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Abstract

We prove the following colored version of the well-known result
of Wagner and Fary. Suppose that the line segments of the plane
are partitioned into finitely many classes C,...,C%. Then for some
C;, every planar graph G has a crossing-free drawing in the plane
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such that all its edges are drawn by segments belonging to C;. If
there is only one C; with this property, then in fact this C; contains a
drawing of any graph (with possible crossings). Furthermore, all this
is true also if we distinguish topologically non-isomorphic drawings of
a graph. We also give a generalization of these results to so-called
pseudoplanar graphs.

1 Introduction

In their papers, Erdds, Graham, Montgomery, Rothschild, Spencer, and
Straus [3, 4, 5] have initiated a study in the field called Fuclidean Ram-
sey theory. The general question is as follows. Let V be a set of points
in IR". Is it true that for every k-coloring of all the points in IR" there is
a monochromatic V' congruent to V7 Analogous questions for colorings of
pairs of points in R™ were also studied [1, 4, 9]. In this case, the general
question is as follows. Let G be a graph drawn by straight-line segments in
IR" (i.e. G is a collection of points of IR" representing vertices and of some
of the line segments between the point-pairs representing edges). Is it true
that for every k-coloring of all the segments in IR" there is a monochromatic
H congruent to G7 It is easy to see that the only non-trivial questions occur
when the edges in G have the same length. This case was well-characterized
by Cantwell in [1].

In the plane, where G is a so-called geometric graph (defined below),
instead of congruence we can require a weaker relation, the (combinatorial)
isomorphism. In this case several positive and negative Ramsey-type results
are known, see e.g. [2, 10, 11, 12, 14, 15].

We say that a set of points in the plane is in general position if no three
points in the set lie on a common line. A geometric graph is a pair G = (V, E)
where V is a finite set of points in general position in the plane and F is a
subset of the set of line segments connecting points of V. A planar geometric
graph is a geometric graph with no pair of crossing edges (two edges sharing
a vertex are not considered as crossing edges). In other words, a planar
geometric graph is a planar graph drawn in the plane by straight segments
with no crossings.

Two geometric graphs G = (V, E), H = (V', E') are said to be (combina-
torially) isomorphic, G ~ H, if there exists a bijection f : V' — V' satisfying
the following three conditions:



(i) vivy € E if and only if f(vy)f(vq) € F',

(ii) two edges (segments) vyvy,v3v4 € E cross if and only if the edges

f(v1) f(v2), f(vs) f(va) € B cross,

(iii) if two edges vivq,v3v4 € E cross then vs lies to the left of the ori-
ented line vyvy if and only if f(v3) lies to the left of the oriented line

fv1) f(vg).

Two finite planar point sets X and X’ in general position are said to
be combinatorially equivalent (or: of the same order type) if there exists a
bijection f : X — X' satisfying that a point a € X lies to the left of the
oriented line be (b, c € X) if and only if the point f(a) lies to the left of the
oriented line f(b)f(c).

It is easy to see that two complete geometric graphs G, H are isomorphic
if and only if the sets V(G) and V(H) are combinatorially equivalent.

Geometric graphs have received a lot of attention in recent years (see
e.g. Chapter 14 in the book [17] or [16]). In this paper we study Ramsey-
type questions motivated by the results of [14, 15]. In [15] it was proved
that there is a finite planar point set X in general position and a coloring of
the segments of the plane with two colors such that no set combinatorially
equivalent to X induces a monochromatic complete geometric graph.

Here is the key concept of this paper: Let G,G,, ..., G be geometric
graphs. The notation T'(G1, G, ..., Gg) means that for every k-coloring of
all segments in the plane there is an index ¢ (1 < 4 < k) and a geometric
graph G isomorphic to G; such that all the edges of G} have the i-th color.

Now the above result of [15] can be formulated in the following way:

Theorem 1 ([15]) There is a (complete) geometric graph G such that
T(G,G) does not hold.

In the same paper it was proved that if |V(G)| < 4 then T(G, G) holds.
Here we prove the following Ramsey-type result:

Theorem 2 Let G1,...,Gy be k planar geometric graphs and let H be any
geometric graph. Then T(G4, ..., G, H) holds.

A theorem of Wagner [19] and Féry [6] (see e.g. [18]) says that ev-
ery planar graph has a planar drawing with edges represented by pairwise



non-crossing straight-line segments. The following corollary of Theorem 2,
mentioned in the abstract, is a colored version of the theorem of Wagner and
Féry:

Corollary 1 Suppose that the line segments of the plane are partitioned into
finitely many classes C1,...,Cy. Then for at least one class C; the following
holds. For every planar graph G there is an isomorphic planar geometric
graph with all edges (segments) belonging to C;. If the class C; is unique
with this property then in fact it contains the edges of some drawing of any
geometric graph G.

In fact, we can prove Theorem 2 and Corollary 1 in somewhat stronger
forms. We say that a geometric graph G is pseudoplanar, if it can be obtained
from a planar geometric graph by a finite number of applications of the
following operations:

(R) removal of an edge or vertex,

(D) duplication of a vertex u in the graph (i.e., addition of a new vertex '
such that no line trought two vertices in the graph separates u’ from u,
and addition of an edge from u' to u and to all neighbors of u).

Theorem 3 Theorem 2 and Corollary 1 hold also for pseudoplanar graphs,
i.e. they hold also if we replace each word “planar” by “pseudoplanar” in the
statement.

For example all geometric graphs on at most 5 vertices are pseudoplanar;
this is illustrated in Figure 1.
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Figure 1: The vertices u,u’ used for obtaining the six combinatorially dif-
ferent complete geometric graphs on 3, 4, or 5 vertices by an application of
operation (D) on a smaller complete geometric graph.

However, there are geometric graphs on 6 vertices which are not pseudo-
planar, see Fig. 2.
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Figure 2: Two non—pseudoplanar geometric graphs on 6 vertices.

2 Ramsey property of planar graphs

In this section we prove Theorem 2. In our proof we look at the coloring of
the point pairs of a huge grid. An N x N grid, denoted by L(N x N), is the
set of N2 points in the plane with integer coordinates 1,2,..., N. We will
use the following theorem of Fiirstenberg [7] (i.e. the density version of the
Gallai-Witt Theorem [8]) and three simple claims:

Theorem 4 ([7]) For any c € R* and t € N, there is an N = N(c,t) such
that if S is a subset of L(N x N) and |S| > cN? then S contains t* points
which form a scaled and shifted copy of the grid L(t X t).

The following claim says that for any line /, in a huge grid one can find a
non-degenerate affine image of a large grid, such that any point pair of this
image determines a line almost parallel to [.

Claim 1 Let [l be a line, m > 2 a natural number, and 6 > 0. Then there
exists an M = M (m, 1, §) with the following property: There ezists an affine
image A of the m X m grid such that A is a subset of the M X M grid, it
s not contained in one line, and the angle between the line [ and any line
containing at least two points of A is smaller than .

Proof. Let S be any strip of width 1/(36) bounded by two lines parallel
to [. Then its intersection with the infinite grid Z x Z contains an affine
image A of L(m x m). If M := |1+ diam(A)]| then A can be shifted so that
A C L(M x M). Claim 1 follows. O

Below we shall use complete geometric graphs, i.e. graphs in which every
pair of vertices is connected by an edge (segment). However, we should keep
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in mind that for any fixed k > 4 there are different non-isomorphic complete
geometric graphs on k vertices.

Claim 2 For any natural number h there is a m = m(h) with the following
property. If Gy, is a complete geometric graph on h vertices, then there is a
Gh' ~ G}, such that V(G}') is a subset of the m x m grid.

The proof of Claim 2 is based on the fact that for any h there are finitely
many non-isomorphic complete geometric graphs on h vertices. Details are
left to the reader.

Claim 3 For any planar geometric graph G, there is an edge xy € E(Q)
such that if z € V(G) and xz,yz € E(G) then the triangle xyz contains no
other vertex of G.

The proof of Claim 3 can be found in [6] or in [13], exercise 5.38.

Advancing the proof of Theorem 2 we first prove the statement in the
special case k = 1:

Lemma 1 Let G be a planar geometric graph and let H be a geometric graph.
Then T (G, H) holds.

Proof. We proceed by induction on n = |V(G)|. If n < 2, then the assertion
is trivial.

Now suppose that the assertion is true if |V(G)| < n — 1. We will use
generalized geometric graphs which may contain collinear triples of points;
otherwise they are defined analogously as geometric graphs. Let H be an
arbitrary but fixed geometric graph. We can suppose that G is a triangula-
tion. We consider an edge zy satisfying Claim 3. Since G is a triangulation,
the edge zy lies on the boundary of exactly two triangles, xyz; and xyz,, in
G. We contract the edge zy to a point p and remove one edge from each
pair of parallel edges. We obtain a planar graph G_ with n — 1 vertices. By
the inductive hypothesis and using the compactness argument one can find
a complete generalized geometric graph Y in the plane, such that if we color
the edges of Y by blue and red then either there is a blue planar geometric
graph G_' ~ G_ or a red geometric graph H' ~ H in Y. If needed, the
vertex set of Y is slightly perturbed so that ¥ becomes a geometric graph.
For three points a, b, ¢, let d(a,b,c) be the distance of a to the line be. We
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define d(Y) = mind(a, b, ¢), where the minimum is taken over all triples of
distinct points a,b,c € Y.

We replace each vertex of Y by a scaled copy of L(N x N) having diameter
d(Y)/10. N will be specified later (now it is as big as necessary). We
denote the copies of L(N x N) by Ly, ..., Ljy|. The size of the L;’s ensures
that if we choose one point from each L;, then the obtained configuration
(“transversal”) is isomorphic to Y and no three points in it determine an
angle in some range (7 — 6,7 + J) (here 6 = §(Y) > 0 is independent of N).
Let us denote the obtained complete generalized geometric graph on N?|Y|
vertices by Z (see Fig. 3).

eoe L1

V(Y) V(Z)

Figure 3: The vertex sets of the complete geometric graphs Y, Z.

Suppose that we have a coloring of the edges of Z by blue and red,
such that there is no red isomorphic copy of H in Z. Then we have a blue
isomorphic copy of GG_ in each of the above mentioned transversals Y' C Z,
Y' ~ Y. There are (N?)/¥| such transversals. Each copy of G_ is contained in
at most (N2)YI=("=1) transversals, so we have at least N2~ different blue
“transversal” copies of G_. At least N2(=1)/ (K'l) of them lie in the union
of some fixed n — 1 L;’s (say, in L1 U...U L, _1). The n — 2 vertices of G_
different from p may be distributed in L U. . .UL,_; in at most (n—1)!(N?)"~2
different ways. Thus, at least (NQ("_I)/(A}_/'1 ) /((n— DI(N?)""2) = ¢cN? of
the above blue “transversal” copies of G_ differ only in the image of p, where
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c:= 1/((K|1) (n — 1)!). Moreover, the image of p in these > ¢N? blue copies
of G_ always lies in the same L;. According to Theorem 4, if N > N(c, 1)
then this L; contains a (scaled and shifted) grid L(¢ x t) formed by images
of p. Altogether, this gives us a blue graph which is an isomorphic copy of
G_ in Z with the vertex p replaced by a small (scaled and shifted) copy of
L(t x t), which will be denoted L.

We now look at the colors of the segments connecting points of Ly. We say
that a segment connecting two points of Ly is separating if the line containing
this segment separates the images of z; and z,. If there is a blue separating

segment z'y’, z’, y' € Ly, then substituting
x>,y —vy

or
z—y,y—a,

we get a blue subgraph of Z isomorphic to G. So we can suppose that every
separating edge is red. Now we use Claim 1. For any fixed m one can find a
number M depending only on Y such that if ¢ > M then wherever the images
of p, 21,29 lie in Z, Ly always contains a non-degenerate affine image A of
the m x m grid in which every pair of points determines a separating (and
therefore red) segment. Using Claim 2 it follows that if m is large enough
then we have a red H' ~ H in A. O

We are ready to complete the proof of Theorem 2.

Proof of Theorem 2.  For k = 1, T(G1, H) holds according to Lemma 1.
We further proceed by induction on &.

Suppose that T(Gs, Gs, . .., G, H) holds. Thus, by the compactness ar-
gument (eventually followed by a small perturbation), there is a geometric
graph J with the following property. If we color the edges of J with k& colors
2,...,k,k+ 1, then for some ¢ € {2,...,k} there is a G} C J isomorphic
to G; with all edges in the i-th color or there is a H' C J, H' ~ H, with all
edges in the (k 4 1)-th color.

We have T'(G4, J) from above, and if the second color represents & colors
2,...,k,k+1, we get T(G4,...,Gyg, H). This finishes the proof of Theorem 2.
U



3 Proof of the colored Wagner—Fary theorem

In this section we derive Corollary 1 from Theorem 2.

Proof of Corollary 1.  Suppose that the line segments in the plane are parti-
tioned into k classes. If Corollary 1 was satisfied for none of the classes, then
T (G4, ..., Gg) would be violated for some planar geometric graphs Gy, . . ., G
— a contradiction with Theorem 2.

Suppose that the class C is unique, and let H be a geometric graph having
no isomorphic copy drawn by segments of C. Without loss of generality, let

C' be the last of the k classes. Then T(Gy,...,Gf_1, H) is violated for some
planar geometric graphs G, ..., Gx_; — a contradiction with Theorem 2. O

4 Pseudoplanar graphs
In this section we prove Theorem 3.

Lemma 2 Let G, H be two geometric graphs such that T(G, H) holds. Fur-
ther, let G' be a geometric graph obtained from G by one of the operations
(R), (D). Then T(G', H) holds.

Proof (sketch). The assertion is trivial if G’ is obtained from G by operation
(R). Thus, we may suppose that G’ was obtained by operation (D). We use
a similar method as in the proof of Lemma 1.

Since T'(G, H) holds, there is a complete geometric graph Y such that
if we color the edges of Y by two colors (red and blue) then there is a
monochromatic red isomorphic copy of G or a blue isomorphic copy of H.
Let us replace all the vertices of Y by small copies of L(/N x N) in the same
way as in the proof of Lemma 1. We now prove that if /V is large enough
then the obtained complete geometric graph Z is Ramsey for T'(G', H).

If Z contains a blue copy of H then we are done. So we may suppose that
there are many red “transversal” copies of G. There are still many of them
for which V(G) \ {u} is fixed and the images of u cover a positive fraction
of one of the L(IN x N)’s. According to Theorem 4, some of the images of u
form a (scaled and shifted copy of) L(k x k).

Similarly as in the proof of Theorem 2, we either find a red pair of points
in this L(k x k) determining a line separating the images of V/(G)\ {u} in the



“right” way, or there is a non-degenerate affine image of a large grid where
all edges are blue. In the first case we find a red copy of G’, in the second

case we find a blue copy of H. O
Proof of Theorem 3. Lemma 2 gives a generalization of Lemma 1 when
G is allowed to be pseudoplanar. The rest of the proof is analogous as the
proof of Theorem 2 and of Corollary 1. O
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