include probabilistic arguments, namely
Chernoff bounds, Lovéasz Local Lemma and its algorithmic version. All these
will be reviewed in the next section. Section 3 deals with the short length
Menger’s Theorem and Section 4 with the algorithm for the k-EDPCOL.
Section 5 concludes with a few open problems.

An abstract of this paper appeared in Proceedings of the Fifteenth Annual
ACM Symposium on Parallelism in Algorithms and Architectures [5].

2 Preliminaries

A network is an undirected graph G = (V, E) together with a capacity func-
tion ¢ : F — R. Often, we will consider networks with unit capacity on each



edge and we call them unit networks. Let n = |V| and m = |E|. A flow is a
nonnegative linear combination of unit flows along simple paths. A feasible
flow is a flow that respects the capacity constraints. The size of a single
commodity flow is the total amount of commodity transferred. We denote
the degree of u in G by deg(u).

Multicommodity flows. In a concurrent multicommodity flow problem
on a network GG there are [ > 1 commodities, each with two terminal nodes
s;,t; € V and demand d;. The objective is to maximize the fraction of
demand that can be shipped simultaneously for all commodities, that is, to
find the maximum f such that is it possible to route f-d; units of commodity
1 between s; and t; for each i so that the total amount of all commodities
passing through any edge is no greater than its capacity. The maximal value
f as above is called the maz-flow of the problem.

Given a unit network G, let I, denote an instance of the concurrent
multicommodity flow problem in which there is a commodity with demand
deg(u) - deg(v)/2|E(G)| for each pair of nodes (u,v). For a feasible solution
S, let D(S) be the length of the longest flow path in S and let C(S) be the
inverse of the flow value of S (i.e., the maximum over all commodities of
flow divided by demand). Then the flow number F of G [26] is the minimum
of max{D(S),C(S)} over all feasible solutions S of I,. We always have
F = O(Aa"'logn), where A is the maximum degree of G, but sometimes
F is smaller by a factor A or logn [26]. To give at least a few examples,
the flow number of constant degree expanders, hypercubes, butterflies etc. is

O(logn), F(2D-mesh) = O(y/n), F(3D-mesh) = O(y/n), F(K,) = O(1).

Lemma 2.1 (Shortening Lemma [26]) For any network with flow num-
ber F' it holds: for any € € (0,1] and any feasible solution S to an instance
of the concurrent multicommodity flow problem with a flow value of f, there
exists a feasible solution 8" with flow value f/(1+¢€) that uses paths of length
at most 2 - F\(1 + 1/e).

Multiroute flows and cuts. For simplicity we will abuse notation slightly
and use the term k-system, defined in the introduction, to also denote a flow
along k£ edge disjoint paths from s to ¢, each path carrying the same amount
of flow. A unit k-system is a k-system that carries one unit of flow along each
path, in total k£ units of flow. A k-flow is a (single or multicommodity) flow
that is a non-negative linear combination of unit k-systems ([7], cf. [23, 2]).
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The size of a k-system is the total number of edges used by the k paths. The
size of a k-system is, in a manner of speaking, the length of the k-system,; it
has nothing to do with the amount of flow carried by it.

For a single commodity, an s — ¢ cut is a partition of vertices V into two
groups S and S =V \ S such that s € S and t € S. It will be convenient to
view the cut as a set of edges {(u,v) | u € SAv € S} = {e1,--+,e;}. The size
of the cut is equal to !_; c(e;). The k-size of a cut {e;,---,e;} is defined
as the maximal flow that is also a k-flow, in a simplified network made up
of just the source and destination vertices directly connected by [ edges with
respective capacities c¢(e1), - - -, ¢(e;). Note that 1-size of a cut corresponds to
the size of a cut. Sometimes we will talk about a k-cut instead of a cut to
stress that we are interested in the k-size of the cut.

Lemma 2.2 (k-size of a cut [7]) Given a cut with | edges with capacities
1, -+, ¢ such that ¢; > ciyq (i-e., nonincreasing order), its k-size is equal

: k !
min —— Ci -
§=0,..k—1 k — j Z.ijil
The celebrated result about the duality of simple flows and cuts holds for
k-flows, too.

Lemma 2.3 (Duality of single commodity k-flows and k-cuts [7, 23])
The size of the mazimal k-flow in G 1s equal the size of the minimal k-cut in

G.

Probabilistic tools.

Lemma 2.4 (Chernoff Bound) Consider any set of n independent binary
random variables Xy,...,X,. Let X = >, X, and p be chosen so that
p > E[X]. Then it holds for all § > 0 that

Pr[X > (1+6)p] < e ™inld® an/3

Lemma 2.5 (Lovasz Local Lemma) Let A;,..., A, be “bad” events in
an arbitrary probability space. Suppose that each event is mutually inde-
pendent of all other events but at most d, and that Pr[A;] < p for all i. If
ep(d+1) < 1, then the probability of no bad event occurring is greater than 0.



Theorem 2.6 (Algorithmic LLL [29, 34]) Let T = {t1,...,t,} be a set
of independent random trials, and let A = {A1,..., An} be a set of events
such that each A; is determined by the outcome of the trials in T; C T. For

any tj,...,t;, € Ty and any wj,,...,w; n the domains of t;,,...,t;, , let
Pr*[A; | t;, = wj,,...,t;, = w,,] be the probability of A; conditional on the
event that the outcomes of t;,,...,t; are wj, ..., w;j,.

If we have the following:

1. for each 1 <i < m, Pr[A;] <p;

2. for each T;, there are less than d other T;’s such that T; N'T; # 0;

3. for each 1 <i<m, |T;| < w;

4. p-d® < (1/2e)3;

b. prw<1;

6. for each 1 < j <n, we can carry out the random trial in time T,

7. for each 1 < <m, t;,...t;, € T; and wj,,...,w;, in the domains of

iy ... t;,, we can compute every Pr[A; | x| in time 7o;

then there is a randomized O(n-d- (1, +72) +n(r - 1og®M m+ 200glosm)®My)_
time algorithm which will find outcomes for t,...,t, such that none of the
events in A holds.

3 A Bounded Length Version of Menger’s
Theorem

In this section we give an upper bound on the size of a minimal k-system
connecting any two k-connected vertices. Our bound is in terms of the flow
number F' of a graph: we show that any two k-connected vertices are con-
nected by k disjoint paths of average length O(k- F'), that is, by a k-system of
size O(k*F). To show this we first prove a much more general lemma which
implies the bound. The lemma in its general form will serve as a crucial tool
for the approximation algorithm for the k-EDPCOL in Section 4.

Lemma 3.1 Given a unit network with flow number F, a set T of pairs
of vertices and a feasible flow system F such that there are k units of flow
between each pair from T, there exists a k-flow system F such that

e there are k units of flow between each pair from T,
e the flow through every edge is at most 4,
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e cach contributing k-system has size at most 20 - k*F.

Moreover, if the k-flow system F is integral (i.e., each pair from T is con-
nected by a unit k-system), then

o the flow in F through every edge is at most 2 only, and

e cach contributing k-system has size at most 8 - k*F .

Proof. For k£ =1 the claim follows immediately from the Shortening lemma.
Thus, we assume that k£ > 2 for the rest of the proof. A k-system is small if
its size is at most 20 - k2 F.

Since F can be viewed as a feasible solution to an instance of the con-
current multicommodity flow problem, Shortening lemma with parameter
e = 1/(2k) gives a feasible flow system F’ with flow paths of length at most
AkF + 2F. We scale up the flow F' by a factor of 1+ 1/(2k) to ensure that
the total amount of flow between each pair of vertices from 7' is equal to k
again. The flow in F’ is not feasible but the flow in each of the edges is at
most 1+ 1/(2k).

The goal is to transform the flow for each commodity 7 into a k-flow
along small k-systems, while keeping the size k of the flow and not violating
the capacity constraints “much”. For a while, we will consider the flow for
each commodity ¢ separately. Let F; denote the flow in F' corresponding to
commodity 2.

k+1

5 and a

Claim 3.2 The flow F; can be decomposed into a k-flow of size
flow of size %
Proof. Consider a network (G; that has the same set of vertices and edges
as (G, but the capacity of an edge e in G; is equal to the flow through e in
F;. We are going to show that the minimal k-size of an s; — ¢; cut in G; is
at least (k + 1)/2. By Lemma 2.3, this implies Claim 3.2,

Let ¢y > cg > -+ > ¢; be the capacities of edges in an s; — ¢; cut with
minimal k-size in GG;. From the characterization of the k-size of a cut given
in Lemma 2.2 we know that its size is equal to

l
ZCZ'.

i=j+1

. k
min —
=0,k k —



By the construction of G;, 2}, ¢; > k and ¢; < 1+ 1/(2k) for every i. This
implies, for every j < k, that

Eoo< k 1 1 k+1
e Yz (kg () =k g 2 T
k—jizj;l k—3j 2k 2 k— 2

which concludes the proof. O

Given the k-flow from Claim 3.2 with #£! units of flow, let ] be a subset
of small k-systems participating in this k-flow. So far, there is no guarantee
that such small k-systems exist i.e. we have to prove that F, is not empty.
Not only will we show that there are k-systems in F], we will show that
in fact they cumulatively carry at least k4i2 units of flow. This will almost
complete the proof, since putting together the k-flow systems F; for all ¢ and
scaling them up by four, we get the desired k-flow system F.

Let us consider the total volume of the network G, that is, the sum
> ecr fi(e), where f;(e) denotes the amount of flow belonging to commodity
i through edge e in F'. Due to the use of Shortening lemma at the beginning
of the proof, each path between s; and ¢; is at most 4k F'+ 2F" edges long and
the total flow being carried by these paths is k units. The total volume of
flow between s; and ¢; is at most 4k*F +2kF < 5k?F in F', which is also the
total volume of G;. Thus, the total flow through k-systems from F; of size
larger than 20k?F is at most k/4. We conclude that at least % — % = ’3%2
units of flow are carried by k-systems from F].

At this point we put together the k-systems from all F;, scale them up
by ,;“—41_“2 and denote the result by F. By construction, the resulting flow is at
each edge e at most % -(1+37) < 4, the flow for each commodity is & units
and only small k-systems are involved.

Better bounds for integral k-flow F. To improve the bounds we dip
into the original proof of the Shortening lemma [26]. We say that an edge is
a base edge for commodity i if e is one of the first F'/e or the last F'/e edges
on some of the k£ paths between s; and ¢; in §. The observation is that the
flow in F; on any edge that is not base is at most ¢, every path in F; uses
at most 2F non-base edges, and for integral F, there are at most 4k?F base
edges in GG;. Thus, the total capacity of non-base edges in G; is at most 2k F’,
and therefore, the total flow through k-systems from F; that use more than
8k F' non-base edges is at most k/4. Utilizing the fact that there are at most
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4k*F base edges, we conclude that at least (k + 2)/4 units of flow from F;
are carried by k-systems of size at most 8k?F.

The other observation from the original proof of Shortening lemma is that
for integral F, the flow on every edge e in F’ is either at most €, or at least
1 and a unit of this flow belongs to one commodity. We also note, that for
every edge e and every commodity ¢, the flow through e in F, is at most

1/2. Thus, for every edge e the sum of flows in all F through e is at most

1/2+1/(2k), and the final flow through e in F is at most 725 - (3 + 5;) < 2.
U

Applying Lemma 3.1 on a single pair of k-connected vertices and using
just any one of the final k-systems to carry all k units of flow gives the main
result:

Corollary 3.3 (Bounded length Menger’s Theorem) Given a graph G
with flow number F' and a pair of k-connected vertices (u,v), there are k-edge
disjoint paths between u and v of average length 8k - F'.

Since there are graphs with diameter Q(F') [26], the result of Corollary 3.3
is the best possible for general graphs, up to a factor of & .

An improvement for the k-EDP. Let us recall the online k-Bounded
Greedy Algorithm (k-BGA) for the k-EDP: Let L be a suitably chosen pa-
rameter. Given a request r, if it is possible to realize r by a k-system ¢ of size
at most L such that g is edge disjoint with all previously selected k-systems,
then accept the request r and select ¢ for it. Otherwise, reject the request r.

Note that the problem of finding £ edge-disjoint paths of total length
at most L between the same pair of nodes can be reduced to the classical
min-cost (integral) flow problem, which can be solved by standard methods
in polynomial time [12, Chapter 4]. The k-BGA can therefore also be used
offline as an approximation algorithm. It is worth mentioning that if there
were a bound of L/k on the length of every path, the problem would not be
tractable (cf. [11]).

The previous best competitive ratio O(k3F') was achieved by the k-BGA
with parameter L = 20k*F [6]. Now, Lemma 3.1 yields a better result.

Corollary 3.4 Given a graph G with flow number F, the competitive ratio
for the k-EDP of the k-BGA with parameter L = 8k*F is O(k*F).
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Proof. The point is that Lemma 3.1 can be used to modify the optimal
offline solution into a solution that uses (fractional) k-systems of size 8k*F
only. Then a standard charging argument (e.g.,[6]) yields the desired com-
petitive ratio. a

4 An Algorithm for .-EDPCOL

This section describes a randomized approximation algorithm for .-EDPCOL.
We begin in Section 4.1 by a linear relaxation for a version of k.-EDPCOL
that restricts the size of k-systems used and we relate the optimal value of
this problem to the optimal value of k-EDPCOL. Section 4.2 outlines the
actual algorithm and in Section 4.3 we fill in the details of the algorithm.
Throughout this section, whenever we talk about an intersection, we mean
an intersection on an edge.

4.1 Relaxation

Let us start with a “relaxation” of the problem. We put relaxation in quotes
since the linear program described below is a relaxation of the k-EDPCOL
regarding the integrality of the k-systems, but is more restrictive than k-
EDPCOL regarding the size of the k-systems.

Let T C V x V be an instance of the k-EDPCOL problem on a graph
G(V,E). For each (a;,b;) € T let P; denote the set of all k-systems of size
at most 8k*F between a; and b; and let P = (JP;. Consider the following
linear program where we have a variable x(s) for each k-system s from P
denoting the 1/k fraction of flow sent along the k-system (that is, there is a
flow z(s) along each of the k paths of s) and a variable ¢ denoting a half of
the maximal flow through an edge in the network:

minimize c¢ s.t. (1)
> xz(s) < 2-c VeeE (2)
s€P:ecs
doa(s) > 1Y) (3)
sEP;
z(s) > 0 VseP (4)
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Lemma 4.1 The optimal fractional solution to the linear program is a lower
bound for the optimal integral solution for k-EDPCOL.

Proof. Consider the optimal integral solution to the coloring problem and
let C' be the number of colors used. We are going to shorten the k-systems
for each color separately. Since the k-systems of the same color are disjoint,
it is possible to apply Lemma 3.1 to shorten them. Now we merge together
the modified flows for all C colors and we get a feasible fractional solution
of LP (1)-(4), that is, a (multicommodity) k-flow consisting of only small
k-systems. Since the maximal flow through an edge is 2C' by construction,
the proof is completed. O

Since the linear program has exponentially many variables, it is not possi-
ble to solve it directly in polynomial time. It would be possible to formulate
it in a different way with only polynomially many variables (which would
require some effort since global properties of the flow, the disjointness of the
k paths of each k-system, etc. have to be guaranteed) and then solve it as
a general LP. Here we use a more efficient way. Since we only aim at ap-
proximation algorithm for the k-EDPCOL, it is sufficient to start with an
approximation for our linear program. A good approximation for the linear
program (1)-(4) can be obtained in polynomial time using the approxima-
tion algorithms for concurrent multicommodity flow problem by Garg and
Konemann [17] or by Fleischer [15]. Basically, the only modification is that
a procedure for finding a shortest path is replaced by a procedure for finding
a smallest k-system, and only k-systems of size at most 8k*F are consid-
ered. The smallest k-system can be efficiently computed using algorithms
for minimum cost flow problems. We also note that the approximate solu-
tions obtained by these algorithms use at most m different k-systems for each
commodity. For easy later reference we state this formally as a lemma (The
constant 3/2 stated here is good enough for our purposes, even though much
better approximations are possible).

Lemma 4.2 [t is possible to find a 3/2 approximation for the linear program
(1)-(4) in polynomial time. Moreover, at most m different k-systems per
commodity are used in the approximation.

We stress once again that only short k-systems are used in the LP (1)-(4).
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4.2 Algorithm

In a high level description, the structure of our algorithm is as follows:

1. Solve the LP (1)-(4) approximately. By Lemma 4.2 this can be done
efficiently, and by Lemma 4.1, the maximal flow C through an edge in
the approximate solution is (roughly) a lower bound on the number of
colors needed in the optimal integral solution of k-EDPCOL.

2. Round the fractional solution to an integral one. In some cases (e.g.,
graphs with flow number logn and more, or instances of k-EDPCOL
with |T] > ™87) ‘this can be done directly using the rounding scheme
of Raghavan and Thompson [32]. In other cases an iterative rounding
method can be utilized (cf. [26]). In both cases, the aim of the rounding
process is to guarantee that every k-system intersects with at most
O(CKk?F) other k-systems at the end of the rounding.

3. Now, the k-systems can be easily colored with O(Ck*F) colors (e.g.,
greedy coloring) which is within O(k*F') from optimum.

The only missing part is the rounding procedure. We will describe it in the
next subsection. Here we just summarize the main result.

Theorem 4.3 Given a graph G with flow number F, there exists a random-
ized O(k*F)-approzimation algorithm for the k-EDPCOL problem on G.

4.3 Randomized rounding

Since the optimal solution has to use at least one color, we assume that the
approximate fractional solution is at least one.

Lemma 4.4 Given a feasible fractional solution to the linear program (1)-
(4) from Lemma 4.2, with objective value C' > 1, there ezists a randomized
polynomial time algorithm that rounds it to an integral solution such that
each k-system in it intersects with at most O(Ck*F) other k-systems.

Proof. Let us start with the simpler case that can be solved directly by the

method of Raghavan and Thompson [32]. We assume that F - |T'| > m—lzg—”

which includes both the previously mentioned cases F' > logn and |T| >

mlozn - Observing that C' > *l we have C'F' > logn.

14



Consider the following random experiment. Independently for each com-
modity, choose exactly one of its k-systems, according to the probability
distribution corresponding to the flows (i.e., a k-system s with flow &k - z(s)
is chosen with probability z(s)).

For an edge e, the expected number E[n,| of chosen k-systems passing
through e after this experiment, is C' at most. By linearity of expectation,
the expected number E[n,] of chosen k-systems intersecting with a chosen
k-system s is bounded by

Elns] <> E[n.] < 8k’FC .

ecs

For a chosen k-system s, this implies, by Chernoff bound
Prln, > 16k*FC] < ¢ 3K FC/3

We distinguish two cases. If |T'|/log|T| < m, we further bound this prob-
ability by n~%°/3 = o(|T|™!) (using the observation that CF > logn) and
conclude that with high probability no chosen k-system intersects with more

than 16k? F'C other chosen k-systems. Similarly, if |T|/ log |T| > m, the prob-

—sk3r|7|
ability Pr[n,; > 16k?FC] can be upper bounded by |T| SRt =o(|T|™!) and

again, we conclude that with high probability no chosen k-system intersects
with more than 16k%FC other chosen k-systems. This completes description
of the rounding procedure in the simpler case.

In the rest of the section we assume that F' < n and |T| < mlogn (we
can actually assume more but this will be sufficient for our purposes) and we
are going to describe an iterative rounding process that will result in a set of
k-systems for T such that each of them intersects at most O(k*FC) other.

Initially, we have fractional k-systems with k-units of flow for each com-
modity. We cannot round the fractional k-systems into integral ones in one
step since the probability that a chosen k-system intersects with more than
16k2FC other chosen k-systems would be too large to guarantee the desired
solution. The idea is to round the k-systems only partially in each step and
to guarantee that the dependency between them keeps decreasing. In other
words, in each iteration we want to decrease the number of k-systems that
are used for each commodity while keeping a total flow of k£ units for each
commodity, in the meantime decreasing the maximal number of k-systems
that intersect other k-system. To help quantify this dependency, for a k-
system s that survives through iteration i, let n’ denote the number of other
k-systems intersecting with s at the end of iteration 1.
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We will describe the rounding process in two steps. First, we show using
the LLL that there exists a way to round the fractional solution to an integral
one. Then, we will explain that the Algorithmic LLL can be used instead,
yielding an efficient randomized rounding algorithm.

Let vy = Inm and v;,; = In?v;, for i > 0. Before starting the rounding
process, we split every k-system with flow f > k/vg into [ f-vg/k] k-systems,
each with flow k/vy. We do this for technical reasons. Splitting this way
increases the flow through any edge by 1 + 1/vy at most, (since C is an
approximation, we will ignore this as it can be hidden in the C'), and the
total number of k-systems increases by vy, at most. Since the approximate
solution from Lemma 4.2 uses at most m k-systems with non-zero flow for
each request, in total there are by now at most vgm?logm < m?log*m
k-systems.

For simplicity, we will assume in the rest of the section that v;,; divides
v;, for all ¢ for which v;,; will be defined, and that vy is integral (without these
assumptions, additional ceilings can be used to avoid these requirements and
they will only increase the constant hidden in the big O notation).

Initial rounding (iteration ¢ = 0): For each request from 7, consider the
following random experiment: for each commodity, organize its k-systems
with flow less than k/vy into groups in such a way that the total flow in
each group is exactly k/vy (for this purpose, possibly split some k-systems).
Independently for each group, choose exactly one of its k-systems, according
to the probability distribution corresponding to the flows (i.e., a k-system s
with flow & - z(s) is chosen with probability z(s) - vg),

We use a similar argument as before. For an edge e, the expected number
E[n?] of chosen k-systems passing through e after the initial iteration, is Cvg.
By linearity of expectation, the expected number E[n?] of chosen k-systems
intersecting with a chosen k-system s is bounded by

E[n)] <> E[n)] < 8k*FCuy .

ecs

For a chosen k-system s, this implies, by Chernoff bound (to simplify nota-
tion, we introduce a new variable D = 8k?F'(C') that

Pr[n? > 2Du,| < e~ Pv0/2 = p=P/3

Since e - m~P/3 . (1 4+ m?log?m) < 1, Lovész Local Lemma guarantees that
there exists a random choice such that the maximal number of k-systems
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intersecting other k-system is at most 2Dvy. We send k/vy units of flow
along the chosen k-systems (that is, there is a flow 1/vy along each path)
and zero along the other k-systems.

Let a9 = 2, for i > 1 let a; = (1 +1/{/v;i_1)a;—1, and observe that all a;’s
are bounded by an absolute constant (using 1 + = < €%, e.g.).

Intermediate rounding (iteration ¢ > 0): The input for iteration i is
a set of k-systems such that the maximal number of k-systems intersecting
other k-system is at most a;_1Dv; 1, each k-system carries flow k/v;_1, and
there are v;_; k-systems for each request.

Similarly as in the initial rounding, consider the following random ex-
periment: for each request, organize all its k-systems into groups, each of
total flow exactly k/v;. Independently for each group, choose uniformly at
random exactly one of its k-systems. Our goal is to show that there exists
a choice such that at the end of iteration i (which is the beginning of iter-
ation 7 + 1), the maximal number of k-systems intersecting other k-system
is at most a; Dv;, each k-system carries flow k/v;, and there are v; k-systems
for each request. Figure 1 schematically outlines the intermediate rounding
steps.

Invariant for iteration ¢ Rounding
Flow per k-system: k/v;_1 = Make groups of k-systems, each
Number of overlaps: a; _1Dv;_q of total flow k/v;

= For each group, randomly choose

one k-system to carry all k/v; flow

Vi41 & Inv;

a; — (1+1/Yvi—1) a;—1 T

i+—i+4+1

Figure 1: Schematic: Intermediate rounding

Since at the end of iteration ¢ — 1 each k-system intersects with at most
a;—1Dv;_; other k-systems, and since each of the k-systems in iteration ¢ — 1
survives to iteration ¢ with probability v;/v;_;, we have

E[’I’Li] S CLZ'_ID’Ui .
Using Chernoff bound, it is possible to say more:

Pr[né > (1+1/¢/0)a;1 Do) < eV 6mD/3 = =1 P/8
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Now we apply the Lovdsz Local Lemma. For a group g of k-systems, let A,
denote the event that the k-system chosen from ¢ in iteration ¢ intersects with
more than (1+1//v;)a;_1 Dv; other k-systems, at the end of iteration 7. The
event A, depends only on the random outcomes in all groups that contain a k-
system that intersects with a k-system from the group ¢. In each group there
are v;_1/v; k-systems, each of them intersects with at most a;_; Dv; ; other
k-systems. In total, the event A, depends on at most (a;,—1Dv;_1) - v;_1/v;
other events A, . Since

e - v %P/ (ai1 DV} Jvi+1) <1,
there exists a choice such that the maximal number of k-systems intersecting
other k-system is at most a; Dv;. We send k/v; units of flow along each chosen
k-system and nothing along all the other k-systems. Clearly, this guarantees
the desired input for the next iteration.

Final rounding: In each iteration, the maximal number of k-system in-
tersecting any other k-system decreases exponentially. Thus, after several
iterations, the maximal number of k-systems intersecting other k-system is
at most poly(kF') while there is still a flow of size k for each request. At
this point we perform the randomized rounding once more: for each request,
choose uniformly at random one of its k-systems. Since the dependency
between the k-systems is bounded by poly(kF'), the Lovasz Local Lemma
guarantees existence of the desired k-systems.

To complete the proof, it is sufficient to show that Algorithmic LLL can
be used instead of LLL in each iteration. In our case in iteration ¢, both
the random trials and the (bad) events will be indexed by the groups of k-
systems: t, is the random trial of choosing one k-system from group g and
Ay is the event that the k-system chosen in group g intersects with more
than (1 + 1//v;)a;_1k*FCv; other k-systems. Observe, that

e cach random trial can be carried out time 7 = O(v;_1/v;)
e Pr*[A;|*] can be computed in time 7, = O(K*FCv? ;) = poly(m)

—ai_1D/3 :
o forp=v, "’ B = a;_1v?_/v; and d = w?, all other assumptions

of the Algorithmic LLL are satisfied.

Thus, we can use the Algorithmic LLL in each iteration. O
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5 Conclusion and Open Problems

One of the main contributions of this paper is the result on “short” k-flows
for multicommodity problems. There is an interesting open question here:
Is it possible to generalize Lemma 3.1 to networks with nonuniform edge
capacities? In our proof of this lemma (namely in the proof of Claim 3.2) the
fact that all original capacities are unit is needed to prove that there exists
a cut of large k-size for each commodity. Can this assumption be avoided?

A corollary of this general result is a new upper bound, O(kF’), on the av-
erage path length between two k-connected vertices a graph with flow number
F'. There is, however, still a gap between this upper bound and the obvious
lower bound of Q(F). We think that the gap might be an artifact of the
analysis that can be removed. This would lead to an O(kF') approximation
ratio both for the k-EDP and £-EDPCOL problems.

The presented algorithm for k-EDPCOL problem is an offline one. This
immediately brings to mind a question whether k-systems for the requests
can be picked up and colored online? Is it possible to achieve a O(k?F)
competitive ratio or even the O(kF’) ratio?

Acknowledgments. We would like to thank Ankur Bhargava and Chris-
tian Scheideler for many useful discussions.
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