Metric Spaces are Ramsey

*Jaroslav Nesetiil
Department of Applied Mathematics
and
Institute of Theoretical Computer sciences (ITT)
Charles University
Malostranské nam. 25, 11800 Praha, Czech Republic

nesetril@kam.ms.mff.cuni.cz

June 3, 2004

Abstract

We prove that the class of all finite ordered metric spaces is a Ram-
sey class. This solves a problem of Kechris, Pestov and Todoréevic.

1 Ramsey Classes

Let I be a class of objects which is isomorphism closed and endowed with
subobjects. Given two objects A,B € K we denote by (E) the set of all
subobjects A’ of B which are isomorphic to A. (Thus in this notation the
role of K is suppressed. It should be always clear from the context.) We say
that the class IC has A-Ramsey property if the following statement holds:

For every positive integer k£ and for every B € K there exists C € K such
that C — (B)2. Here the last symbol (Erdés-Rado partition arrow) has
the following meaning:

For every partition (g) = A UAsU...U A, there exists B’ € (C) and

B
an i,1 < ¢ < k such that (i) C A,.
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In the extremal case that a class K has A-Ramsey property for every its
object A we say that IC is a Ramsey class.

These notions crystallized in the early seventies, see e.g. [9, 18, 3]. This
formalism and the natural questions it motivated essentially contributed to
create establish Ramsey theory as a “theory” (as nicely put in the introduc-
tion to [4]).

The notion of a Ramsey class is highly structured and in a sense it is the
top of the line of the Ramsey notions (“one can partition everything in any
number of classes to get anything homogeneous”). Consequently there are
not many (essentially different) examples of Ramsey classes known.

Examples of Ramsey classes include

i. The class of all finite ordered graphs;

ii. The class of all finite partially ordered sets (with a fixed linear exten-
sion);

iii. The class of all finite vector spaces (over a fixed field F).

iv. The class of all (labeled) finite partitions.

For these results see [3, 4, 16, 12]. We formulate explicitly one of the most
general results (for relational structures) which will be needed in the sequel:

Let I be a finite set of real numbers and A = (J;;7 € I) be a sequence
of natural numbers. A is called the type (or signature). We consider objects
ordered relational structures of the form A = (X, (R;;4 € I)) where X is a
non-empty ordered set and R; C X% (i.e. R; is a §;-nary relation). We also
denote the type of A by A(A) = A = (d;;¢ € I), the underlying set (vertices)
of A by A = X (sometimes we simply denote the set of vertices as A) the
relations by R;(A) = R;.

We denote by Rel the class of all such ordered relational structures A of all
possible (finite) types A. The class Rel will be considered with embeddings
(corresponding to induced substructures): Given relational structures A =
(X, (Ri;iel)) and A’ = (X', (Rl;i' € I')) of types A and A" = (8);;i' € I')
(note that the types A and A’ may be different) a mapping f: X — X' is
called an embedding of A into A" if I C I' and §; = ] for every i € I (i.e. A
is a subtype of A’) and if f is a monotone injection of X into X' satisfying
(f(ZEJ),] = 1,,5/) ~ R; iff (ZIIJ,] = 1,,51) c Rz



As usual, an inclusion (or bijective) embedding is called substructure (or
isomorphism). Given two ordered relational structures A, B we denote by
(E) the class of all substructures A’ of B which are isomorphic to A. One
more definition: For real numbers d, D,0 < d < D, we denote by Rel(d, D)
the subclass of Rel induced by all systems A = (X, (R;;¢ € I)) where [ is a
subset of the interval [d, D]. We have the following

Theorem 1.1 ([14]) For every choice of reals d,D,0 < d < D the class
Rel(d, D) is a Ramsey class.

Ezxplicitly: For every choice of a natural number k and of structures
A B € Rel(d,D) there exists a structure C € Rel(d, D) with the follow-
ing property: For every partition (g) = A UAy U ... U A, there exists

i,1 <i<k, and a substructure B' € (g) such that (]i) C A;.

In [14, 13, 12] (and elsewhere) Theorem1.1 is stated in its equivalent form
as a Ramsey theorem for classes Rel(A) of all ordered relational structures
of a fixed type A. We shall make use of Theorem 1.1 in our proof of the
following theorem which is the main result of this paper:

Theorem 1.2 The class of all finite ordered metric spaces is a Ramsey class.

Let us formulate Theorem 1.2 explicitly:

Denote by M the class of all finite ordered metric spaces (i.e. metric
spaces where the set of points is linearly ordered). An embedding will be
monotone isometry. We claim that M is a Ramsey class: For every choice of
ordered metric spaces (X, p), (Y, o) (ordering is not indicated) there exists a
metric space (Z, A) such that

(Z,)) — (¥, 0)5".

(To keep the notation simple from now on we shall consider only 2-
colorings. Colorings using more colors can be reduced to 2-colorings by
iterating.)

Theorem 1.2 solves a problem of Kechris, Pestov and Todorcevic, see
[6]. The paper [6] lists several consequences of Theorem 1.2 to dynamical
systems and topological groups (extremal amenable groups, minimal flows).
This also implies a remarkable property of the Urysohn Space which is defined
as a completion of the homogeneous universal rational metric space, see e.g.
[21, 22]. (The author, himself student of Katétov, cannot resist mentioning

3



that this construction was one of the last results of both Urysohn [20] and
Katétov [5].) Theorem 1.2 also generalizes Ramsey theorem for pairs in
metric spaces stated in [13].

Theorem 1.2 will be proved as a consequence of a more technical form
stated in Sections 2 and 3. Here is the outline of our proof:

We view any metric space (X, p) as a labeled complete graph and this
in turn may be viewed as a binary relational system of type A = (§;;1 € 1)
where §; = 2: we put (z,y) € R; iff p(x,y) = i. (Thus I is the set of all
possible distances in (X, p), an i € I may be viewed as the length (or weight)
of edge (z,y).) Clearly not every binary relational system corresponds to a
metric space (we need symmetry and triangle inequality). But every binary
relational system A may be converted to a metric space (A, oa) by defining
pa(x,y) as the minimal (weighted) length of a path from x to y in A. pa
is also called free metric generated by A. We denote by F(A) the binary
relational system corresponding to the metric space (A, pa). Clearly it can
(only too often) happen that a binary relational system B satisfies B — A
while B 4 F(A). Thus we shall introduce the notion of ¢-approzimation
system.We then prove by induction on £ a Ramsey type theorem for ordered
(- approximation systems (Theorem 2.1). On the other hand, for each (fixed)
B there exists ¢ such that B — F(A) iff there exists an f~approximation em-
bedding of B into A. This can then be used to prove that Ramsey theorems
for /-approximation systems implies Theorem 1.2.

The paper is organized as follows: In Section 2 we state the Theorem 1.2 in
a more technical form and introduce classes Rel((d, D) of {-approximation
systems (and a given range of edge lengths). In Sections 3 and 4 we fur-
ther refine the classes Rel(y)(d, D) to classes PartiRely)(d, D) and prove A-
Ramsey property by a variant of amalgamation technique (known also as
Partite Construction) see [19, 17, 16, 12]. This then implies Theorem 1.2.
Section 5 contains concluding remarks and some related results.

2 Metric Approximation

Let d < D be positive real numbers, ¢ a positive integer. Before defining
objects and morphisms of our classes we take time out for a definition: We
say that (z,y) € R; is {-metric edge in A = (X, (R;;i € I)) if for any path
T = Zo,T1,..., %4t < L, with lengths of edges i1,1io,...,4; (i.e. we assume
p(z;—1,2;) = i;) holds i <4y +49 + ...+ 4. A pair (z,y) which is /-metric



for every / is called a metric edge.

We shall define the class Rel(y(d, D) as follows:

Objects of Rel(y)(d, D) (called approzimative systems and usually denoted
by A,B,...) are those objects A = (X, (R;;i € I)) of the class Rel(d, D)
which satisty the following additional properties:

i. R; C X? for each i € I;

it. all relations R; are symmetric and antireflexive and R; N R; = () when-
ever i # j € I.

121. every edge of A is (-metric.

Thus the objects are relational structures of the type A where A =
(2,2,...,2) (a sequence of 2’s indexed by a set of real numbers which we
may interpret as lengths (or weights) of edges; these lengths will be denoted
by p: if (z,y) € R; we also write p(x,y) = 7).

Embeddings of Rel)(d, D) are inherited from Rel(d, D).

An edge (z,y) which is f-metric for every /¢ is called a metric edge. If all
pairs of vertices of a system A are edges and they are metric (and in this case
it suffices that they are 2-metric) then of course A corresponds to a metric
space (A, p).

Note that the objects A, A’ of Rel(,(d, D) need not correspond to metric
spaces. However lengths of edges of an /l-approximate systems cannot be
“shortened” by paths of length < /. Thus the larger /-approximate system
we have the better approximation of an isometry we get.

The class Rel)(d, D) will be considered with embeddings and given ob-
jects A, B we denote again by (i) the class of all subobjects of B which are
isomorphic to A. Note also that for / = 1 the notion of an /-approximative
system (and their embeddings) coincide with the notion of relational struc-
tures (and their embeddings) — it is Rel1)(d, D) = Rel(d, D). Thus the
following generalizes Theorem 1.1:

Theorem 2.1 For every metric systems A and B in Rel(d, D) and for every
positive integer £ and every pair of real numbers 0 < d < D there exists
C € Relyy(d, D) such that in the class Relg(d, D) holds

C — (B)>.

We postpone the proof to Section 4. Here we show that Theorem 2.1
implies Theorem 1.2.



Proof. Let (X, p), (Y,0) be finite ordered metric spaces. We may assume
that (Y,0) contains an isometric copy of (X,p). Put d = min{o(z,y)}
and D = max{o(z,y)}. Let £ > D/d. Let A = (X,(R;i € I)) and
B = (Y, (Sj;7 € J)) be binary relational systems corresponding to the met-
ric spaces (X, p) and (Y, o) (thus both systems have all edges metric). By
Theorem 2.1 there exists a binary relational system C = (Z, (Ty; k € K))
which is Ramsey for A and B in the class Rely(d, D). Let us write this
explicitly:

For every partition (g) = A, UA, there exists an f-approximation embed-
ding g : B — C and ¢ € {1, 2} such that for all ~-approximation embeddings
f:A— Bwehave go f € A,.

In this situation consider the metric space (Z, ) freely generated by the
binary relational system C: we put 0(x,y) = min{D, min{éi; +is +...+i;}}
where the second minimum is taken over all paths x = zy, zy,...,x; where
(xr_1,x,) has length i,. We note that all the § distances are in the interval
[d, D] and thus the corresponding binary system F'(C) belongs to Rel(d, D).
As ¢ > D/d we have that for every edge (z,y) of C holds (z,y) € R; iff
O(z,y) = i.

f:A—> Cis an f-embedding iff f : A — F(C) is an embedding iff
f:(X,p) — (Z,0) is an isometry.

Similarly, f : B — C is an f-embedding iff ¢ : B — F(C) is an
embedding iff g : (Y,0) — (Z,60) is an isometry.

Thus F(C) is a Ramsey (for A and B) ordered binary relational system

which corresponds to a metric space. Thus F(C) — (B)5 (in the class

Rel(y)(d, D)) and also (Z,6) — (Y, )5 This proves Theorem 1.2.
|

3 Partite Approximative Classes.

Our proof proceeds by a double induction and towards this end we introduce
a version of Partite Construction (see Introduction).

We define the class PartiRel)(d, D) of structures as follows:

An object is a triple (B, A,:) where A, B are ordered binary relational
structures A € Rel(d, D), B € Rel_1y(d, D). Put explicitly
A = (X,(Ryi € I)), B = (Y,(S;55 € J)), I,J are finite set of reals
I C [d,D]. ¢ is a monotone homomorphism ¢ : B — A. Let us define
explicitly the properties of ¢:



i. If (z,y) € S; the (f(x), f(y)) € R; (thus J C I);

1. For simplicity we shall assume that + : ¥ — X is not only monotone
but also each set +~!(z) is an interval in (the ordering of) Y.

We also call B an A-partite (binary relational) system. This looks as a
little change. But in fact considering partite (“leveled”) systems is the key
fact which allows us to derive more complex Ramsey type statements from
simpler ones and to start the induction procedure in our case. And for this
the key is the definition of morphisms which we define as follows:

Let (B, A,:) and (B’, A’, /) be objects of PartiRely)(d, D). An embed-
ding is a pair (f, o) with the following properties:

i. a: A — A’ is an embedding (in the class Rel—1)(d, D));

ii. f: B — B'is an embedding (in the class Rel)(d, D));

1. o f =aou.

This means that the mappings f and g commute with ’s as indicated by
the following diagram.

B A
f Q
B " LA

(Thus an embedding has to preserve parts of B and B'.)

Consider an object (A,B,t) € PartiRely(d,D),. : B — A. If 1 is
an injective mapping then we say that B is a transversal system. Clearly
any B € Rely)(d, D) can be regarded as a transversal system (B,B,1) €
PartiRelg)(d, D) where 1 : B — B) is the identity mapping. Thus we may
regard Rely)(d, D) as a subcategory of PartiRel)(d, D).

We shall prove the following technical result :

Theorem 3.1 Let A and B be metric systems in Rel(d, D). Then for every
{ there exists C € PartiRel(d, D) such that (in the class PartiRely(d, D)
holds

C — (B)2.



We could also prove that the classes Rel(d, D) and PartiRely(d, D)
are Ramsey classes. (We want to keep generalities at the minimum and
concentrate on the proof of Theorem 1.2 only; we shall publish generalizations
of the proof elsewhere.)

4 Proofs

As stated above we apply Partite Construction in the heart of which lies the
amalgamation property.

The amalgamation property now takes the following technical form. (To
simplify the notation the symbol 1 will denote an inclusion mapping or iden-

tity mapping.)

Lemma 4.1 (Amalgamation Lemma)

Let C € Relg)(d, D), and let A be a metric subsystem of C (in Rely(d, D)),
denote by 1 : A — C the inclusion map. Let for i+ = 1,2 be given systems
(Bi,C, v : B; — C) € PartiRelyi1)(d, D). Let (Bg, A, : By — A)
be a system with embeddings (f;, 1) : (Bg, A, 19) — (Bi, A, 1;),1 = 1,2 in
PartiRel)(d, D). Then there exists (B3, C,13) € PartiRel1)(d, D) and
embedding (g;, 1) : (B;, C,1;) — (B3, C,13) € PartiRelp41)(d, D) such that
(95, 1) is an amalgam of (f;,1),i = 1,2. Explicitly, we have g1 o f1 = go 0 fo
while the embeddings g; commute with homomorphisms 1;, see Fig. 2.

Proof. We let (B3, C, ¢3) with embeddings (g;,1) : (B;, C, ;) — (B3, C, t3)
be the (free) amalgamation of (B;, C,;) with respect to the embeddings
(fi»1). We only have to justify our claim that (Bjs, C,t3) belongs to the
class PartiRel1y(d, D). Let {z,y} be an edge of B3 and let P = (z =
Zo,T1,---,2; = Yy) be a path in C from z to y of length < ¢+ 1. We
have to prove that the length p(z,y) of the edge {z,y} satisfies p(x,y) <
p(P) = ' p(zi_1,7;). Towards this end consider the image i3(P) =
(13(o), t3(x1), - - -, 13(x¢)). Note that it is p(x;, z;41) = p(t3(x;), t3(xip1) (as
t3 is a homomorphisms of binary relational systems). The sequence t3(P)
(t3(xo), t3(x1), - - -, t3(z¢)) induces a trail in C and some vertices and edges
may be identified by 3. However if this really happens then the length
p(P) = p(t3(P) is bounded by p(P') where P’ is a path (a subpath of ((P))
from «(x) to (y) of length < ¢ and thus (as C € Rel()(d, D) we have that
p(t(z),(y)) = p(z,y) < p(P') is an f-metric edge. Thus we can assume that
t(P) is a path of length £+ 1 in C. We distinguish three cases:
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Lo

BO > A.
1
5 N4
)
fi B, - C
g2

B1 il > C ].

< 7l
B3 i > C

If (P) is a subset of A then clearly (:(z),:(y)) is a metric pair as A is a
metric space (this holds for any length t).

If P is a subset of either B; or By then again p(z,y) < p(P) =
S (@1, m) (as (B, C, 1) € PartiRel(ey1)(d, D).

Thus assume that there exist x;(;) such that z;; € B;,u(z;4) € A,i =
1,2. But as Bj is a free amalgamation there are no edges outside :71(A)
and thus there are at least two vertices z4(;,¢ = 1,2, k(1) < k(2), for which
v(zkt)) € A. But then the path between i(z)) and t(xg)) has length
at least p(u(xk(1)), t(Tk(2))) and thus p(P) > p(P') where P’ = (i(z) =
U(zo), t(x1), -+ s (TR(1))s UTR(2))s - - - L(z¢) = 1(y)) and we have
p(P") > p(u(z),(y)) = p(z,y) again by the assumption on C. |

Proof. We are now in position to prove Theorem 2.1. We shall proceed
by induction on £. As explained above, for £ = 1 Theorem 2.1 reduces to
Theorem 1.1.

In the induction step (¢ = ¢ + 1) we assume that Theorem 2.1 holds
¢. Let A,B be metric binary systems considered as transversal systems in
PartiRel41y(d, D). Let R € Rel()(d, D) be a system satisfying R — (B)2



in the class Rel(s)(d, D). R will be fixed from now on and it will be considered
as transversal system (in PartiRel,(d, D)). We shall construct R-partite
systems P°, Pt ... P® where a = |(}y)|. The system C = P’ will satisfy (as
we shall show below) all the required properties of Theorem 2.1.

Put explicitly (§) = {A!, A2,..., A%} and also () = {B',B2,...,B*}.

Let the system (P° R,:°) be any system in the class PartiRel41)(d, D)
for which the mapping (°) satisfies:

For any i = 1,...,b the set (:°)7}(B?) contains a subsystem isomorphic
to B* (in PartiRel1)(d, D)).

Such a system is easy to construct: we can take the disjoint union of b
copies of B and define mapping (° such that the above condition holds.

In the induction step (¢ = 4 + 1) let be given an R-partite system
(P", R, ") € PartiRely1)(d, D). Consider the system B and let (D, A, )
denote the subsystem of (P, R, (%) induced by the set (:*)7'(B?) (we de-
noted the restriction of ' to the subset by the same symbol). We have
(D", R, ") € PartiRel41y(d, D) thus by the induction hypothesis there ex-
its a system (E‘, A, \!) such that

E' — (D)2

(in the class PartiRel(d, D)).

Let (P“*1, R, /1) be a free amalgamation of copies of (P, R, *) such that
every copy of (D%, A, /%) in (E¢, A, ) is extended to unique copy of (P, R, *).
(Such a free amalgamation we obtain by repeatedly using amalgamation of
pairs defined above.) According to Lemma 4.1 we know that (P*' R, //*!) €
PartiRel1y(d, D).

Thus let (C,R, 1) = (P* R, %) € PartiRelg41)(d, D). It remains to show
that

C — (B)2.

However this is the underlying idea of every application of the Partite
Construction and this follows by a backward induction for i = a,
a—1,...,1,0. Let (i) = A; U Ay be arbitrary partition (coloring). By
induction for i = a,a —1,...,1,0 we prove that there exists a subsystem
(P%, R, 7) (in PartiRelg41y(d, D)) isomorphic to P* such that for all j > i all
copies A € ($) for which [(A) = A7 get the same color, say ¢(j).

In the induction step (as for i = a the statement clearly holds) we consider

a copy Pi of P! with the stated properties. In the set (I:) consider those
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A for which i(A) = A’. These copies of lie in a copy of A-partite system
which is isomorphic to E and thus by E* — (D)% we get that there exists
a subsystem (1;:1, R, 7)) of (P%, R, i) which is isomorphic to (P%, R, i) with
the stated properties.

Finally, we obtain a copy (f’vO,R, 1) of (P° R,.%) such that for every
Ac (T) its color depends only on i(A). But this in turn induces a coloring
Ay U A, of the set (%) defined by A; € A; iff ¢(j) = i. Thus there exists

B ¢ (g) such that (E) C .Zi(o) and thus by the construction of P any

B’ € (11;0) with 7(B') = B satisfies (]i') C Aoy which we wanted to prove.
|

5 Remarks and Open Problems

1. Theorem 1.2 also implies the following (ordering property of finite metric
spaces:

Theorem 5.1 For every metric space there exists a metric space (Y, o) such
that for any linear orderings <x and <y of X andY there exists a monotone
isometry (X, p) — (Y, 0).

This result explains why we are considering ordered metric spaces. The-
orem 5.1 may be derived either from Theorem 1.2 (applied for a A with just
2 vertices; compare [18] or directly, see [11].

2. One can prove results analogous to Theorem 1.2 for other classes of
metric spaces: for example one can consider only rational, or integer or graph-
metrics. We only have to check that the amalgamation property holds for
these classes. Rational metrics then applies to the Urysohn space.

3. Perhaps in the spirit of [10, 11] one could ask for a characterization of all
Ramsey classes of metric spaces. However this seems to be beyond the reach
as the corresponding characterization of homogeneous metric spaces (and
thus equivalently (Fraissé classes) seems not be known, compare [2, 7, §].

4. Tt is interesting that the amalgamation technique is (almost) necessary
as we have the following easy but important result observed already in [10],
see recent [11, 6]. Particularly one can prove that every hereditary Ramsey
class of structures with the joint embedding property is amalgamation class.
This shows the relevance of the classification programme of Ramsey classes
[11] and the classification programme for homogeneous structures [2].
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5. It would be interesting to investigate the "simple” Ramsey properties

(such as the vertex- and edge-partitions of the Urysohn space (in the analogy
of a similar results for the Random graph, [1].
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