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Abstract

A subset A of a finite set P of points in the plane is called an empty
polygon, if each point of A is a vertex of the convex hull of A and the
convex hull of A contains no other points of P. We construct a set
of n points in general position in the plane with only ~ 1.62n? empty

*Research by I. Barany was partially supported by Hungarian Science Foundation

Grants T 032452 and T 037846.
**Research by P. Valtr was supported by project LNO0OA056 of The Ministry of Education

of the Czech Republic.



triangles, ~ 1.94n? empty quadrilaterals, ~ 1.02n? empty pentagons,
and ~ 0.2n2 empty hexagons.

AMS Classification: 52C10.
Keywords: planar point configuration, empty convex polygon, empty
hexagon.

1 Introduction

Results. We say that a set P of points in the plane is in general position
if it contains no three points on a line.

Let P be a finite set of points in general position in the plane. We call a
subset A of k points in P an empty k-gon if the convex hull of A is a k-gon
containing no point of P\ A.

Let gx(n) be the minimum number of empty k-gons in a set of n points
in general position in the plane. Horton [H83] proved that gi(n) = 0 for any
k > 7 and any n € IN. The following bounds on gx(n),k = 3,4,5,6, have
been known:
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The upper bounds have been shown in [D00], improving previous bounds of
[KM88, BF87, V95]. The lower bound on g3(n) has been shown in [BF87],
the lower bound on g4(n) by Bérdny (see [V95]) and by Dumitrescu [DO00],
and the lower bound on g5(n) in [BKO01]. In this paper we give the following
improved upper bounds:



Theorem 1
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Our construction seems to be the final one of the type developed in
[V95, D00], and is, perhaps, the best possible up to the additive o(n?)-factor.
Several exciting questions remain open. The most interesting is whether
ge(n) > 0 for sufficiently large n (e.g. see [E75]). In other words, is it true
that if P is a finite set of points in general position in the plane with | P| large
enough, then P contains an empty hexagon. Another question is whether
g3(n) > (1 + €)n? holds for large enough n for some fixed ¢ > 0. This would
be the case if one could show that gs(n) > en? for some fixed £ > 0. These
questions have turned out to be more difficult than expected: for instance
the innocent looking gs(n) > 0 has been a challenge for more than 30 years
now.



2 The construction

Our construction giving the upper bounds in Theorem 1 is a set obtained
from the grid v/n x v/n by a little perturbation (due to monotonicity of gx(n)
it suffices to prove Theorem 1 when n is a square of integer). Throughout the
rest of the paper, n is a square of integer, and A is the grid {1,2,...,y/n} X
{1,2,...,4/n}. The perturbed set will be denoted by A*. The construction of
A* uses so-called Horton sets [V92] which generalize a construction of Horton
[H83] giving g7(n) = 0 for any n.

Horton sets. Let H be a finite set of points in general position in the plane
such that no two points have the same z-coordinate, and let hg, hq,..., hy,
be the points of H listed by increasing z-coordinate. We say that a subset
H' C H lies far below a subset H" C H (and H" lies far above H'), if the
entire set H" lies above every line trough a pair of points of H' and the entire
set H' lies below every line trough a pair of points of H”. For 0 < i < 7,
we define a subset H, ; of H as the set of points hy with £ = i(mod j). The
set H is called a Horton set if, for every j = 2,4, 8,16, ... and every integer
i with 0 < ¢ < j/2, the set H;; lies far below or far above H; ;2 ;. It was
shown in [V92] that if H is Horton, then also each H;;,0 < ¢ < j, is Horton.
Obviously, if H is Horton then also each contiguous segment of H (i.e., a set
of points hy of H with kg < k < ky) is Horton.

Construction of A*. Set m := /n—1 > 1 and ¢ := 1/(10m). We
construct an auxiliary random Horton set H = H (e) of size m+ 1 as follows.
We choose randomly and independently for each i,75,0 < i < j/2,2 < j =
2! < m, the mutual position of the sets H;j, H;\ ;2 ; (whose union is the set
H; j/2): the set H, ; will lie with probability 1/2 far above H;4;/2; and with
probability 1/2 far below H; ;2 ;. For a given choice of mutual positions, we
define H as the set of points h;, = (k,leLfngmJ +(m+1)7Y),k=0,...,m,
where the choice of + or — at (m + 1)~! corresponds to the choice of mutual
position of those sets H; o1, H;, 91-1 ot whose union H; 5i-1 contains hy, (we take
+(m +1)~"in the sum if Ay, lies in that of the sets H; 51, H; 911 9 which lies
far above the other of these sets; otherwise we take —(m + 1)7!). The z-
coordinates of the points of H = H(e) are 0,1,...,m and the y-coordinates
lie in the interval (—e,¢). For ¢’ > 0, we consider another, analogously



defined random Horton set H' = H'(¢') of size m~+1. Further, we consider the
set H" = H"(¢') obtained from H' = H'(¢') by the interchange of the axes,
i.e. H" =T(H'), where T : (z,y) — (y,x). We define A* as the Minkowski
sum of the sets H = H(e) and H" = H"(¢'), where ¢’ = &'(m) > 0 is
sufficiently small compared to ¢ = 1/(10m) (e.g., &' = 1/(20m(m+ 1) loe2m™)
will do). The set A* approximates A. For a point X in A, we denote by X* the
corresponding point of A*. We usually use letters I, J, K, L, R, S,T to denote
points in A. We denote their coordinates by I = (i,y(I)), J = (j,y(J)), etc.
(We use such a notation since we mostly work with the first coordinate).
It follows from the choice of €,¢’ that for any three points I, J, K € A the
following holds:

Observation 2 (i) If I, J, K € A are not collinear, then the triples I, J, K
and I*, J*, K* have the same orientation.

(i1) If 1, J, K € A lie on a non-vertical common line, then the orientation
of the triple I*, J*, K* is equal to the orientation of the triple h;, hj, hy of
points of H.

(i) If I, J,K € A lie on a vertical common line, then the orientation
of the triple I*, J*, K* is determined by the orientation of the corresponding
triple of points of H'.

It follows from Observation 2 that the points of A* corresponding to the
intersection of a non-vertical line with A form a set having the same order
type as a contiguous part of some set H;;,0 < i < j. Consequently, such
points form a Horton set (see Claim 3.10 in [V92]).

Observation 3 The points of A* corresponding to the intersection of a non-
vertical line with A form a random Horton set G. That is, randomly and
independently for each i,7,0 < i< j/2,2 < j=2'<m, the set G;; lies with
probability 1/2 far above Giyj/o; and with probability 1/2 far below G,y /s,

Notation. The lattice is the usual lattice of points in the plane with integer
coordinates. A lattice point is a point of the lattice. We say that a line is
a lattice line, if it contains infinitely many lattice points. For a non-vertical
lattice line [, we denote by [T (resp. {7) the closest lattice line above (below)
[ and parallel to [. A lattice segment is a segment connecting two lattice
points. We say that a lattice segment is s-prime, if it contains s + 1 lattice



points (including its endpoints). If a lattice segment is 1-prime (i.e., its
relative interior contains no lattice points), then we call it a prime segment.
Otherwise we call it a non-prime segment.

If I7I5 ... I} is an empty k-gon in A*, then we also say that I11,... I} is
an empty k-gon (it may be degenerate).

For an empty k-gon P = Ly L, ... L) with all vertices in A, we define the
base of P as the segment L, L,, connecting the vertex L, having the smallest
x-coordinate with the vertex L, having the largest z-coordinate. If P has
more vertices with the smallest z-coordinate, then we choose for L, that
one with the smallest y-coordinate. Similarly, if P has more vertices with
the largest z-coordinate, then we choose for L, that one with the largest
y-coordinate.

If the base of an empty polygon P is prime, non-prime, or s-prime, then
we say that P is prime, non-prime, or s-prime, respectively.

We say that a (possibly degenerate) polygon P with all vertices in A is
a t-line polygon, if t is the least number such that the vertices of P lie on ¢
neighboring parallel lattice lines.

3 Structure of the proof

We note first that A* contains no empty 7-gon. This was proved in [V95]:
the reason is that A* is built from Horton sets.

For each k£ = 3,4,5,6, we distinguish five types of empty k-gons and
estimate the expected number of empty k-gons for each of them separately.
Here are the five types of empty k-gons:

e 3-line k-gons,

e 2-line prime k-gons,

2-line non-prime k-gons,

1-line 2%-prime k-gons (s € IN),
e 1-line r-prime k-gons (r # 2°),

It follows from Observation 4 below that every empty polygon in A* is 1-,
2-, or 3-line. Thus, the above five types embrace all empty polygons in A*.



Observation 4 ([V92]) If the convex hull of a subset S of A has no lattice
point in the interior, then S lies either on one line, or on two parallel lines
with no lattice point strictly between them, or on the perimeter of a lattice
triangle with exactly one lattice point in the relative interior of each side.

Next, let P be a finite point set, of n points, say, in the plane in general
position. Consider the complex, C, of empty convex polygons in P. C is
clearly a simplicial complex. Let fx(P) be its f-vector (kK = 1,2,...), that
is, fx(P) is the number of empty convex k-gons in P. Clearly f;(P) = n,
and fo(P) = (’2”) It is proved by Edelman and Rainer [ERO00] that C is
contractible. Then it satisfies the Euler equation:

fi(P) = fo(P) + fs(P) = fa(P) ... = L.

There is another linear relation satisfied by the f-vector: it is shown by
Ahrens et al. [AGM99] that

These two linear relations are very useful in our construction since there
A(AY) = n, fo(A%) = (5) and fe(A*) = 0 when & > 6. So out of the
remaining four quantities f;(A*), i = 3,4,5,6, only 2 have to be determined.

Our choice is to compute f3 and fg, which means that out of the 20 entries
of the following table, we only compute 10.

Empty: [x(3/72)n?] | triangles quadrilaterals pentagons hexagons
3-Tine 1/24 1/8 1/8 1/24
2-line prime 10/3 29/7 16/7 10/21
2-line non-prime 2/3 54/49 24/49 8/147
1-line 2°-prime 4/9 9/49 4/49 4/441
other 1-line Lo 8a-168+187 La-168+327 2a-—18p+ 18y

Each entry in the table must be multiplied by (3/7?)n? to obtain a ~-
approximation of the correspoding quantity. E.g., the entry 10/3 in the
second row and first column means that A* contains (10/3)-(3/7%)n? +o(n?)
2-line prime triangles. It is easily verified that the 10 entries in the first and
last column and the above equations on the f-vector give Theorem 1.

In fact we have computed all entries of the above table. The method is
to fix the base, I.J of the k-gon in question, then compute the expectation
of the empty k-gons with base I.J, and then sum for all possible bases. This
is fairly straightforward although lengthy in all five cases except the 2-line
prime k-gons where we need a more detailed analysis.
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4 Auxiliary statements

In this section we collect several simple facts (and prove some of them) that
will be needed later. Most of them are quite easy.

We say that a segment I*J*, ¢ # 7, in A* is open up if K* lies below the
line I*J* for any lattice point K in the relative interior of I.J. Similarly, we
say that a segment I*J*, 1 # 7, is open down if K* lies above the line I*J*
for any lattice point K in the relative interior of I.J. If I*J* is open up or
down, then we also say that the segment I.J is open up or down, respectively.

Clearly, each prime segment is open up and down, and each 2-prime
segment is open either up or down. Here is a more general lemma:

Lemma 5 Let IJ be an s-prime segment in A. Then:

(i) If s is a power of 2, then the segment I.J is open up (down, respectively)
with probability 1/s.

(ii) If s is not a power of 2, then the segment I.J is open neither up nor
down. O

Observation 6 If I*J*K* is an empty triangle in N*, 1 # 7, and K lies
strictly above the line 1.J, then IJ s open up. Analogously, if I*J*K* is an
empty triangle in A*, 1 # j, and K lies strictly below the line I.J, then I1J is
open down. O

Let f(n), g(n) be two real functions defined for any n = m? m € IN. We
write f(n) ~ g(n) (and say that f(n) equals = g(n)), if

lim £

m— o0 g (m2)

= 1.

We denote the set of prime segments in the y/n x y/n grid A by P, and
its size by p, = |P|. It is well-known (see for instance [HW79]) that

6 ny 3 ,
Pn="m\g) ¥ 2"

Lemma 7 (i) For any r > 2, the number of r-prime segments in A is ~ Lz
(11) For any r > 2 and n > 1, the number of r-prime segments in A is at
most %.
T



Proof. We first suppose that /n is divisible by r. Consider the mapping
FrA= {12 x {1,..., ¥} defined by f(I) = (|£], [42]) for I € A.

T
Each r-prime segment is mapped to a lattice segment of the same direc-

tion and 1/r of its original length. Thus, each r-prime segment is mapped

to a prime segment. Moreover, each prime segment KL in {1,..., @} X
{1,..., @} is the image of exactly r? r-prime segments in A, namely it is

the image of the r-prime segments (r - K + (o, f),7 - L + (o, 3)), where
a,€{0,1,...,r—1}.

It follows that if \/n is divisible by r then A determines 72 - p, /2 r-
prime segments. This yields (i): for any n = m?2, A determines at least
% Dlynsrp2 = B and at most 1 - pr 412 & B3 r-prime segments.

If r > /n then A determines no r-prime segments and (ii) clearly holds.

Otherwise A determines at most 7°pf /2 < 7% (WHQ/HQ) < 7“2-% = 87%2

r-prime segments, as required in (ii). O

Lemma 8 Let H, H' be two Horton sets, let H lie far below H', and let
H = {hy,...,h,}, H ={hy,...,h,}. Further, let P C HUH' be the vertex
set of an empty polygon in H U H', and let PN H # () and PN H' # (.
Then |PNH| <3 and |PN H'| < 3. Moreover, if |PN H|=3 then PN H =
{h;, h/i—l,Q-_j, h;}, where j — i is a power of 2. Analogously, if |P N H'|=3 then
PﬂH’:{hk,h%,hl}, where | — k is a power of 2. O

Let H be a Horton set with vertices denoted as usual. Then we say that
a segment h;h;, 5 >4, in H is open down, if all points hy, 7 < k < j, lie above

it. Similarly, we say that h;h; is open up, if all points hy,7 < k < j, lie below
it.

Lemma 9 (i) Any Horton set of size 2° determines 2571 — (s + 2) open
down segments.

(i) If H = {ho,...,has_1} is a Horton set of size 2°, where the points
are listed according to the increasing x-coordinate, then H determines
2° — (s + 1) open down segments h;h; with j > i+ 1.

(iii) In (i) and (ii), “open down” can be replaced by “open up”.

Proof. We proceed by induction on s. The lemma clearly holds for s = 0, 1.
Suppose now that H = {hg, h1,...,hos_1} is a Horton set of size 2°, s > 2.

9



Let H' be the lower of the sets Hy o, H; 2. By the inductive assumption, H’
determines 2° — (s + 1) open down segments. The set H determines the
following two types of open down segments:

(T1) 2° — 1 segments h;h;.1,
(T2) 2* — (s + 1) open down segments determined by H'.

Thus, H determines (2° — 1) + (2° — (s + 1)) = 257! — (s + 2) open down
segments. This gives (i). The open down segments h;h; with j > i+ 1 are
just the segments of type (T2). This gives (ii).

(iii) follows from the symmetry. O

Observation 10 For each s € IN, let fs(n), gs(n) be two functions satisfying
fs(n) = gs(n). Moreover, suppose that for each € > 0 there is a t € IN such
that, for any n € IN,

i fs(n) <en® and i gs(n) < en?.

s=t+1 s=t+1
Then N -
> fo(n) = > gs(n) + o(n?).
s=1 s=1

5 3-line triangles and hexagons

5.1 The parity of the coordinates of lattice prime seg-
ments

Here we estimate the number of 2-prime segments I.J, I, J € A, such that ”2;1
is even. The standard method from [HW79] showing that p, ~ 2n? gives
easily the following.

Lemma 11 The number of prime segments 1.J with 7 — i even s

~

3
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Lemma 12 (i) A determines ~ 22 2-prime segments 1.J with 15* even.
(i) A determines ~ &2 2- przme segments I1.J with 1% # 0 even.

Proof. Certainly, it suffices to prove the lemma for \/n even.

Consider the mapping f : A — {1,...,@} X {1,...,@} defined by
fl) = ([%-‘ : {@-‘), as in the proof of Lemma 7 (for r = 2). Each 2-prime
segment [.J in A is mapped to a prime segment, and each prime segment K L
in {1,... "} {1,..., ‘éﬁ} is the image of exactly 4 2-prime segments in A.
Moreover for a 2-prime segment I.J in A, £5* is even if and only if [—k (= L5%)
is even, where k,[ are the z-coordinates of the points K = f(I),L = f(J),
respectively.

Thus, by Lemma 11, A determines

pn/4 i
3 T 1aPn

~4-

2-prime segments I.J with 25* even. This gives (i).
Since there are only O(n) 2-prime segments /.J with j —i = 0, (ii) follows
from (i) and from p, = O(n?). O

5.2 3-line triangles

Let IJK be an IJ-triangle with all three sides 2-prime and no lattice point
in the interior. We now find the probability that /JK is empty. Set R =

LS = R T = 2K (gee Fig. 1).

Figure 1: The points R, S, T
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If 5% is odd, then (exactly) one of the numbers 5%, 22 is also odd.
Without loss of generality, let % be odd. Then i = j = k #Z r = s(mod 2).
Consequently, R* and S* lie either both below or both above the segments
I*J* and I*K*, respectively. Thus, (exactly) one of the points R*, S* lies
inside the triangle I*J*K*. We conclude that IJK is not an empty triangle
in this case.

Suppose now that JZ;Z is even. If both numbers %, ]%k are even, then in
the triangle T RS the y-components of a side are of the same parity, and then
the midpoint of this side is a lattice point. Consequently, one of the sides of
the original triangle IJ K is not 2-prime.

Thus 92;Z is even and both %, J%k are odd. Consequently, 1 = j =k =
r # s = t(mod 2). With probability 1/2, both points S*, T* lie inside the
triangle I*J* K*. Independently and also with probability 1/2, the point R*
lies inside the triangle I*J*K*. Thus, if 32;2 is even then I*J*K* is empty
with probability 1/4.

For a 2-prime segment I.J € P with J%Z > ( even, there are exactly two
lattice points K, 1 < k < j, such that IJK is a 3-line triangle: One such
placement of K is on the line (IJ)" (in which case the points S, T are the
two points on IJ7 satisfying ¢ < s < t < j), the other placement of K is on
the line (IJ7)~ (in which case the points S, T are the two points on I.J~

satisfying i < s <t < j), see Fig. 2. It now follows from Lemma 12(ii) that

Figure 2: Two possible placements of K.

the expected number of empty 3-line triangles is & 2 - § - 2 =

N

12



5.3 3-line hexagons

Each empty 3-line triangle IJK corresponds to the empty 3-line hexagon
13 J AR K EAL and vice versa. Thus, the number of empty 3-line hexagons
equals the number of empty 3-line triangles.

6 2-line prime triangles and hexagons

6.1 Some lattice properties

Given a non-vertical prime segment I.J € P, there is a unique K € (IJ)*
with i < k < j. We let ¢*(1.J) denote this lattice point K. Assume J — I =
(m,t) with 0 <t <m and let K — I = (z,y). Then ym + x(—t) = 1 as one
can readily check. Thus z is the inverse of —¢(mod m). We will use a theorem
of Balog and Deshoulliers [BD99] saying that x is “uniformly distributed” in
[0,m).

Theorem 13 ([BD99]) Assume m is a positive integer. Then for any o €
(0,1], and any n > 0, the number of pairs (t,x) with t € {1,...,m} and
x €{l,...,|am]|} where xt = —1(mod m) is

ap(m) + O(m'/>+7)
where the implied constant depends at most on 1.

Actually, the original result of Balog and Deshoulliers is more general and
is stated in a slightly different form.

For r € IN, we define a subset P, of P as the set of non-vertical prime
segments IJ € P such that the xz-coordinate of ¢*(IJ) lies in the interval
[i,i + 52).

Lemma 14 (i) For any r > 1,

P
PT‘ ~ Y
P~ 2
(11) For any r,n > 1,
20
P.| < =n?.
Pl < 2

13



Proof. (i) is a direct corollary of Theorem 13.

To prove (ii), suppose that I € A and that t € {1,2,...,[v2n]}. The
number of lattice points K € Ak > 4, with ¢t < |[|[K —I|| < t+ 1 is
approximately 7t — certainly smaller than 10¢ (say). Now, let K be one
of these points. If IK is non-prime then there is no lattice point .J with
K = ¢"(IJ). Otherwise the lattice points J with K = ¢*(IJ) lie on the
lattice half-line TK~ N {(z,y) € R? : + > k} (see Fig. 3). The half-line

o o o
o o o
I
o . 0 o o o o ¢
IK~

Figure 3: The lattice points J with K = ¢*(1J).

IK~n{(z,y) € R? : x > k} contains at most HI‘?__”I” < ‘/f_” lattice points
J € A. Tt follows that for each I and t € {1,2,...,]v2n]} there are at
most 10t - @ = v/200n lattice points J with t < ||¢"(IJ) —I|| < t+ 1. If

IJ € P, then ||¢T(1J) — I|| < ‘/2—%_” It follows that for each I there are at

%] 2
most Z V200n < yn lattice points J € A with I.J € P,. Consequently,
t=1
20
|,Pr‘ S 5712

(]

We denote the lattice points on the open halfline Iq™(I.J ; by Ki =
qt(IJ), Ky, Ksj,..., so that K, = I + t(¢*(I[J) — I) for each ¢t € IN.
See Fig. 4. Similarly, we denote the lattice points on the open halfline

J(J = (¢"(IJ) = 1)) by Ly, Ly, Ls, ..., so that L, = J — t(¢*(I.J) — I) for

14



Figure 4: The lattice points K;, L;.

each t € IN. We remark that P, is the set of segments I.J € P such that ¢ <
kor < j, where kor is the z-coordinate of the point Kor = I+ 2" (¢ (1J) — I).

For IJ € P; and s > 0, we define two events Ef = Ef(IJ) and E; =
E; (1J) as follows:

Ef =EF(1J) : the segment [ Kys is open down,
E; =E;(IJ) : the segment JLys is open up.

Clearly, Kos lies in some empty 2-line I.J-polygons if and only if 1.J € P;
and E} is satisfied. Similarly, Los lies in some empty 2-line I.J-polygons if
and only if I.J € P, and E; is satisfied.

The following observation follows from Lemma 5(i):

Observation 15 For any s > 0 and IJ € P,

1 1
Prob(Ef) =,  Prob(E;) = 5.

23

(]

The following lemma shows that the events E and E_, are almost inde-
pendent if I.J is taken uniformly from P,.

15



Lemma 16 Letr € IN and 0 < s,s' <r. Then

N 1
Prob(EX AE;) =~ == . )
L%?r rob(Es ) or  2s+s’

Proof. 1f s =0 then, by Observation 15 and by Lemma 14(i),

n 1
> Prob(Ef AE;)= 3 Prob(Ey) ~ ot —,
as required. Analogously, the lemma holds also for s’ = 0. We further

suppose that s,s" > 1.

Let IJ € P, and let K = K; = ¢"(IJ). Not all three numbers i + 7,
i +k, j+ k are even, since in that case one of the points &L LK = JEE
(corresponding to an even of the numbers y(I) + y(J), y(I) + y(K), y(J) +
y(K)) would be a lattice point. Consequently, by a parity argument, exactly
one of the numbers ¢ + j, i + k, 7 + k is even.

By Lemma 11, there are ~ “;4' segments [J € P with 2 + 5 even. Con-
sequently, by Theorem 13, there are =~ @ segments [J € P, with ¢ + j
even.

By Lemma 11, there are ~

@ segments I.J € P with ¢+ j odd, which is

Pl
5 segments I.J € P

with £ — 7 even and also ~ @ segments I.J € P with k — ¢ odd.

We want to use now Theorem 13 with J — I = (m,t) and z € [0, m27"),
with the extra condition that x = k — ¢ is even (resp. odd). When z is
even and lies in [0,m27") then x/2 is an integer in [0,m27""!) for which
(2t)(z/2) = —1(mod m) and 2t runs through the reduced residue classes
(mod m). The number of such pairs (2¢, z/2) is then 27"~ ¢ (m) +O(m!/>+7),
which implies that there are ~ @ segments [J € P, with j — ¢ odd and
k —1 even. Then the complementary set of segments with j —¢ odd and k —1
odd is also of size ~ ”?3—”.

Let IJ € P,. If i+ k is even (and i + j,j + k are odd), then the x-
coordinates of I, Ky, K5, ... have the other parity than the z-coordinates of

J, L1, Ly, . ... Consequently, the events Ef and E_ are independent and

the same as j — ¢ odd. Thus, by symmetry, there are ~

1

+ -\ +) . ) = —
PI‘Ob(ES A Es’) - PrOb(Es ) PrOb(ES') - 23—I—s’
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in this case.

If 2+ j is even, then the z-coordinates of I, Ko, Ky, ..., J, Ly, Ly, ... have
the other parity than the z-coordinates of Ky, K3,..., L, L3,.... Conse-
quently, either K7 lies below the line I* K3, or Lj lies above the line J*L ;.
Thus,

Prob(Ef AE,) =0
in this case (provided s, s’ > 1).
If 7 + k is even, then the x-coordinates of K, K3,...,J, Ly, Ly, ... have

the other parity than the z-coordinates of I, Ky, K4,...,Lq1,L3,.... The
following two conditions are necessary for Ef A E:

Ci: {I*K;,Kj,...} lies far below {K}, K3, ...},
Cy: {L L%,...} lies far below {J*, L%, L%, .. ).

Clearly, C; is satisfied if and only if Cs is satisfied. Thus,

Prob(Cy A Cy) = Prob(Cy) = Prob(Cy) = %
Suppose that C; A Csy is satisfied. Then EJ is satisfied if and only if I* K,
is open down in the (random) Horton set {I*, K, K},..., K;.}, i.e., with
probability 251_1. Analogously, E is satisfied if and only if J*L7,, is open up
in the (random) Horton set {J*, L3, L}, ..., L} }, i.e., with probability 28,%1
Moreover, Ef and E}, are independent (provided j + & is even and C; A Cy is
satisfied), since the z-coordinates of I, Ky, Ky, ..., Kss have the other parity
than the z-coordinates of J, Ly, Ly, ..., Lys. Thus, if j 4+ k is even then

PI‘Ob(E;_ N E;) = PI‘Ob(Cl A\ Cz) . PI‘Ob(E:_|Cl A\ Cz) . PI‘Ob(Es_/|Cl A\ Cg)
1 1 1
5 31 g1

1

Altogether,

> Prob(Ef AE}) =

& 1 P P, 1 pn 1
1JeP; 3

23—{—3’ + 3 + 3 23—I—s’—1 or 23—|—s’

17



6.2 2-line prime triangles

The expected number of empty 2-line IJ-triangles with IJ € P, \ P,41 is

> (S prob(en) + 3 prob(es)|

1JEP \Pry1 \s=0 s'=0
"1 "1
- > (X
1JEPr\Pry1 \s=0 s'=0

2
= <4 - ?) P\ Prial,

and thus the expected number of empty 2-line IJ-triangles with IJ € P, =

L—Jl(Pr \Pr—}—l) is
> (4= 5) P\ Pl )

By Lemma 14(i),

Pn
|Pr \ ,PT—H‘ ~ (2)

or+1 )

For every € > 0, there is a t € IN such that, by Lemma 14(ii), the sum of
the terms in (1) with r > ¢ + 1 can be bounded from above by

ey 20 80
> 4. “n? = §n2 < en?.

(1)

X
8
N
S
|
N
N——
[\
E?



Similarly, define P, as the set of non-vertical prime segments I.J € P
such that the z-coordinate of ¢*(I.J) lies in the interval [j — £ 5). An
analogue of the above proof shows that the expected number of empty 2-line
IJ-triangles with I.J € Pj is also

5)
N =Dy 4
3P (4)

Consequently, the expected number of empty 2-line prime triangles is the

sum of (3) and (4), that is,
10

" — - Pp.

3

6.3 2-line prime hexagons

We first estimate the number of empty 2-line /J-hexagons with IJ € P, \
P;41. Each of them is of form JK K91 Ly Ly 5. Thus, their expected number
is

> ZT: ZT: Prob(Ef AE,) = ET: ET: > Prob(Ef AE}).

IJEPT\PT+1 s=1s'=1 s=1s'=1 IJEPT\PT+1

It follows that the expected number of empty 2-line I.J-hexagons with I.J €
P1 = U (Pr \Pr+1) 18

r=1
Y3 > Y Prob(Ef AE;). (5)
r=1s=1s'=1T1JeP,\Pr+1

Lemma 16 and the inclusion P,,; C P, imply that

S Y PebEiary) & 23 (o) L
S:ls’:lIJEPT\Pr+1 s=1s'=1 2 2
1\? p,
=(1-5) 75 (6)

For every € > 0, there is a t € IN such that, by Lemma 14(ii), the terms
in (5) with r > ¢ + 1 can be bounded from above by

iii > 1<Z 2|7’\77r+1|<27" n<5n

r=t+1 s=1s'=1 I1JeP,\Pr+1 r=t+1 r=t+1

19



Thus, by Observation 10 and by (6),

(5) i (1 a QL)Q 21:21

&Q

r=1

= 1 1

- ,;(27"+1_27r+23r+1)p”

- (1 1 1)

— \2 37" 14)Pn
5

= 2, 7
57 P (7)

A similar argument as at the end of Paragraph 6.2 shows that the expected
number of empty 2-line prime hexagons is twice as much as (7), i.e.,

10

Nﬁ‘pn

7 2-line non-prime triangles and hexagons

7.1 2-line non-prime triangles

If there is an empty 2-line non-prime I J-triangle, then I.J must be open up
or down and thus 7J must be 2°-prime for some s € IN.

Let s € IN and let IJ € P be a non-vertical 2°-prime segment with
g > i. The line IJ* contains 2° points K € A with ¢ < k£ < j (unless
J=1i+2,y(I) =+/n). Each of these points determines an empty 2-line I.J-
triangle IJ K if and only if I.J is open up, i.e., with probability 2% Thus, the
expected number of empty 2-line I J-triangles with one vertex on the line I.J*
is equal to g—z = 1. By symmetry, the expected number of empty 2-line I.J-
triangles with one vertex on the line I.J~ is also 1 (unless j =i+ 2,y(I) = 1).
Thus, the expected number of empty 2-line non-prime triangles is

~ > 2. (8)
s=1(IJ is 25 —prime)

The “~” appears in (8) since the expected number of empty 2-line I.J-
triangles is 0 for vertical 2%-prime segments IJ € P and is smaller than
2 for 2°-prime segments I.J € P,j =i+ 2, with y(I) = /n or y(J) = 1.

20



It follows from Lemma 7(ii) that the first sum in (8) satisfies the assump-
tions of Observation 10, and thus (8) can be estimated by

2

NZ ) :_pn

7.2 2-line non-prime hexagons

If there is an empty 2-line non-prime I.J-hexagon, then I.J must be open up
or down and thus /.JJ must be 2°-prime for some s € IN.

Let s € IN and let I.J be a non-vertical 2°-prime segment with 7 > 7. The
line IJ* contains 2° points K with ¢ < k < j (unless j =i+ 2,y(I) = /n),
forming a (random) Horton set, which we denote by H. By Lemma 9(ii),
H determines 2° — (s + 1) open down segments K K’ with ££5 ¢ [. Each
of these segments determines an empty 2-line I.J-hexagon [4Z JK'E+K |
if and only if I.J is open up, i.e., with probability 2% Thus, the expected
number of empty 2-line I.J-hexagons with all vertices on the lines I.J and
IJ% is equal to Z=8H) = 1 — 41 (unless j = i + 2, y(I) = /n).

28
Altogether, the expected number of two-line non-prime hexagons is

~2.3 % (1—3;1). (9)

s=1(IJ is 25 —prime)

The “~” appears in (9) for analogous reasons as in (8).
It follows from Lemma 7(ii) that the first sum in (9) satisfies the assump-
tions of Observation 10, and thus (9) can be estimated by

~ 2- Z (1—5;1)

Zmpn

8 1-line 2°-prime triangles and hexagons

For £ € IN and s > 0, we define Vi(s) as the expected number of those
empty k-gons in a random Horton set H of size 2° + 1, which contain both
the leftmost point and the rightmost point of H.
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Lemma 17 For any s > 0,

s+ 2

Vé(s) =5, ‘/6(3) =s—4+ 9s—1 "
Proof. Let hg, hy,...,hss be the points of a Horton set H listed according
to the increasing z-coordinate. For i = 0,...,s — 1, we define a 2°-element

subset H (i) of H by
H(i) = Hyomi-1 9o~ = {h; € H : j = 2°7""(mod 2°7)}.

Observe that H\{hg, hos } is a disjoint union of the sets H(i),i = 1,...,s—
1 and that each H (i) = Hays-i-1 .- lies far above or far below the set Hyo: =
{ho, hos} € Hpyos—i. In particular, each H(¢) lies either below or above the
line hohgs.

We distinguish s combinatorial cases Cy,Cs,...,C; defined for + = 1,2,
..., —1 by

C;: The line hohgs separates H(0)UH(1)U...UH(i — 1) from H (7).

The remaining case C; is defined by

Cs: The whole set H(0) U...U H(s — 1) lies on one side of the line hghos.
Clearly,

21
25%1, for 1 = s.

1 .
f =1,2...,s—1
Prob(C;) = { TrT LSS T
The triangle hohgs—1hgs is always empty. Moreover, in case C; (1 < i < s)
there are 2¢ empty triangles hohosp, p € H (). It is easy to see that there are

no other empty triangles with the two vertices hg, hos. Thus,

s—1 s—1
Vi(s) =1+ Prob(C;)-2°=1+> 1=s.
=1 =1

It remains to compute Vi(s). Without loss of generality, let H(0) =
{hgs-1} lie under the line hohos. By Lemma 9(ii), in case C; (1 < i < s)
there are 2° — (i + 1) empty hexagons hghgs—1hgs hvthw h. corresponding to
the 2' — (i + 1) open down segments hyh,, v > w+1, in H(7). By Lemma 8,
there are no other empty hexagons with the two vertices hg, hos. Thus,

sty s+ 2
%(S):Z§°(21_(Z+1)):S_4+ 51"
i=1
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Lemma 18 Let k > 3. If Vi(s) = O(s), then the expected number of empty
1-line 2°-prime k-gons (s € IN) in A is

o Vie(s)
~ 48 ¢ pn

s=1
Proof. Let k > 3. The expected number of empty 1-line 2°-prime k-gons
(s € IN) is

YooY V). (10)
s=1(1J is 25 —prime)

We may apply Observation 10, since, by Lemma 7(ii), for any € > 0 and
for any sufficiently large ¢ = ¢(e),

S Y W)

s=t+1 (IJ is 25—prime) s=t+1

A
]

A
WK
Q
N
| w
N———
3[\.’)

< £&n-.

The lemma now follows from (10), Observation 10, and Lemma 7(i). O

We are ready to estimate the number of empty 1-line 2°-prime triangles
and hexagons. By Lemmas 17 and 18, the expected number of 1-line 2°-prime

triangles is
~3 S =2
~ =~ 45 Pn = 9 Pn;
and the expected number of empty 1-line 2°-prime hexagons is
x s —4+ 242 4 4 16 4 4
*Pn = ( ) *Pn = A

DDy pvrl

s=1

0 37177

*Pn-

9 1-line r-prime triangles and hexagons
(r #2°)

For k € IN and odd z > 3, we define Wy(z) as the expected number of those
empty k-gons in a random Horton set H of size z + 1, which contain both
the leftmost point and the rightmost point of H.
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Lemma 19 For any odd z > 3,

4 4 4
Wi(z) =4 — — Wﬁ(z):1_27+4—w,

where w = |log, z].

Proof. TLet z > 3 be odd and let H = {hg,...,h,} be a Horton set with
vertices listed according to the increasing x-coordinate. Fort =1,2,... , w =
|log, z|, we put K; = hyi and L; = h,_,:. Clearly, only the points hg, h,, K;,
L; (1 <4 < w) may be vertices of empty polygons with the two vertices
ho, h,. Without loss of generality, let

{ho, K1, Ky, ..., K,} C Hyo = {ho,ho,...,h,_1}
lie far below
{LU.H Lw—17 ey L17 h’z} g H1,2 — {h’17 h3a ey hz} .

By Lemma 5, for any ¢ = 1,...,w, the segment hoK; is open up in Hy
with probability 21.1_1. Analogously, L;h, is open down in H;, also with

probability 2}_1. Thus, each of the triangles hoK;h, and hoL;h, is empty

with probability 2%1, and

‘1 4
W3(Z):2°22i_1 :4_2_w

i=1

Any two empty triangles hoK;h, and hoLjh, (i,j > 2) give rise to an
empty hexagon hoK;_1K;h,L;_1L;. Thus,

W) =33 ot g = (3 2,.1_1)2 = (1= 5

1=2

Observation 20 For any odd z > 3 and any k,s € IN, the expected number
of empty k-gons in a random Horton set H of size 2°z + 1 containing both
the leftmost point and the rightmost point of H is equal to Wi(z).
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Proof. 'We denote the points of H as above. The set Hoo: = {ho, hos, ...,
has,} is a random Horton set of size z 4+ 1. Its convex hull contains no other
points of H. Thus, Hys determines, in expectation, W (z) empty k-gons
with the two vertices hg, hgs,. There are no other empty k-gons with the two
vertices hg, hos,, since the interior of every triangle hohos h;, hy € H \ Hp s,
contains one of the points hgs, hos(;—1). O

Here is an analogue of Lemma 18:

Lemma 21 Let k € IN. If Wi (z) = O(1), then the expected number of empty
1-line r-prime k-gons (r # 2°) in A is

4

z>3 odd

22

* Dn-

Proof. Let k € IN. By Observation 20, the expected number of empty 1-line
2°%-prime k-gons is

o> Y Wi(»). (11)
2>3 odd s=0 (IJ is 25z—prime)

It follows from Lemma 7 and from two applications of Observation 10
that (11) can be estimated by

Zz

N = Dn 4
~ Z 24822Wk(2)—3

2>3 odd s=0

2

2>3 odd

“ Dn.-
(]

We are ready to estimate the number of empty 1-line r-prime triangles
and hexagons (r # 2%). By Lemmas 19 and 21, the expected number of 1-line
r-prime triangles (r # 2°) is

4 4— = 16 16

2>3 odd 2’ 3
and the expected number of empty 1-line r-prime hexagons (r # 2°) is

4 1— 4 44 4 16 16
%g Z — 2 4 pn:(_a__B_F?’Y)pn

2
2>3 odd < 3 3
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