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Abstract

A configuration is a finite set of points in the plane such that no
3 points lie on a line and no 2 points have the same z-coordinate.
Let X be a configuration and let pq,...,p; be k points of X ordered

according to the increasing z-coordinate. For i = 1,...,k — 1, let s;
be the slope of the line p;p;+1. The set P = {p1,...,px} is a k-cap
or a k-cup, if the sequence sq, s9,..., Sp_1 is decreasing or increasing,

respectively (see Fig. 1). Theset P = {p1,...,px} is open (in X ), if no
point p € X with z(p1) < z(p) < z(px) lies above the polygonal line
p1p2 - - - pr. We prove that for every k,l > 2 there is an integer f(k,[)
such that any configuration of size > f(k,[) contains an open k-cap
or an open [-cup. This can be seen as a generalization of the Erdos-
Szekeres theorem. It implies results on empty polygons in k-convex
configurations proved by Karolyi et al. [5], Kun and Lippner [7], and
Valtr [11] (a configuration is k-convetz, if it determines no triangle with
more than k points in the interior). Another immediate corollary is
that for any k,l > 2 any sufficiently large configuration with no (open)
k-cap contains an empty /[-gon. We give double—exponential lower and
upper bounds on f(k,).

*This research was supported by project LNOOA056 of The Ministry of Education of
the Czech Republic.



1 Introduction

A configuration is a finite set of points in the plane such that no 3 points lie on
a line and no 2 points have the same z-coordinate. Let X be a configuration.
We say that a subset of X is in convex position, if it is the vertex set of
a convex polygon. Let py,...,pr be k points of X ordered according to the
increasing z-coordinate (i.e., z(p1) < z(p2) < --- < x(px)). Fori =1,...,k—
1, let s; be the slope of the line p;ipiy1, i.e. s;i = (Yy(Pit1) — y(@i))/(@(Piy1) —
z(p;)). The set P = {p,...,px} is a k-cap or a k-cup, if the sequence
S1, 82, - . -, Sk_1 is decreasing or increasing, respectively (see Fig. 1).  The set
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Figure 1: A 7-cap and a 6-cup; each of them is open if the unbounded shaded
region contains no points of X.

P ={p1,...,pr}is open (in X ), if no point p € X with z(p;) < z(p) < z(px)
lies above the polygonal line pips ... py.
In 1935 Erdos and Szekeres proved the following classical result:

Theorem 1 (Erdds and Szekeres) For any n > 3, there is an integer
F(n) such that any set of at least F(n) points in general position in the
plane contains n points in convex position.

Erdds and Szekeres [2] proved Theorem 1 by proving that any sufficiently
large configuration contains a k-cap or an [-cup. Here we show the following
generalization of this result:



Theorem 2 For any k,l > 2, there is a (least) integer f(k,l) such that any
configuration of size > f(k,l) contains an open k-cap or an open l-cup.

Theorem 2 is a “generic” result with some interesting corollaries men-
tioned below. The function f(k,1) is double-exponential, as shown in Theo-
rem 3 below.

If X is a configuration, then a subset P C X in convex position is called
an empty polygon (in X ), if the interior of conv P contains no point of X.
Answering a question of Erdds [1], Horton [4] constructed arbitrarily large
configurations with no empty 7-gon. Harborth [3] showed that any configura-
tion with more than 9 points contains an empty pentagon. It is a challenging
open problem to prove or disprove that any sufficiently large configuration
contains an empty hexagon. This problem is one of the motivations of our
paper. Our results show some structural properties of configurations con-
taining no empty polygons with many vertices. Thus, they might help in
investigations of the empty—hexagon problem.

We say that a configuration X is k-convez, if the interior of every triangle
determined by X contains at most k£ points of X. Theorem 2 implies the
following result which shows that large k-convex configurations contain large
empty polygons:

Corollary 1 (Valtr [11], Kun and Lippner [7]) For any k> 1 and | >
3, there is a (least) integer N(k,l) such that any k-conver configuration of
size > N(k,l) contains an empty l-gon.

Corollary 1 in the special case k = 1 was first proved by Kérolyi et al. [5].
In case k =1, N(1,1) is exponential in / [5] and its exact value is determined
in [6]. For general k and [, our proof of Corollary 1 gives a double—exponential

upper bound N(k,1) < 9(kt2)—1 4 1, which is slightly better than the previous
bound N(k,1) < (k+ 2)*+2'=1 < 9(:+2"™" of Kun and Lippner [7]. No lower
bound on N(k,I) better than exponential in k + [ is known.

We asked in [11] if also any large configuration with no k-cap contains a
large empty polygon. This is answered affirmatively by the following direct
consequence of Theorem 2:

Corollary 2 For any k,l > 2, there is a least integer m(k, 1) such that any
configuration of size > m(k,l) with no open k-cap contains an empty l-gon.
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A k-moon is a k-point configuration M with a specific point a(M) € M
(called the apex of M) such that any 4-point subset of M is in convex position
if and only if it does not contain a(M). The combinatorial structure of a k-
moon is unique for each k > 3 (see Fig. 2). A k-moon M is empty (in X ),

€

apex

Figure 2: A 7-moon; it is empty in X if the shaded region contains no points
of X.

if the interior of the region conv M \ conv(M \ {a(M)}) contains no point of
X (see Fig. 2). Theorem 2 is equivalent to the following corollary:

Corollary 3 For any k,l > 3, there is a least integer z(k,l) such that any
point p in any configuration X of size > z(k,l) is the aper of an empty
k-moon in X or it is one of the vertices of an empty l-gon in X.

We obtain double-exponential lower and upper bounds on f(k,[) and on
two related functions:

Theorem 3 Let k,l > 2 and let f(k,l) be the number given by Theorem 2.
Then:

(i) If f'(k,l) denotes the minimum integer such that any configuration of
size > f'(k,l) contains a k-cap or an open l-cup, then

(L’€/2J+Ll/2J—2 k41-2

watn ) < fk 1) < Fk ) < 2050
(ii) if f"(k,l) denotes the minimum integer such that any configuration
of size > f"(k,l) contains an open k-cap or an l-cup, then

2= ) < 1) < D).

If neither the k-cap nor the [-cup are required to be open, then the ex-
tremal function is exponential: If f”/(k,1) denotes the minimum integer such
that any configuration of size > f"'(k,l) contains a k-cap or an [-cup, then
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f" (k1) = (k;i_;l) + 1 (this was shown by Erdés and Szekeres [2] about 70

years ago).

Our proof of Theorem 2 uses some of the ideas of Kun and Lippner [7].
It has also some similarities with one of the original proofs of the Erdos—
Szekeres theorem (Theorem 1).

OPEN PROBLEMS. Corollaries 1-3 give the (affirmative) answer to the
following problem for some special types of subconfigurations:

Problem 1 Which types of subconfigurations are contained in any suffi-
ciently large configuration with no empty l-gon (I > 6 fized)?

If the sought type of subconfiguration is the empty hexagon then for each
[ > 6, Problem 1 is equivalent to the well-known empty—hexagon problem [1].

Problem 2 (empty—hexagon problem) Does any sufficiently large con-
figuration contain an empty hexagon?

Since the so-called Horton sets (e.g. see [9, 10, 8]) contain no empty 7-
gons, Problem 1 can have an affirmative answer for [ > 6 only for types of
configurations contained in all sufficiently large Horton sets.

2 Proof of Theorem 2

We write C' = c¢1¢y...¢, if C = {c1,09,...,¢} is a k-cap (or a k-cup) with
z(c1) < z(co) < -+ < x(eg). If z(p) < x(q) then we say that p lies to the left
of ¢ and q lies to the right of p. If x(p) < x(q) < x(r) then we say that ¢ lies
between p and r.

The left strip of an l-cup D = dydy...d; is the vertical strip L(D) =
{p € R*: z(d) < z(p) < z(dy)} (see Fig. 3). A right strip of a k-cap
C = cicy...c; is any vertical strip R(C,w) = {p € R? : z(c;) < z(p) <
z(cy) +w}, where w € RT. We further define R=(C,w) as the set of points
of R(C,w) lying below the line ¢;_;c (see Fig. 3).

For £ > 0 and for a configuration X, we say that an l-cup D, D C X, is
e-good (in X ), if it is open and |X N L(D)| > €| X| — 1 (see Fig. 4). We say
that a k-cap C, C C X, is e-good (in X ), if it is open and there is a w > 0
such that | X N R(C,w)| = [ X N R~ (C,w)| > ¢|X]| — 1 (see Fig. 4).

For k,l > 2, we recursively define a parameter ¢(k,[) € (0, 1/2] as follows:
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Figure 3: The regions R(C,w), R~ (C,w) and L(D).
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£(2,4) = 1/i for 1 > 2,
(i) e(k,l) =e(k —1,1)-e(k,l —1)/2 for k,1 > 3.
We prove Theorem 2 by proving the following statement:

(x) For any k,l > 2, any configuration X of size at least 1/e(k,[) contains
an £(k,[)-good k-cap or an &(k,1)-good [-cup.

First we verify (x) for k = 2,0 > 2 and for [ = 2,k > 2, and then continue
by induction on k + . The case m = [ in the following lemma gives (x) for
k=21>2.

Lemma 1 Let X be a configuration of size at least | > 2 with no 1/l-good
2-cap. Then for each m = 2,3,...,1, the set X contains a 1/l-good m-cup
D,, = didy . ..d,, such that fewer than m|X|/l points of X lie to the left of
Ay

Proof. First let m = 2. Let d; be the leftmost point of X, and let X be
the set of [2|X|/l] leftmost points of X. Further, let dy be the point viewed
from d; as the highest point of Xy \ {d;}. Thus, dy € Xy \ {d:} and no point
of Xy lies above the line didy (see Fig. 5). Since the open 2-cap dids is
not 1/l-good in X, fewer than | X|/l — 1 points of Xj lie to the right of ds.
It follows that at least |X |/l — 1 points of X, lie between d; and dy (recall
that the size of Xy is [2|X]|/l]). Thus, the 2-cup Dy = dids is 1/l-good in X
and fewer than 2| X/l points of X lie to the left of dy. This finishes the case
m = 2.
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at least €| X| — 1 points ofaX least €| X| — 1 points of X

Figure 4: An e-good 5-cap and an e-good 5-cup (the shaded regions contain
no point of X).

We further proceed by induction on m. Let 2 < m < [ and let D,, =
dids...d, be a 1/l-good m-cup D,, = dids...d, such that fewer than
m|X |/l points of X lie to the left of d,,. Let d,, 11 be the leftmost point
of X lying to the right of d,, and above the line d,,_1d,, (see Fig. 6). Such
a point d,, 1 exists, since otherwise the 2-cap d,,_1d,, would be 1/Il-good (at
least |X| —m|X|/l —1 > |X|/l — 1 points of X lie to the right of d,,). For
the same reason fewer than |X|/l — 1 points of X lie between d,, and d,;, ;.
It follows that fewer than m|X |/l + 1+ (|X|/l — 1) = (m + 1)|X |/l points
of X lie to the left of d,,41. Since the (m + 1)-cup Dp1 = dids ... dpy s
1/l-good, this finishes the inductive step from m to m + 1. O

We now prove (x) for I = 2k > 2. Let |X| > k, and let py,po, ..., ps,
z(p1) < z(p2) < -+ < x(ps), be the vertices of the upper envelope of conv X
(see Fig. 7). If X contains > | X|/k—1 points p with z(p;) < z(p) < z(pi11)
for some ¢, then the 2-cup p;p;y1 is 1/k-good. Otherwise ¢ > k and there are
more than |X|/k — 1 points of X to the right of py. Thus, pips...px is a
1/k-good k-cap in this case.

It remains to derive (x) for k,1 > 3 from (x) for all &', ' > 2, k' +1I' < k+1.
Suppose that k,l > 3 and that |X| > 1/e(k,1). We want to prove that X
contains an ¢(k,l)-good k-cap or an £(k,[)-good l-cup. By the inductive
hypothesis, X contains an e(k — 1,1)-good (k — 1)-cap or an €(k — 1,[)-good
l-cup. In the second case we are done, since ¢(k — 1,1) > e(k,l). Thus,
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Figure 5: The points d;, dy (the shaded region contains no point of X).

assume that X contains an e(k —1,1)-good (k—1)-cap C = c¢1¢2...ck_1. Let
Xy be the set of [e(k—1,1)| X |— 1] leftmost points of X lying to the right of
ck—1- Since C'is e(k — 1,1)-good, all points of Xj lie under the line ¢;_sc,_1.

Since [a— 1] > ([a/4] — 1) + ([a/4] — 2) + [«/2] holds! for any a € IR,
we can partition the set X into three subsets R, S, T of sizes

(e(k— 1,1 ] k—1,1
R = %m —1>2-e(k,l—1)-8(4—’)|X\—1
=e(k,1)|X]|—1,
(e(k—1,1 ]
R e R B
(e(k—1,0) ]
7 > |2 Lly

(in the estimate of |R| we used that 2 -e(k,l — 1) < 1 for any k,l > 3). The
partition is done “from left to right” so that z(r) < z(s) < z(t) holds for any
reR,seStel.

Since

- —1 1 1
e(k 21’”\)(\ , elb=1,0)

T > . =
Tz 2 e(k,l)  elk,l—1)

the set T' contains an £(k, ! —1)-good k-cap or an (k,l —1)-good (I —1)-cup.
ek-Ll) ” and therefore any k-cap

In the first case we are done since |T'| > £

!The inequality holds with equality for « = 4m + ¢q,m € Z,q € (0,1]. Otherwise the
left-hand side is larger than the right-hand side.
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at least | X|/l — 1 points of X

Figure 6: The (m + 1)-cup Dy,q1 = dids . . . dpy-

which is e(k,l —1)-good in T"is e(k,l —1) - =
may suppose that 7" contains an (k, [ —1)- good —1)-cup D = dydsy. . .d;_.
Since |T| > <421 (k1 —1) - €280 — £ (&, 1)-good in X.

Let U be the set of points p of X, with x( ) < z(dy). Let a be the point
viewed from ¢;_; as the highest point of U (see Fig. 8). In other words, a € U
and no point of U lies above the line ¢;_1a. We now distinguish three cases.

= e(k,l)-good in X. So we

Case 1: a lies above the line c,_1ds (see Fig. 8). In this case, ¢1¢3 . .. c_10
is an €(k,[)-good k-cap in X (recall that D is ¢(k,l)-good in X and thus
(D) N X| > (k. )X~ 1).

Case 2: a lies below the line cx_1dy and in R (see Fig. 9). In this case,
CiCy ... cx—10 is an €(k,l)-good k-cap in X (S U {d;} lies entirely below the
line ck_la,).

Case 3: a lies below the line cx_1dy and in U \ R (see Fig. 10). In this
case, cx_1adads ... d;_1 is an e(k,[)-good [-cup in X (R lies entirely below the
segment cx_1a).

This concludes the proof of Theorem 2. O



Figure 7: The upper envelope of X.

3 Proof of Corollaries 1-3

Proof of Corollary 1.  Let X be a configuration of size at least f(k+ 3,1 —
1)+ 1. Let p be a vertex of conv X, and let [ be a line touching conv X at the
point p. We transform X to a set X’ by a projective transformation PP which
sends the point p to the “point” (0,00) and the line [ to the line at infinity.
The configuration X' has at least f(k+3,]/—1) points in the real plane, thus
it contains an open (k + 3)-cap C or an open (I — 1)-cup D. The first case
cannot happen, since P~1(C)U{p} would be an (empty) (k+4)-moon and we
would get a contradiction with the k-convexity of X. In the second case the
set P71(D)U {p} forms an empty l-gon. Thus, N(k,l) < f(k+3,1—1)+1.
U

Proof of Corollary 2.  Since any open [-cup is an empty [-gon, Theorem 2
immediately gives m(k,l) < f(k,1). O

Proof of Corollary 3.  If a configuration X has at least 2- f(k — 1,1 — 1)
points and p € X is any point in X, then p is a vertex of the convex hull of
at least f(k — 1,1 — 1) + 1 points of X. We further continue analogously as
in the proof of Corollary 1, obtaining z(k,l) <2- f(k— 1,1 —1). O
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at least (k,1)| X | — 1 points of X

Figure 8: Case 1 (the shaded regions contain no points of X).

4 Proof of Theorem 3

Proof of Theorem 3.  The inequalities f'(k,1) < f(k,1), f"(k,1) < f(k,1)
are trivial, and the proof of Theorem 2 gives the upper bound in (i):

< o(57)—

k1) <
(the second inequality can be easily proved by induction from the definition
of the coefficients e(k,[)). It remains to prove the lower bounds.

For k,I > 2 even, we recursively construct a configuration Sy ; of size
k/2+1/2-2
2( el ) - 1 with no k-cap and no open [-cup. This gives the lower bound

in (i). Slight changes in the construction will then give the lower bound in
(ii).

If k=2or!=2then S;; = {(0,0)}. We continue by induction on &k + [.
Let k,1 > 4 be even, and suppose that the configurations Sk_s;, Sk —2 have
already been constructed. We take the configuration S;_o,; and partition the
plane into |Sk_s,|+1 regions by the vertical lines throught each point of Sy_5.
In each region we place a small (shrunk) copy of Si;_2. We denote the copies
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at least e(k,1)| X | — 2 points of X

Figure 9: Case 2.

of Sgy_o by S0, S1,. .., SIS-2il Tn each S* we shrink the y-coordinates. Then
we rotate and vertically shift each S? so that any subset of S°U. ..U SI%-2.l
intersecting each S° in at most two points is a t-cup for some t. Finally, we
shift SO U ... U SIS-2il vertically so far downwards that the following two
conditions hold in the set Si; := Sp_o, U (S°U...USI%-21l) (see Fig. 11):

(C1) If C = ¢ycg...¢ is a t-cap in Sy, then either it is fully contained in
one of the configurations S’ or cyc3...¢1 is a (t — 2)-cap in Sk_ay,

(C2) if D = dydy...d;is an open t-cup in Sy, then either it is fully contained
in Sk_o; 0r dods . .. d;—; is an open (t—2)-cup in one of the configurations
Se.

It follows from (C1) and (C2) that Sk, contains no k-cap and no open I-cup.
Its size 1s

k/2+1/2-3 k/2+1/2-3

- (‘Sk—Q,l| + 1)(‘Sk,z_2| + 1) -1 = 2( k/2-2 ) . 2( k/2—-1 ) -1

_ o("RROT) 4

| Sk

This gives the lower bound in (i).
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at least e(k,1)| X | — 1 points of X

Figure 10: Case 3.

To get the lower bound in (ii), we slightly change the recursive step in the

construction. For k,l > 2 even, we now construct a configuration Sy ; of size
k/2+1/2—2

o(*"57257) 1 with no open k-cap and no ({+1)-cup. Again Sy, = {(0,0)}, if
min{k, [} = 2. For k,[ > 4 even, the recursive step indicated in Fig. 12 starts
similarly as above but the rotations and vertical shifts of the sets S* are done
so that the following holds for the set Sk := Sk_2, U (S°U... U S'Sk—%l'):

(Cl') If C = c1c2. .. ¢, is an open t-cap in Sk, then either it is fully contained
in one of the configurations S® or cycs...c¢;q is an open (t — 2)-cap in
Sk—2,, and

(C2") if D = dydy...d; is a t-cup in Sg, and t > 5, then either it is fully
contained in Si_g; or dods ... d;—1 is a (t — 2)-cup in one of the config-
urations S°.

k/241/2—2
Then the set Sy, of size 2( et ) 1 indeed contains no open k-cap and
no (I + 1)-cup. The lower bound in (ii) follows. O

Acknowledgment. I am grateful to Gyula Kéarolyi, Gdbor Lippner, and
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Figure 12: The configuration S giving the lower bound in Theorem 3(ii).

Helena Nyklova for interesting and stimulating discussions.
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