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Abstract

An instance of a constraint satisfaction problem is [-consistent if
any [ constraints of it can be simultaneously satisfied. For a set II of
constraint types, p;(II) denotes the largest ratio of constraints which
can be satisfied in any /-consistent instance composed by constraints
from the set II. We study the asymptotic behavior of p;(IT) for sets
IT consisting of Boolean predicates. The value po(IT) := ll_1>rcr>10 pr(10)
is determined for all such sets II. Moreover, we design a robust de-
terministic algorithm (for a fixed set II of predicates) running in time
linear in the size of the input and 1/e which finds either an incon-
sistent set of constraints (of size bounded by the function of €) or a
truth assignment which satisfies the fraction of at least poo (1) — € of
the given constraints. Most of our results hold for both the unweighted
and weighted versions of the problem.

1 Introduction

Constraint satisfaction problems form an important abstract computational
model for a lot of problems arising in practice. This is witnessed by an enor-
mous recent interest in the computational complexity of various constraint
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satisfaction problems [3, 5, 6, 18]. However, some instances of real problems
do not require all the constraints to be satisfied but it is enough to satisfy
a large fraction of them. In order to maximize this fraction, the input can
be usually pruned at the beginning by removing small sets of contradictory
constraints so the input instance is usually “locally” consistent. Formally, an
instance of the (weighted) constraint satisfaction problem is [-consistent if
any [ constraints of it can be simultaneously satisfied. In a weighted version
of the problem the constraints are assigned (positive) weights and the goal
is to maximize the total weight of satisfied constraints. In this paper, we
design a robust linear-time algorithm for /-consistent constraint satisfaction
problems whose constraints are Boolean predicates which is asymptotically
optimal as [ tends to infinity.

If TT is a set of Boolean predicates, then p;(IT) denotes the fraction of
the constraints which can be satisfied in each [-consistent instance of the
problem whose constraints are the predicates of II. Similarly, p}’(II) denotes
this maximum for the weighted version of the problem (see Section 2 for
more formal definitions). Let further p..(II) = lim;_ p;(II) and p¥ (IT) =
lim;_, o, p}* (TT). We express p (II) for all finite sets of predicates IT and p..(IT)
for all such sets of predicates II of arities at least two as the minimum of a
certain functional ¥ on a convex hull of a finite set 7(II) of polynomials
derived from IT (Corollary 8). We postpone the formal definitions of the
functional ¥ and the set w(II) to Section 2. Examples how to apply this
result can be found in Examples 3 and 4. Some of our results also hold for
the case when the set II is infinite as discussed in Section 5.

The main algorithmic result of this paper (Theorem 2) is designing, for
any fixed set IT of Boolean predicates, a deterministic algorithm which given
e > 0 and a sufficiently locally consistent instance of the weighted constraint
satisfaction problem with total weight wy finds a truth assignment which
satisfies the constraints whose weight is at least (p% (II) —&)wp. The running
time of the algorithm is, for a fixed set II, linear in the number of the input
constraints and 1/e. The algorithm is robust in the sense that if it fails
to find the desired truth assignment, then it outputs an inconsistent set of
constraints contained in the input whose size is bounded by the function of
e. However, it might find a good truth assignment even if the input instance
is not sufficiently locally consistent (in particular, the algorithm does not
determine the local consistency of the input instance). Finally, the presented
algorithm is asymptotically optimal in the sense that the ratio of the weights
of satisfied constraints can be made arbitrarily close to pZ (IT) by choosing
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the input parameter € to be sufficiently small.

1.1 Previous results and their relation to our results

Constraint satisfaction problems whose constraints are Boolean predicates
can be traced back to the late 1970’s. Schaefer [15] proved that the decision
problem whether a given set of predicates (with allowed negations in their
arguments) from a set I1 is satisfiable is NP-complete unless each predicate of
IT can be defined by a CNF formula consisting only of clauses of size at most
two or each predicate of IT can be described by a system of linear equations,
i.e., the truth assignment which satisfies it form an affine subspace over
GF(2). However, even if this decision problem can be solved in a polynomial
time, the problem to maximize the number of satisfied predicates can still be
hard, e.g., Hastad [8] showed that there is no (2—e¢)-approximation algorithm
for the case when the set II contains a single predicate P(x1, zo,23) = (21 +
Zo + 3) mod 2 unless P = NP. Note that p;(IT) = 1/2 for every I > 1 in
this case [4]. In particular, p.(II) = 1/2 and our algorithm achieves the best
possible ratio.

Locally consistent constraint satisfaction problems for constraints which
are Boolean predicates was first studied by Trevisan [16] and since then they
have attracted a substantial interest of researchers. Trevisan [16] proved
that if II is the set of all the Boolean predicates of arity k, then p% (II) =
poo(IT) = 2'=*. Dvoidk et al. [4] showed that if IT is a set containing a single
1-extendable Boolean predicate P of arity k (see Section 2 for the definition
of 1-extendibility), then p¥(II) = p,(II) = o(P)/2* for all | > 1 where o(P) is
the number of possible combinations of arguments which satisfy the predicate
P. In particular, p% (IT) = pe(IT) = o(P)/2%. In [4], all the values p¥(IT) has
also been determined for sets II consisting of a single Boolean predicate with
the arity k£ < 3, e.g., it was shown in [4] that p¥ (II¥) = 3/4 for k = 3 where
I1* is the set containing a single (non-1-extendable) predicate P(xy, ..., zx) =
Ty A (22 V -+ V). Our results imply that p (IT¥) = 3/4 for all 3 < k < 6
(see Examples 2 and 4). However, surprisingly, p¥ (IT¥) > 3/4 for all k > 7
as shown in Example 5.

The most studied variant of the problem are locally consistent CNF for-
mulas in which the clauses of a formula are viewed as the given constraints.
The corresponding set IIgar of the predicates is just the set of all the dis-
junctions. Similarly, IIo_gar denotes the set {(z1), (1 V z2)} of the predi-
cates corresponding to clauses of a 2-SAT formula. The interest in this case



is witnessed by a separate section (20.6) devoted to this concept in a re-
cent monograph on extremal combinatorics by Jukna [10]. The exact values
of pi*(Ilsat) and p}’(I1a_saT) are known only for small values of I: clearly,
p¥(Msar) = pY¥(Ia_sar) = 1/2. Lieberherr and Specker [12] showed that

¥ (Msat) = p¥ (Ily_gar) = ‘/52_1 ~ 0.6180 and subsequently [13] they showed
that p¥ (Ilsar) = p§ (Ta—_saT) = 2/3. Later, these proofs have been simplified
by Yannakakis [19] using a probabilistic argument. The case of 4-locally con-
sistent CNF formulas somewhat surprisingly differs from the previous ones:
First, p¥(Ilsatr) ~ 0.6992 but p¥ (Ilo_sat) > 0.6992. Second, the values
P (Ilsat) for [ = 1,2, 3 coincide with the corresponding values defined for a
“fractional” version of the problem (which are known for all [ > 1 [11] and
are equal to so-called Usiskin’s numbers [17]) but the value p¥ (Ilsat) differs
from the value 0.6920 for the fractional version of the problem.

The asymptotic behavior of p(Ilsar) was first addressed by Huang and
Lieberherr [9] who showed that p¥ (Ilsat) < 3/4. The limit was settled by
Trevisan [16] who showed p¥ (Ilsat) = 3/4. Trevisan’s result also yields that
p¥ (IIy_sat) = 3/4. The latter result can be easily derived from our general
expression for p2 (II) as demonstrated in Examples 1 and 3.

2 Notation

In the paper, we only deal with constraints which are Boolean predicates and
so we prefer to call them predicates to emphasize their kind. For a fixed set II
of (types of) Boolean predicates, let ¥ be a set of predicates whose types are
from the set II. The arguments of the predicates of ¥ may be both positive
and negative literals, but a single variable cannot be contained in two distinct
arguments of the same predicate. This does not decrease generality of our
results: if a single variable is allowed to be contained in several distinct
arguments of a single predicate, enhance the set II by Boolean predicates
obtained from the predicates of II by identifying some of their arguments.
The goal is to find a truth assignment which satisfies the largest fraction
p(X) of the predicates of ¥. Hence, p;(II) = inf p(3) where the infimum is
taken over all [-consistent sets ¥ of (unweighted) predicates whose types are
from the set II. Similarly, if X is a set of weighted predicates, p(X) denotes
the ratio between the weights of the predicates which can be satisfied and
the total weight of all the predicates of ¥ and pj’(IT) = inf p(X) where the
infimum is taken over all [-consistent sets Y of weighted predicates. Note



that in the unweighted case, ¥ is a set, not a multiset (otherwise, the ratios
Poo and p% would coincide).

A Boolean predicate P is 1-extendable if it has the following property:
if we fix one of its arguments, we can choose the remaining ones in such a
way that the predicate is satisfied. In particular, the 0-ary Boolean predicate
which is constantly true is 1-extendable. A restriction of a predicate P is
a predicate P’ obtained from P by fixing values of some of its arguments,
e.g., P'(z1,29) = (21 A z3) is a restriction of the predicate P(zy,x9,3) =
(x1Az9Az3)V(—x3) obtained by fixing the value of x3 to be true. A restriction
P’ of a k-ary predicate P can be described by a vector 7 € {0, 1,x}* where
0 and 1 denote an argument which is fixed to be false and true, respectively,
and x denotes an unfixed argument. Let 7p,(p) : (0,1) — (0,1) be equal
to the probability that the k-ary predicate P with arguments x,...,z is
satisfied if each x; is set to be true randomly and independently with the
probability 1 —p, p and 1/2, if 7; is 0, 1 and *, respectively. Note that 7p(p)
is a polynomial in p of degree at most k. For a set II of predicates, let 7(II)
be the set of all the functions mp, where P € II and the restriction of P
corresponding to 7 is 1-extendable.

Example 1 Let IT be the set consisting of two predicates Py (x1) = (x1) and
Py(z1,29) = (x1 Axs). There is a single restriction of the predicate Py, which
is 1-extendable and this restriction corresponds to the vector 1. There are four
restrictions of the predicate P, which are 1-extendable, those corresponding
to 11, 1x, 1 and . Hence, the set w(Il) consists of the following four
functions:

Tpa(p) =P Tpy11(P) =2p —p
Tex(P) = Tpya(p) = (P +1)/2  7pyu(p) = 3/4.

Example 2 Consider a set I containing the predicate P(x1, To, X3, T4, T5) =
(k1 A (o V 23 V x4 V x5)). There are several restrictions of P which are
1-extendable, but each such restriction is isomorphic to a restriction corre-
sponding to one of the following vectors: 1 xx % x, 10 % %x, 11 % %x, 100 x *,
110 %%, 111 %%, 1100%, 1100x, 1110x, 1111x, 11000, 11100, 11110 and 11111.

Let ¥ be the functional which assigns a continuous function f : (0,1) —
(0,1) its maximum on the interval (0,1). If F' is a finite family of functions
f:{0,1) — (0,1), then U(F) is defined to be the infimum ¥(f) where the
function f ranges over all convex combinations of the functions of F'. Note



that the infimum is attained if the set F' is a set of polynomials (which is

the case of 7(II) for any set of predicates IT). As mentioned in Section 1,

one of our results is that the limit p.,(IT) = llim pi(IT) is equal to W(w(IT))
— 00

for any set II of Boolean predicates with arities at least two and p (II) is
equal to U (7w (IT)) for any set II of Boolean predicates (see Corollary 8 and
Examples 3-5 after it).

3 The algorithm and the upper bound

Before we can design our algorithm, we first establish the following lemma
on the derivatives of convex combinations of the functions contained in 7 (I1):

Lemma 1 Let IT be a set of predicates of arity at most K and let f(p) be
any conver combination of functions contained in w(Il). The derivative of
the function f(p) for p € (0,1) takes values from the interval (—K,+K).

Proof: Since the derivative of a convex combination of some functions is a
convex combination of their derivatives, it is enough to prove the statement
of the lemma only for the functions contained in the set w(II). Let f be a
function contained in 7(IT) corresponding to a predicate P € II and a vector
7. Let k be the arity of P (which is also the length of 7) and &’ the number of
0’s and 1’s contained in 7. The function f can be expressed as the following
linear combination:

f(p Z Z Q.. gt Hfzj
11=0,1 14, =0,1

where 0 < a5, <1, fo(p) = (1 —p) and fi(p) = p. The derivative f' of
f is the following:

1 1 k' . k'
fl(p) - Z ot Z ail,...,ik/ Z (_1)1+Zj0 H fij (p)
21=0 15, =0 jo=1 J=1,3#jo0
k! 1 . 1 1 1 1 k'
= > > =Dy 3 3 e > e I fi ()
jo=1 i]'OZO 11=0 ij0_1:0ij0_|_1:0 15, =0 7=1,5#730

It remains to estimate the absolute value of f'(p) for p € (0, 1):

k' 1 1 1 1 1
|.f,<p)‘ S Z Z I—HJO Z Z Z Z iy, Yy H f"J ( )
Jo=1 o =0 11=0 ij0_1:0 ’ij0+1 0 15, =0 7=1,5#750



kl
< Y 1=FkK<K

jo=1

In order, to establish the middle inequality, observe first that

21: 21: 21: 21: ﬁ fij(p):1

=0 ijo-1=05041=0 i =0j5=1,j7%jo

for all p € (0,1) and jo = 1,...,k". Since both the function fy and f; are
non-negative, the value of the function

Z::O Z Z "Zah,...,ik/ H fi; ()

1
ijo—1=01850+1=0 %,y =0 J=1,3#jo

is always between 0 and 1 for p € (0,1), jo = 1,...,k" and ¢;, = 0,1. Since
the absolute value of the difference of two numbers between 0 and 1 does not
exceed 1, the inequality follows.

u

We are now ready to prove the main result of this section:

Theorem 2 Let 11 be a fized set of Boolean predicates and let K be the
mazimum arity of a predicate contained in II. There exists an algorithm
which given ¢ > 0 and a set of weighted predicates ¥ of total weight wy
either finds a truth assignment which satisfies predicates of X whose weight
is at least (U(m(T1)) — €)wy or finds a set of at most 2K 2K/51=1 inconsistent
predicates. Moreover, the algorithm runs in time linear in |X| and 1/e.

Proof: The algorithm consists of three steps:

1. Labeling variables according to the depth of “forcing” their values by
the input predicates (or finding an inconsistent set of at most 2K [26/¢1-1
predicates).

2. Finding a probability distribution on truth assignments such that the
expected weight of the satisfied predicates is at least (¥ (7 (1)) — &)wy.

3. Construction of a truth assignment which satisfies predicates whose
weight is at least (U (7 (1)) — &)wo.
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The third step is an easy application of a standard linear-time derandomiza-
tion technique proposed by Yannakakis [19] for locally consistent formulas
(see also [11]) nowadays known as the method of conditional expectations
(the reader is referred to [1, 2, 14] for additional details). So, we focus on
the first two steps of the algorithm in the rest of the proof.

In the first step, we construct a sequence of 1 + [2K/e]| partial truth
assignments o, ..., fif2x/] and subsets Xi,..., Yk of ¥. The partial
truth assignment pg is the empty one, i.e., it sets no variables. Let ¢ be an
integer between 1 and [2K/e] and assume that the partial truth assignment
o, - - -, i1 have been constructed. Let YJ; be the set of all the predicates of
Y>> whose restrictions with respect to u;_; are not l-extendable. If there is a
predicate whose restriction with respect to u;_; is constantly false, we stop.
Otherwise, the partial truth assignment p;_; is extended to the partial truth
assignment p; by setting the values of the variables forced by the restrictions
of the predicates contained in Y;. The value of a variable x is forced if there
exists a predicate which can be satisfied only if either x is false or x is true.
If the value of a single variable is forced to be both true and false, we also
stop.

Let us say few comments on the actual implementation of the first step of
the algorithm. Each variable z will be labeled by the smallest ¢ such that p;
assigns the value to x. The variables whose values are forced by previously
fixed variables are stored in a FIFO queue. When a variable is dequeued, the
algorithm checks whether there are some new variables forced after fixing the
value of the dequeued variable. If so, the newly forced variables are added
to the end of the queue. In addition, in order to be able to quickly find
inconsistent sets of clauses, we store for each variable which of the predicates
forced its value and include this predicate to the corresponding set ;. Note
that the labels of the variables correspond to “depths” of derivations forcing
their values and that each predicate is included to at most K of the sets
21, ceey E[QK/E]-

If we stop because we find an unsatisfied predicate or a variable which
is forced to two different values, we can easily construct an inconsistent set
of at most 2(K?K/¢1=1 4 1) predicates as described in the following. If an
unsatisfied predicate is found, consider a set A consisting of this predicate,
all the (at most K') predicates forcing the values of the variables contained
in its arguments, all the (at most K (K — 1)) predicates forcing the values of
the variables contained in the “first-level” predicates, etc. Since there are at
most [2K/e]| levels, the number of the predicates included to the set A does
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not exceed:
1+ K+ K(K—=1)4---4+ K(K —1)28/51=2 < g[2K/e1-1 4 g

If we stop because there is a variable which is forced to two different values,
we include to the set A the two predicates which force it to have opposite
values, all the (at most 2(K —1)) predicates forcing the values of the variables
contained in their arguments, etc. The number of the predicates included to
the set A does not exceed in this case:

24+ 2(K — 1)+ 2(K — 1) 4+ -+ 4 2(K — 1)[?K/e1=2 < g g 2K/e1-1,

In either of the cases, the number of the predicates contained in the set A
is at most 2K?5/¢1=1 and the set A can be constructed in time linear in
|AIK < |X|K.

If for each variable z, a list of predicates which contain x is formed at
the beginning of the computation (which can be simultaneously done for all
the variables in linear time), the entire first step of the algorithm can be
performed in time O(|X|K) including the construction of an inconsistent set.
Let us recall at this point that K is a constant since the set II is fixed.

We now focus on the second step of the algorithm. Since each predicate
of X can be contained in at most K sets Xi,..., XK/, the total weight of
all the predicates contained in the sets Xi,..., XK/, when counting mul-
tiplicities does not exceed Kwy. By an averaging argument, there exists
1 < i < [2K/e] for which the weight of the predicates of ¥; is at most
ewp/2. Let wy be the total weight of the predicates contained in ¥\ ;. Note
that wy > (1 — £/2)wy by the choice of i.

Let f(p) be the expected weight of the satisfied predicates of ¥\ %; divided
by w( where each of the variables fixed by p;_; gets the value assigned to
it by u;_; with the probability p and the remaining variables are set to be
true with the probability 1/2 (the values of all the variables are set mutually
independently). Clearly, the coefficients of the polynomial f(p) (of degree at
most K) can be computed in time linear in |X|. Since the restriction of each
predicate of ¥\ ¥; with respect to p;_; is 1-extendable, the function f(p) is
a convex combination of the functions from 7 (II). In particular, the absolute
value of the derivative of f(p) does not exceed K by Lemma 1.

Compute the value of the function f(p) for each of the following values

. £ 2
Ofp 07?’?""’

attained. Note that f(py) differs from the maximum of the function f(p) for

[%J £,1. Let py be the value for which the maximum is
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p € (0,1) by at most €/2 because the absolute value of the derivative of f
does not exceed K for p € (0,1). Since for each of the | K/ | + 2 values of p,
the function f(p) can be evaluated in time O(K), the algorithm needs time
linear in O(1/e) to determine py.

We claim that the probability distribution which assigns each of the vari-
ables fixed by p;_; the value assigned by u;_; with the probability p, and
the remaining variables are set to be true with the probability 1/2 is the
desired probability distribution. The expected weight of the satisfied clauses
is clearly at least f(po)wj. We further estimate this quantity:

Floo)uh > (max Fp) - s/z) (1 /2wy >

p€<051>

(U(r(ID)) — £/2)(1 - &/2)wo > (¥(x(ID)) — )wo.

This finishes the second step of the algorithm. Let us point out that the
algorithm does not need to compute any estimate on W(7(II)) in order to
run correctly.

u

An immediate corollary of Theorem 2 is the following:

Corollary 3 Let I be a set of Boolean predicates. For each ¢ > 0, there
erists an integer [ > 1 such that

pi(I1) > pi (1) > W (n(ID)) — €.

4 The lower bound

First, we introduce several concepts which are used throughout this section.
If ¥ is a set of predicates and p is a partial truth assignment, then the
restriction of 3 with respect to p is the set X' of the predicates obtained from
Y. by fixing the values of variables set by p. The dependence graph G(X') of
a X' is the multigraph whose vertices are predicates of ¥’ and the number
of edges between two predicates P, and P, of ¥’ is equal to the number
of variables which appear in arguments of both the predicates P, and P,
(regardless whether they appear as positive or negative literals). Note that
the predicates whose arguments contain only the variables fixed by u are
isolated vertices in G(X'). A semicycle of length [ of ¥ with respect to u is
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a set I' of [ predicates such that the vertices corresponding to the predicates
of T' form a cycle of length [ in G(X'). The following lemma relates the girth
of the graph G(X') and the local consistency of ¥ for a suitable partial truth
assignment p:

Lemma 4 Let ¥ be a set of predicates, 1 a partial truth assignment, ' the
restriction of X with respect to p and | > 2 an integer. If each predicate of X'
15 1-extendable and X contains no semicycle of length at most [ with respect
to u, then the set X is l-consistent.

Proof: We prove by induction on i that any ¢ = 1,. .., predicates of ¥/ can
be simultaneously satisfied. This clearly implies the statement of the lemma,
because a truth assignment for ¥’ can be viewed as an extension of the truth
assignment p to X.

The claim trivially holds for ¢ = 1. Assume now that ¢ > 1 and let
Py, ..., P; be any i predicates of 3. Since G(X') contains no cycle of length
at most [, the vertices corresponding to Py, ..., P; induce a forest T in G(X').
We can assume without loss of generality that P; corresponds to a leaf or an
isolated vertex in the forest T'. Let y1,..., vy, be the variables contained in
the first ¢+ — 1 predicates which are not set by p. By the induction hypothesis,
there is a truth assignment for the variables y, ..., y, which satisfies all the
predicates P;,..., P,_;. Since P, is a leaf or an isolated vertex in 7', it has at
most one variable in common with the predicates P;,..., P,_;. Hence, the
truth assignment for yy,...,y, can be extended to a truth assignment which
satisfies all the predicates Pi,..., P; because the restriction of the predicate
P; with respect to p is 1-extendable.

|

In the proof of the lower bound, Markov’s inequality and Chernoft’s in-
equality are used to bound the probability of large deviations from the ex-
pected value. The reader is referred to [7] for a more detailed exposition:

Proposition 5 Let X be a non-negative random variable with the expected
value E. The following holds for every a > 1:

Prob(X > «a) <

Q|
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Proposition 6 Let X be a random variable equal to the sum of N zero-one
independent random variables such that each of them is equal to 1 with the
probability p. Then, the following holds for every 0 < 6 < 1:

52pN _ 82pN

Prob(X > (1+0)pN) <e 3 and Prob(X <(1—-0)pN) <e 2

We are now ready to prove our lower bounds on p¥ (IT) and ps (I1):

Theorem 7 Let I1 be a set of Boolean predicates. For any integer | > 1
and any real € > 0, there exists an [-consistent set Xy of weighted predicates
whose types are from the set 11 such that:

p"(S0) < (r(ID) + .

Moreover, if the arity of each predicate 11 is at least two, then there exists
such a set Xy of unweighted predicates.

Proof: We assume without loss of generality that € < 1 is the inverse of a
power of two. Let fi,..., fx be all the different functions contained in the
set (I1) and let %, a;f; be their convex combination with U(YX5%, o, f;) =
U(n(IT)). Let further P’ be a predicate of IT whose restriction with respect
to a vector 7° is l-extendable and mpi i = f;. Observe that there are no
two indices i # i’ such that P* = P¥ and 7 = 7¢. Finally, let K, be the
maximum arity of a predicate contained in II.

We consider a random set ¥ of predicates whose arguments contain vari-
ables z,...,z, and yy,...,y, where n is a sufficiently large power of two
which will be fixed later in the proof. Fix an integer : = 1,..., K and let &
be the arity of P* and k' the number of stars contained in 7¢. At this point,
we abandon the condition that each variable can appear in at most one of the
arguments of the predicate and we allow to include to 3 predicates which do
not satisfy this condition. Later, we prune the set X to obey this constraint.

If k > 1, each of the n*2¥ predicates P* whose j-th argument, 1 < j < k,
is a positive literal containing one of the variables x1,...,z, if 7-; =1, a
negative literal containing one of the variables x1,...,x, if 7; = 0 and a
positive or negative literal containing one of the variables yi, ..., y, if 7; = *,
is included to ¥ randomly and independently of the other predicates with
the probability ;2% n=*¢=D+1/2l The weights of all these predicates are set
to one.
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If k = 1, each predicate P! whose only argument is a positive literal con-

taining one of the variables z1, ..., z, if 7% = 1, a negative literal containing
one of the variables zy,...,z, if 7¥ = 0 and a positive or negative literal
containing one of the variables vy, ..., y, if 7% = x, is included to ¥ with the

weight ;2 %' n'/?.. Note that if the arity of each predicate of II is at least
two, the obtained system ¥ consists of unweighted predicates (more precisely,
all its predicates have the weight equal to one).

Let X! be the predicates of ¥ corresponding to P* and 7¢. We prove the
following three statements (under the assumption that n is sufficiently large):

1. The total weight of the predicates of X is at least a;(1— £)n'™"/% with
the probability greater than 1 — 1/4K.

2. With the probability greater than 1 — 1/4K, each truth assignment
which assigns true to exactly n' of the variables x4, ..., z, satisfies the
predicates of 3* whose total weight is at most a;(f;(n'/n) + £)n' /2.

3. The total weight of the predicates whose arguments do not contain

different variables is at most a;En'™/?" with the probability greater
than 1 — 1/4K.

If the arity k of P is one or o;; = 0, then all the three statements hold with
the probability one. In the rest, we consider the case that the arity of P? is
at least two, i.e., k > 2, and «; > 0.

The probability that the total weight of the predicates of X! is smaller
than a;(1—£)n'*/? is bounded by Proposition 6 from above by the following:

B (5/4)2(ai2—k’n—(k—1)+1/2l)(nk2k’) 2a;nlt1/2

e 2 —=e 128

Since ¢, «;, [ and K do not depend on n, the probability that the total weight
of the predicates of £ exceeds o;(1 — £)n'*/? is smaller than 1/4K if n is
sufficiently large.

Let 1 be any of the 22" truth assignments for the variables z1, ..., z, and
Yi,...,Yn; let n' be the number of variables xi,...,z, which are set to be
true by u. A predicate which can be included to X¢ is said to be good if it is
satisfied by p. Note that there are exactly f;(n'/n)n*2* good predicates. If
fi(n'/n) < §, then mark additional predicates to be good so that the total

g

number of good predicates is £nf2¥ (note that since ¢ is the inverse of a

power of two, then this expression is an integer if n is a sufficiently large
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power of two). Hence, the expected number of good predicates included to
Y is exactly max{f;(n'/n), /8 n*2¥ . qyn=(k=1D+1/212=F" Using the fact that
fi(n’/n) < 1 and Proposition 6, we infer the following:

Prob(y satisfies more than a;(fi(n'/n) + =)n'T/? predicates of ©7) <

S,

Prob(X? contains more than «;(f;(n//n) + £)n'+/% good predicates) <

Prob(X¢ contains > (1+¢/8)a; max{f;(n'/n),e/8}n**1/% good predicates) <

520‘1’ max{fi(nl/n),s/B}nl_'_l/Ql ssain1+1/2l
e 192 < e 1536

Since there are 22" possible truth assignment 1, the probability that there

exists one which satisfies more than a;(f;(n//n) + £)n' /2 clauses of X is at
s3ain1+1/21 . . . .
most 22" .e~ 1536 . Since ¢, a; and K are fixed, this probability is smaller

than 1/4K if n is sufficiently large.

It remains to establish our third claim on ¥¢. At most (’2“) nk=128" out of
all the nF2¥ predicates which can be included to ! contain one variable in
several of its arguments. Therefore, the expected number of such predicates
which are contained in the set ¥! is at most (’2“)nk_12’“'ai2_k'n_(’“_1)+1/21 =
o (g) n'/?. By Markov’s inequality (Proposition 5), the probability that the

number of such predicates in $¢ exceeds c;£n'™"/? is at most the following

fraction: .
ai(z)nl/Ql B (k)i

o snl+t/2 2)en’

Since €, k and K are independent of n, the probability of this event is smaller
than 1/4K if n is sufficiently large.

It can be concluded that with the probability greater than 1/4 the fol-
lowing three statements hold for the set ¥ and a sufficiently large n (recall
that X5 oy = 1):

1. The total weight of the predicates of ¥ is at least (1 — £)n!T1/2.

2. Any truth assignment which assigns true to exactly n’ of the variables

xy,...,%, satisfies the predicates of ¥ whose total weight does not
exceed (XK, aifi(n'/n) + £)ntH1/2,

14



3. The total weight of the predicates whose arguments do not contain
different variables is at most n'*'/%.

We now estimate the number of semicycles of length at most [ in 3 with re-
spect to the partial truth assignment pg which sets all the variables z4, ..., z,
to be true. Note that all the restrictions of the predicates contained in ¥ with
respect to yo are l-extendable. Let us consider a semicycle corresponding to
the predicates P/,..., P}, 2 < I' <, described by 7{,...,7,. Let k; be the
arity of the predicate P] and k] the number of stars in 7;. The number of
all semicycles corresponding to the restrictions of the predicates P|,..., P
determined by 7/,..., 7, is at most []\_, nki~kipki—12kig! _ (the indices are
taken modulo /', i.e., kj = k};). The probability of including any such par-
ticular sequence to ¥ is [[1_, afn~ktki=D+1/219—ki where o is the coefficient
«; corresponding to P/ and 7,. Therefore, the expected number of semicy-
cles contained in Y which correspond to the restrictions of the predicates
P!,..., P} determined by 7/,...,7) is at most []'_, k:n'/? < KYn'/? (recall
that 0 < o < 1forall 1 <i <" and Kj denotes the maximum arity of a
predicate in II).

Since there are at most K* ways how to choose the predicates Pl,...., P
and 3% possible choices of the vectors 71,..., 7}, the expected number of
semicycles of ¥ of length I’ does not exceed (KKy3%°)"n'/2. By Proposi-
tion 5, the probability that ¥ contains more than Sn'*'/? semicycles of
length at most [ is at most the following;:

(K Ky3K0)in1/2  8I1?(K Ky3K0)!

§n1+1/zz = enl/2

Since the numbers I, K, Ky and £ do not depend on n, this probability is
smaller than 1/4 if n is sufficiently large. Therefore with positive probability,
the set ¥ has the properties 1-3 stated above and the number of its semicycles
of length at most [ with respect to the partial truth assignment g is at most
£n'*1/2 For the rest of the proof, fix ¥’ to be any such set of predicates.
Remove from the set ¥’ all the predicates contained in semicycles of
length at most [ with respect to uy and all the predicates which contains
the same variable in several of their arguments. Let >, be the resulting set
of predicates. Note that there are at most at most [ - £n'*!/? = £plt1/2
predicates contained in semicycles of length at most [. Since each of the
predicates of ¥’ which is contained in a semicycle must contain one of the

variables y1, . . ., yn, its arity is at least two. Consequently, its weight is equal
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to one. Hence, the total weight of the predicates removed from X' is at most
EplHl/2 g el t/2l — eplt1/2 and the total weight of the predicates of ¥,
is at least (1 — 35)n'*1/2. Clearly, the total weight of the predicates of ¥,
which can be simultaneously satisfied by a truth assignment does not exceed
the total weight of such predicates of ¥'. We can now conclude that the
following holds for each truth assignment which sets n' (0 < n’ < n) of the
variables z1,...,x, to be true:

(Zfil a;fi(n'/n) + i)”“ml < W(r(I)) + i
(1— %e)nlﬂ/zl = 1 — 3¢

P (Xo) <

1+ ¢

13

8

U (7 (IT)) < U(r(I)(14¢) < ¥(n(Il)) +¢
Since Xy contains no semicycles of length at most [ with respect to py and
all the restrictions of the predicates of Xy with respect to pg are 1-extendable,
the set 3y is [-consistent by Lemma 4. Consequently, p¥(I1) < W(x(I1)) + €.
Moreover, if the arity of each predicate of II is at least two, the weights of
all the predicates of ¥ are one and p,(II) < ¥(x(I1)) + &,
|

We immediately infer from Corollary 3 and Theorem 7 the following ex-
pressions for p(I1) and p% (I1):

Corollary 8 LetII be a finite set of Boolean predicates. The following holds:

Poo (1) = W(m(II)).

Moreover, if the arity of each predicate of I1 is at least two, then the following
holds:

As an application of Corollary 8, we compute the values pZ (IT) for several
sets II:

Example 3 Let II be the set of predicates from Example 1. Since mp, ,.(p)
equals to 3/4 for all 0 < p < 1, we infer ¥(n(Il)) < ¥(7p, ) = 3/4. On the
other hand, the value of each of the functions wp, 1, Tp, 11, TPy 1% ANA Tp, 4k for
p = 3/4 is at least 3/4. Thus, the value of any convex combination of them
for p=3/4 is also at least 3/4 and ¥(n(I1)) > 3/4. Hence, p¥ (I) = 3/4.
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Example 4 Let II be the set of predicates from Example 2. Since the func-
tion mp100xx (D) 18 p(1—p?/4), we infer that U (w (1)) < U(Tp10oss) = 3/4. On
the other hand, each of the functions wp . for all the vectors T from Ezample 2
is at least 3/4 for p = 1. Therefore, p% (I1) = ¥(x (1)) = 3/4.

Example 5 Let T1* be the set containing a single predicate P(xy,. .., x}) =
1A (o V -+ -V xg) for an integer k > 7. Consider the vector 7 = 10+ -0 % .
Clearly, the restriction of P determined by 7 is 1-extendable. It is easy to

show that the mazimum of the function wp, is attained for py = *=Y 2 and

k—2
it is strictly larger than 3/4. Moreover, the value wp,(po) is smaller or equal

to the value wp(po) for any 7' corresponding to a 1-extendable restriction
of P. We infer that p% (1T1F) = U (7 (11%)) > ¥(7p,) > 3/4.

5 Conclusion

We settled almost completely the case of finite sets Il of predicates. The only
case which remains open is to determine po (IT) for sets of predicates IT which
contains a predicate of arity one. The case of infinite sets II seems to be also
interesting, but rather from the theoretical point of view than the algorithmic
one: in most cases, it might be difficult to describe the input if the set II is
not a “nice” set of predicates as it is the case of, e.g., IIsar. For an infinite
set of predicates II, one can also define the set 7w(II) and then W(7(II)) to
be the infimum of ¥ taken over all convex combinations of finite number of
functions from 7 (I1). It is not hard to verify that the proof of Theorem 7
can be translated to this setting. In particular, p% (II) > ¥(x(II)) for every
infinite set II. However, the proof of Theorem 2 cannot be adopted to this
case since the arity of the predicates of II is not bounded. We suspect that
the equality p% (IT) = ¥ (7 (II)) does not hold for all (infinite) sets II.
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