Polynomial-size binary decision diagrams for the
Exactly halt-d-hyperclique problem reading each
input bit twice

Daniel Kral’™*

Abstract

Binary decision diagrams (BDDs) are graph-based data structures rep-
resenting Boolean functions; ¢-BDDs are BDDs with an additional re-
striction that each input bit can be tested at most £ times. A d-uniform
hypergraph H on N vertices is an exactly half-d-hyperclique if N/2 of
its vertices form a hyperclique and the remaining vertices are isolated.
Wegener [J. ACM 35(2) (1988), 461-471] conjectured that there is no
polynomial-size (d — 1)-BDD for the Exactly half-d-hyperclique problem.
We disprove this conjecture by constructing polynomial-size 2-BDDs for
the Exactly half-d-hyperclique problem for every d > 2. Our construction
is based on a new idea involving log-space algorithms with faulty inputs.

1 Introduction

Binary decision diagrams are important data structure for representation of
Boolean functions. In particular, they are significant data structures in circuit
verification algorithms [12]. Several modifications of binary decision diagrams
have been proposed in hope that they can provide small compact representations
of important Boolean functions such as integer multiplication. This leads to an
enormous interest in upper and lower bounds on the sizes of binary decision
diagrams and their variants for various naturally defined Boolean functions.
However, since the sizes of binary decision diagrams are closely related to non-
uniform space complexity, the problems are also interesting from the theoretical
point of view. The reader is referred to the monographs [10, 12] by Wegener for
a more detailed exposition.

A binary decision diagram (BDD) is an acyclic oriented graph with three
special nodes: the source, the 0-sink and the 1-sink. Each node v of the diagram,
except for the O-sink and 1-sink, is assigned one of the input variables x; and

*Institute for Theoretical Computer Science, Charles University, Malostranské ndmésti 25,
118 00 Prague 1, Czech Republic. E-mail: kral@kam.mff.cuni.cz. Institute for Theoretical
Computer Science (ITI) is supported by Ministry of Education of Czech Republic as project
LNOOAO056.

its out-degree is two. One of the arcs leaving v is labeled with 0, the other with
1. The out-degrees of both the 0-sink and the 1-sink are zero. The computation
path for the input zq,...,x, is the path vq,...,v; where the node v, is the
source, vg is one of the sinks and the arc between v; and v;; is labeled by the
value of the variable z;, assigned to the node v;. The variable z;, is said to
be tested at the node v;. The input is accepted if the final node of the path
is the 1-sink, and the input is rejected, otherwise. The size of the diagram is
the number of its nodes. The sizes of BDDs for naturally defined sequences of
Boolean functions fy, : {0,1}"™ — {0,1} are often expressed as a function of the
input length n.

In this paper, we study binary decision diagrams where the number of tests
of input bits is restricted. As noticed by Borodin et al. [2], there are actually two
possible types of restrictions: if each path from the source to a sink contains at
most £ nodes labeled by each of the variables, the BDD is said to be a syntactic
£-BDD. On the other hand, if only on each computation path from the source
to one of the sinks, i.e., the path corresponding to some input, each variable is
tested at most £ times, the BDD is said to be a semantic £-BDD. The notions
of syntactic £~-BDDs and semantic -BDDs coincide for £ = 1. A 1-BDD is also
called a free binary decision diagram (FBDD).

Clearly, a syntactic /-BDD is also a semantic /~-BDD for every £ > 1. On the
other hand, there is not known a single example of a Boolean function which
has polynomial-size semantic /-BDDs but which does not have polynomial-size
syntactic /-BDDs. In fact, there is not even known an exponential lower bound
on the size of semantic /-BDDs for any explicit function with polynomial-size
BDDs (for ¢ > 2). This contrasts to the case of well-understood lower bound
techniques for free binary decision diagrams (1-BDDs) [6, 7, 8].

Wegener [11] raised the question whether the class of Boolean functions
which can be represented by polynomial-size /~-BDDs is a proper subset of the
class of Boolean functions which can be represented by polynomial-size (£ + 1)-
BDDs for every £ > 1. The the first function suggested as an example to
separate the two classes [12] was the function excl%. The function excl? is a
function of (I;’) Boolean variables which represent possible edges of a d-uniform

hypergraph H on N vertices and the function excl‘fv is true if there is a set A of
N/2 vertices of H such that the edges of H are precisely the sets of (’3), i.e., H
is formed by a hyperclique of order N/2 and its remaining vertices are isolated.
Wegener [11] conjectured the following:

Conjecture 1 For every d > 1, there is no polynomial-size (d — 1)-BDD rep-
resenting the function excl}iv.

The conjecture also appears as Problem 7.7 in [12]. The question whether the
function excl% has a polynomial-size (d — 1)-BDDs is still of particular interest
(see comments after Theorem 7.2.6 in [12]), though the separation of the classes
of syntactic /-BDDs, which motivated Conjecture 1, has recently been settled
by Thathachar [9] who constructed two families of explicit functions, which
he called the hyperplanar sum-of-products predicates and the conjunction of

hyperplanar sum-of-products predicates, with polynomial-size /-BDDs and with
no polynomial-size (/4 1)-BDDs. In the present paper, we disprove Conjecture 1
by constructing polynomial-size syntactic 2-BDDs for the function excl‘fv for
every d > 3.

If d = 2 (the case of ordinary graphs), an exponential lower bound on the
size of 1-BDDs (FBDDs) for excl?, was proved by Zak £13]. He showed that the
size of each 1-BDD which represents the function excly is at least 2(N) (note
that the bound is actually of order 2%(*""*) where n = (%) is the length of the
input). Let us remark that the first lower bound of order 2*(") where n is the
length of the input on the size of 1-BDDs for a function with polynomial-size
BDDs was proved by Ajtai et al. [1].

As mentioned before, we disprove Conjecture 1 by showing that the function
254
excl% has syntactic 2-BDDs of size O(Nd 3 4) for every d > 2 (Theorem 2),
d243d—4

i.e., of size O(n"2¢) where n = (%) is the length of the input. We design

a log-space algorithm for the function excl‘fv which accesses each input bit at
most twice. Since it is well-known that the logarithm of the size of BDDs is
essentially the space needed by non-uniform Turing machines [3, 5], this already
proves the existence of polynomial-size semantic 2-BDDs for exclf\,. In order,
to construct syntactic 2-BDDs for excl?\,, we show that our algorithm has the
log-space complexity and the restriction on the number of tests of input bits is
preserved even for “faulty” inputs (see Section 2 for a formal definition). To
our best knowledge, the upper bound technique for syntactic /-BDDs based
on algorithms with faulty inputs has not been used before. For the sake of
completeness, we show that the function excl‘fv has no polynomial-size 1-BDDs
in Section 4.

2 Relation between space complexity and BDD
size

Our upper bound construction is based on the close relation between the space
complexity of non-uniform Turing machines and the sizes of binary decision dia-
grams computing the same Boolean function. For ordinary BDDs, this relation
were already observed by Cobham [3] and by Pudldk and Zak [5]. However
in our case, we deal with semantic and syntactic /~-BDDs instead of ordinary
BDDs, so an additional assumption that the algorithm reads each input bit
limited number of times has to be added.

The computational model considered throughout the paper is the following:
the algorithm can be in one of finitely many states. The number of states cannot
depend on the input size. The configuration of the algorithm is determined by
the pair consisting of its state and the current content of the memory. The
allocated memory may depend on the input size. The configuration uniquely
determines the next step of the algorithm which results in either a change of the
state and the content of the memory or a change of the state which depends on
the read input bit (i.e., the new state depends on whether the read input bit is

0 or 1). The step in which the new state depends on the i-th input bit is said
to be a test of the i-th bit, or simply, the algorithm tests the i-th bit. The space
complexity of the algorithm is the number of bits of memory needed to run the
algorithm. The input size n is stored in additional logn bits of memory which
cannot be modified and which are thus not counted to the space complexity.
Finally, let us remark that the base of all logarithms through the paper is two.

We first consider the case of semantic /-BDDs. The proof follows the same
idea as in the case of ordinary BDDs but we decided to include its sketch in
order to demonstrate the main ideas. We remark that a similar proposition for
FBDDs, i.e., 1-BDDs, can be found in [4].

Proposition 1 Let f,, : {0,1}" — {0,1} be a sequence of Boolean functions
and £ > 1 an integer. If there exists an algorithm which for the input of length
n:

e computes the function f,,
e works in space klogn + O(1) for some k > 0, and
e accesses each bit of the input string at most £ times,

then there ezists a semantic {-BDD representing the function f, of size O(n?*).

Proof: Consider a directed graph G whose vertices are the triples (s,o,t)
consisting of a state s and content of memory ¢ which can be reached after
t > 0 steps for some input. If the algorithm at the configuration (s,o) does
not test any input bits, the vertex (s,o,t) is joined by two edges to the vertex
(s',o',t + 1) where (s',0') is the configuration reached after (s,o). The two
edges leaving (s, o,t) are labeled with 0 and 1. If the algorithm reads an input
bit z; at the configuration (s,o), the vertex (s,o,t) is assigned z; and it is
joined by an edge labeled with 0 to the vertex (s',0’,t + 1) where (s',0') is
the configuration reached by the algorithm after (s,o) if x; = 0 and by an
edge labeled with 1 to the vertex (s’,0’,t+ 1) where (s’,¢") is the configuration
reached by the algorithm after (s,o) if x; = 1. There are no edges leaving the
vertices corresponding to the halting configurations of the algorithm. Note that
the graph G is acyclic because a vertex (s, g, t) is joined by edges only to vertices
(s',o',t+1).

We now modify G to a BDD. Contract all the halting configurations in
which the algorithm accepts to a single vertex. This vertex will be the 1-sink.
Similarly, contract all the halting configurations in which the algorithm rejects
to a single vertex which will be the 0-sink. If there is a single edge leaving a
vertex (s, o,t) (this may happen if one of the results of input tests is inconsistent
with the previous computation) or there are two edges leaving a vertex (s, o,t)
which lead to the same vertex of G, contract the vertex (s, o,t) and its unique
successor. The variable assigned to the resulting vertex is the variable assigned
to the successor. Let G’ be the resulting graph. Observe that each vertex of G’
except for the sinks has out-degree two and it is assigned one of the variables.
In addition, the graph G’ is acyclic.

We claim that G’ is a semantic £-BDD representing the functions f, if we set
the source of G’ to be the vertex (s, o,0) where (s, o) is the initial configuration
of the algorithm. Consider the computation path for an input z1,...,z, in G'.
If we expand the edges of the path which were contracted, we obtain a sequence
of configurations reached by the algorithm, starting in the initial configuration
and ending in a halting configuration. If the algorithm accepts, the final node
of the computation path is the 1-sink. If the algorithm rejects, the final node is
the O-sink. Since the algorithm tests each variable at most ¢ times, there are at
most £ nodes on the computation path which are assigned a variable z;.

It remains to estimate the size of G'. The number of steps of the algorithm is
bounded by the number of possible configurations. Since the number of possible
configurations does not exceed S - 2k1087+0(1) = O(n*) where S is the number
of states of the algorithm, the number of nodes of the original graph G is at
most O(n?*). This also bounds the number of nodes of G'.

|

We now consider the case of syntactic /-BDDs. The input is said to be faulty
if the test of a bit of the input string does not necessarily yields its correct
value, i.e., it may yield the opposite one. We do not assume any probability
distribution of good and bad answers. The considered algorithms are always
required to compute the correct answer only if all input tests resulted in correct
answers, but they are required to keep their space complexity as well as the
restriction on the number of tests of input bits for all faulty inputs:

Proposition 2 Let f, : {0,1}" — {0,1} be a sequence of Boolean functions
and £ > 1 an integer. If there exists an algorithm which for the input of length
n:

e terminates even if the input is faulty,
e computes the function f, (if the input is not faulty),

e works in space klog N + O(1) for some k > 0 even in the case of faulty
inputs, and

e accesses each bit of the input string at most £ times even in the case of
faulty inputs,

then there exists a syntactic £-BDD representing the function f, of size O(n*).

Proof: We proceed similarly as in the proof of Proposition 1. Consider a di-
rected graph G whose vertices are the configurations (s, o) which can be reached
for some possibly faulty input. If the algorithm at the configuration (s, o) does
not test any input bits, the vertex (s,o) is joined by two edges to the vertex
(s',0") where (s',0') is the configuration reached after (s,o). The two edges
leaving (s, o,t) are labeled with 0 and 1. If the algorithm reads an input bit z;
at the configuration (s, o), the vertex (s, o) is joined by an edge labeled with 0
to the vertex (s, 0') where (s',0') is the configuration reached by the algorithm

after (s,o) if ; = 0 and by an edge labeled with 1 to the vertex (s’,0’) where
(s',0") is the configuration reached if z; = 1. There are no edges leaving the
vertices corresponding to the halting configurations of the algorithm. Note that
the out-degrees of all the vertices except for those corresponding to the halting
configurations are two.

We claim that the graph G is acyclic. If G contains a cycle C, consider an
infinite trail comprised by a path from the initial configuration to a vertex of
C' (such a path exists since we included to G only the configurations reachable
for some faulty input) and by infinite number of copies of the cycle C. The
obtained trail corresponds to execution of the algorithm for some faulty input
which never terminates. However, this contradicts our assumption that the
algorithm always terminates even for faulty inputs.

We now modify G to a BDD. Contract all the halting configurations in
which the algorithm accepts to a single vertex. This vertex will be the 1-
sink. Similarly, the halting configurations at which the algorithm rejects are
contracted to a single vertex which will be the 0-sink. The initial configuration
will be the source. If there are two edges leaving a vertex (s, o) which lead to
the same vertex of GG, contract the vertex (s,o) and its unique successor. The
variable assigned to the resulting vertex is the variable assigned to the successor.
Let G' be the resulting graph. Observe that each vertex of G' except for the
sinks has out-degree two and it is assigned one of the variables. Moreover, since
the graph G is acyclic, the graph G’ is also acyclic.

We claim that G’ is a syntactic -BDD representing the function f,,. Let P
be a path from the source to a sink in G'. Note that each vertex of G’ lies on
at least one such path. The path P corresponds to execution of the algorithm
for some faulty input. Since the algorithm tests each variable at most ¢ times
for the considered faulty input, each variable is assigned to at most ¢ vertices
of the path P. The proof that G’ represents the function f, is the same as in
Proposition 1.

Since the number of configurations of the algorithm is bounded by S -
2klogn+0(1) — O(nk), where S is the number of possible states of the algorithm,
the size of the syntactic £-BDD G’ does not exceed O(n*).

|

3 Upper Bound for exclffv

In this section, we design a logspace algorithm computing the function excl‘fv.
The algorithm terminates and tests each input bit at most twice even if the input
is faulty. The vertices of an input d-uniform hypergraph H are considered to
be ordered and identified with the numbers 1,..., N. The d-tuples (A1,..., Aq)
with 4; < Ay < ... < Ay correspond to the edges of H. The edges of the
hypergraph H are considered to be lexicographically ordered.

Let us now briefly sketch the main idea of the algorithm. The core of the
algorithm is a procedure CLIQUE which accepts a d-uniform hypergraph H if and

only if it is comprised by a hyperclique and isolated vertices. The hypergraph
H is comprised by a hyperclique and isolated vertices if there exists a subset
V C{1,...,N} such that the edges of H are precisely all the d-element subsets
of V. Note that if |V| < d, then such a hypergraph H contains no edges at
all. We explain the idea behind the procedure for d = 2: find the smallest
non-isolated vertex X and its smallest neighbor Y. Note that ¥ > X. Next,
verify that the neighbors of X (different from Y') are precisely the neighbors of
Y (different from X). Observe that the input graph is formed by a clique and
isolated vertices if and only if the subgraph induced by the vertices Y,..., N
has this property. The property is then repeatedly verified when replacing Y
with X. In this way, each edge of an input graph is tested at most twice.

If d > 3, we proceed similarly except for that we use vertices contained in
edges together with the smallest non-isolated vertex X instead of the neighbors
of X. The structure of the entire algorithm is then the following: First, the
algorithm finds the lexicographically smallest edge e of H. Second, it verifies
that the smallest d — 1 vertices of e are contained in exactly N/2 — (d — 1) edges
of H, i.e., the potential hyperclique of H has the correct order. Finally, the
procedure CLIQUE is invoked to verify that the structure of H is as required.

This section is structured as follows: first, we design the procedure for d = 2.
The case d = 2 has to be handled separately since in the general case the
procedure for d-uniform hypergraphs invokes the procedure for (d — 1)-uniform
hypergraphs. In addition, the case d = 2 is conceptually simpler than the
general case, thus it is easier to explain first the main ideas just for d = 2.
Next, we design the procedure for d > 3. In Subsection 3.3, we present the final
algorithm and construct polynomial-size syntactic 2-BDDs representing excl‘fv.

3.1 Basic case

As mentioned above, we first consider the case of ordinary graphs (d = 2):

Lemma 1 There is an (3log N + O(1))-space algorithm which accepts an N -
vertex graph and an integer V' if and only if G consists of a clique whose smallest
vertex is V and the remaining vertices of G are isolated. In addition, the algo-
rithm has the following properties:

e cach edge of G is tested at most twice, and
e cach edge e, e < (V,N), is tested at most once.

The space complexity and the bounds on the number of tests of input bits are
preserved and the algorithm terminates even if the input is faulty. In addition,
the algorithm can be modified, without increasing its space complexity, so that
it outputs the vertices of the clique which are different from V in the increasing
order.

Proof: We first explain how the algorithm works. When describing the al-
gorithm, we will be referring to Figure 1 which contains its pseudocode. The

Input: a graph G of order N

a vertex V

Auxiliary variables: A,B

function independent: Boolean;
for B:=A+1 to N do
if edge(A,B) then return false;
return true;

1 for A:=1 to V-1 do

2 if not independent then reject;
restart:

3 A:=V+1;

4 while not edge(V,A) and A<=N do

5 if not independent then reject else A:=A+1;
6 if A>N then accept;

7 for B:=A+1 to N do

8 if edge(V,B)<>edge(A,B) then reject;
9 V:=A

10 goto restart

Figure 1: The algorithm from Lemma 1.

algorithm uses two auxiliary [log N]-bit variables A and B and the bits of the
input are accessed through the predicate edge. At the beginning, we check
that all the vertices 1,...,V — 1 are isolated (lines 1 and 2). In the main loop
(lines 3-10), it is verified that the induced subgraph G’ of G formed by the
vertices V..., N is formed by a clique whose smallest vertex is V' and its re-
maining vertices are isolated. Note that the content of V is altered at the end
of each iteration of the main loop. In the rest, let us write V° for the initial
value stored in V.

We now describe the main loop in more detail. First, the smallest neighbor
A of V in G’ is found (lines 3-5). During this stage, it is also checked that all
the vertices V +1,..., A — 1 are isolated in G’ (line 5). If all the vertices of G’
are isolated, the while-cycle is left with A = N 4+ 1 and G is accepted (line 6).
Otherwise, we test whether G’ has the following property (lines 7 and 8): Fach
vertex B, A < B < N, 1is adjacent to A if and only if it is adjacent to V. If
G' does not have this property, then the vertices V, A and a counterexample
vertex B form an induced subpath of length three and we can reject. If V' and
A have the same neighbors, then G’ is of the desired form if and only if the
subgraph G" of G induced by the vertices A, A 4+ 1,..., N consists of a clique
whose smallest vertex is A and its remaining vertices are isolated. So, we can
replace V by A (line 9) and execute the main loop again (line 10).

The algorithm clearly accepts if and only if G consists of a clique whose
smallest vertex is V and its remaining vertices are isolated. Besides the two
auxiliary [log V'|-bit variables A and B, the content of the variable [log N|-bit
variable V' is also modified. Hence, the space complexity is 3log N + O(1) bits.
The space complexity is clearly preserved and the algorithm always terminates
even if the input is faulty.

We now analyze the number of tests of the edges of G. The edges smaller
than (V,V + 1) are accessed only in the function independent called on line 2
and each such edge is tested at most once. Let us fix V' and let A be its smallest
neighbor greater than V' in G. The following edges are tested in the main loop
on lines 4-9:

e each edge between (V 4+ 1,V 4+ 2) and (A — 1, N) exactly once (line 5)
e cach edge (V,z) forx =V + 1,..., N exactly once (lines 4 and 8)
e cach edge (A,z) forx = A+ 1,...,N exactly once (line 8)

Hence, each edge e, e > (V,V + 1), incident with one of the vertices V..., A is
tested exactly once in the main loop (for a fixed V'). Since in the next loop, the
present V is replaced by A > V, the only edges tested twice during the entire
algorithm are those incident with a vertex V, V' > V°, for which the main loop
is executed. In particular, all the edges e, e < (V, N), are tested at most once.
Observe that the above reasoning remains unchanged if the input is faulty.

It remains to show how to modify the algorithm to output the vertices of
the clique different from V° in the increasing order. Since the vertices forming
the clique are precisely those stored in V when the main loop is executed, it is

enough just to output the new value of V' between lines 9 and 10 (recall that

the value V is increasing during the execution of the algorithm). The value of

V should be output at the end of the main loop in order to skip outputting V°.
|

3.2 General case

We now extend the procedure from Subsection 3.1 to d-uniform hypergraphs,
d > 3. The procedure CLIQUE for d-uniform hypergraphs invokes itself for
(d — 1)-uniform ones. In the proof of Lemma 2, the following notation is used:
If H is a d-uniform hypergraph and V is a vertex of it, then H[V, x,..., %] is the
(d — 1)-uniform hypergraph whose vertex set is formed by the vertices greater
than V and a (d — 1)-element subset A is an edge of H[V, %, ..., *] if and only if
{V}UA is an edge of H. In the recursive instance, the vertices of H[V, x, ..., %]
are considered to be numbered from 1 starting at the vertex V + 1.

Lemma 2 Let d > 2 be a fized integer. There exists a procedure CLIQUE
which accepts a d-uniform N -vertex hypergraph H together with a sequence
Vi,...,Va_1 of its vertices if and only if the hypergraph H is formed by a hy-
perclique whose smallest vertices are Vi,...,Vi_1 and the vertices of H which
are not contained in the hyperclique are isolated. Moreover, the procedure has
the following properties:

e the procedure terminates,
e cach edge of H is tested at most twice,

e cach edgee of H, e < (V1,...,V4_1,N), is tested at most once,
e the space complexity of the algorithm is % log N + O(1) bits, and

e the procedure outputs the vertices of the hyperclique larger than Vij_q in
the increasing order.

The first four properties are preserved even if the input is faulty.

Proof: As in the proof of Lemma 1, we first describe the procedure CLIQUE
and we then show that it has the required properties. The pseudocode of the
procedure for d > 3 can be found in Figure 2. If d = 2, the algorithm described
in Lemma 1 is used instead.

First, let us make few comments on the syntax used in the pseudocode. The
bits of the input are accessed through the d-ary predicate edge. The macro
independent (A, *,...,*) returns true if H contains no edge whose smallest
vertex is A. This macro can be easily implemented as d — 1 nested for-cycles.

Line 3 of the procedure is quite tricky: it is not just a recursive call of the
procedure CLIQUE but rather initiating an instance of the procedure running in
parallel. The new instance of the procedure CLIQUE receives as parameters the

10

Procedure CLIQUE(H, V[1], ..., V[d-1]);

Input: a d-uniform hypergraph H of order N, d>=3

v[1l, v[2]l, ..., V[d-1]

Auxiliary variables: V[d], A

macro independent: Boolean;

1
2

for A:=1 to V[1]-1 do
if not independent(A, *, ..., *) then reject;

restart:

3
4
5
6
7
8
9

10
12
13
14
15
16
17
18
19
20
21
22
23
24
25

CLIQUE (H[V[1],*,...,x], V[2], ..., V[d-1]) >> PIPE;
if PIPE.closed then
for A:=V[1]+1 to N do
if not independent(A, *, ..., *) then reject;
return;
V[d] :=PIPE.head; PIPE.pop;
A:=V[d]+1;
while not PIPE.closed do
while A<PIPE.head do
if edge(V[2], ..., V[d-1], V[d], A) then reject;
A:=A+1;
if not edge (V[2], ..., V[d-1], V[d], A) then reject;
A:=A+1; PIPE.pop;
while A<=N do
if edge(V[2], ..., V[d-11, V[d]l, A) then reject;
A:=A+1;
while V[1]<V[2]-1 do
V[1]:=V[1]+1;
if not independent(V[1], *, ..., *) then reject;
V[1]:=V[2]; V[2]:=V[3]; ...; V[d-2]:=V[d-1]1; V[d-1]:=V[d];
output V[d];
goto restart;

Figure 2: The procedure CLIQUE from Lemma 2.

11

hypergraph H[V1,*,...,*] together with the vertices Va,...,V_1 (the vertices
Vo = Vi,...,V4—1 — V4 in the numbering used in H[V},*,...,x|). In particular,
the new instance of the procedure CLIQUE is initiated for a (d — 1)-uniform
hypergraph. If d = 3, the procedure from Lemma 1 is initiated instead of
CLIQUE. The original instance and the new instance are connected through a
pipe PIPE (a first-in first-out queue). The output of the new instance is stored
in the pipe and it is accessed by the original instance using the following methods
(we view the pipe as a data object):

e PTPE.head
This method returns the value of the number stored at the head of the
pipe queue.

e PIPE.pop
This method removes from the pipe one element (the head of the pipe
queue).

e PIPE.closed
This method returns true if all the elements have been popped out from
the pipe queue and the new instance of the procedure has finished, i.e.,
all the elements have been read and no new elements can be added.

The two procedures run in parallel in the following sense: The original one
proceeds until a method of the pipe is called. Then, the new procedure is
executed until the result of the method is known. At this moment, the new
one is interrupted and the original one proceeds until it reaches a method of
the pipe which cannot be completed without continuing execution of the new
procedure. At this moment, the original one is interrupted and the new one is
resumed. The executions of the procedures alternate in this way until the new
one is finished (or the input is rejected). Note that the value stored at the head
of the queue is determined by the status and the memory content of the new
procedure and thus we do not need any additional space to maintain the pipe
if the algorithm proceeds as described above. Since the depth of the recursion
is at most d — 1 (the uniformity of the hypergraph is always decreased by one),
we can view the state of the computation as a (d — 1)-ary vector of the states
of the invoked procedures. In particular, the number of states of the procedure
CLIQUE is independent of the input.

We are now ready to explain how the procedure works. The procedure uses
two auxiliary [log N|-bit variables Vz and A. At the beginning, we check that all
the vertices 1,...,V; —1 are isolated (lines 1 and 2). In the main loop (lines 3—
25), the subhypergraph H' of H induced by the vertices V1,..., N is verified to
be formed by a hyperclique whose smallest d — 1 vertices are Vi,...,V3_1 and
its remaining vertices are isolated. Recall that if H' contains no edges, then it is
of the required form (and the new instance of the procedure CLIQUE outputs no

vertices). The content of the variables Vi, ..., V;_1 is changed at the end of each
iteration of the main loop. Similarly as in the proof of Lemma 1, V?,...,V? |
denote the initial values stored in the variables Vi,...,Vz_1.

12

If the new instance of the procedure outputs no vertices and H is of the
required form, then the hyperclique of H can contain no vertices except for
Vi,...,V4_1. In particular, H must be formed by isolated vertices only. This
case is handled on lines 4-7. Otherwise, the new instance of the procedure
outputs vertices of the (possible) hyperclique of H greater than V;_; in the
increasing order. The smallest vertex of this hyperclique greater than V;_; is
stored in V; (line 8). Let further I' be the set of the vertices different from Vj,
which have been output. On lines 9-19, we check for each vertex A, V; < A < N,
that the hypergraph H contains the edge (V5,...,Vy, A) if and only if A € T.
Note that A € T"if and only if H[V1,, ..., x| contains an edge (Va,..., V41, A4)
(which is the case if and only if (V,...,V3_1, A) is an edge of H).

Observe now that the hypergraph H is of the required form if and only if
each of the following holds:

e the (d — 1)-uniform hypergraph H[V1, %, ..., %] is formed by a hyperclique
on the vertex set {Va,...,V4} UT and its remaining vertices are isolated,

e each vertex V, Vi <V < Vs, is isolated in H, and

e the d-uniform subhypergraph H' of H induced by the vertices greater or
equal to V5 consists of a hyperclique with the vertex set {Va,...,V4}UT
and its remaining vertices are isolated.

The first condition has been already verified in the new instance of the procedure
CLIQUE. The second condition is verified on lines 20—22. It remains to verify the
third one. Since H' contains an edge (V2,...,Vy, A) if and only if A € T, the
third condition is equivalent to the following:

e H'isformed by the hyperclique whose smallest d—1 vertices are V5, ..., Vy
and its remaining vertices are isolated.

We verify this condition by replacing the variables Vi,...,V;_1 by Vo,..., V4
(line 23) and running the main loop again (line 25) with the new content of the
variables V1,...,V4_1. On line 24, we output the vertex V; which is (if H is of
the required form) the smallest vertex contained in the hyperclique larger than
Vi-1.

We have verified that the procedure accepts the hypergraph H if and only if
H is formed by a hyperclique whose smallest vertices are Vi,...,V;_; and the
vertices of H not contained in the hyperclique are isolated. The procedure also
outputs the vertices of the hyperclique larger than V;_; in the increasing order.
Let us now estimate the number of tests of input bits. The only edges tested in
the main loop, started for V;,...,V;_1, are the following:

e edgese, V1, Vi1 +1,....V1i+d-1)<e< (V1,...,V4_1,N)
Each of them is tested at most once in the recursive call.

e edgese, (V1,...,V4g_1,N)<e< (V},N—-(d—2),...,N)
Each of them is tested at most twice in the recursive call.

13

If the recursive call outputs some vertices, then the following edges are tested
in addition:

e edgese = (Va,..., Vg, A) with V< AN
Each of them is tested at most once on one of lines 13, 15 or 18.

o edgese, (Vi +1,...,Vi1+d)<e< (Vo,Va+1,...,Vo+d—1)
Each of them is tested once on line 22.

If the recursive call outputs no vertices, then each edge e, e > (V1 +1,..., V1 +d),
is tested exactly once (line 6).

The next claim can be established by induction on the number of the re-
maining iterations of the main loop. The only tests performed in the main loop
including the tests from the recursive calls are the following;:

e cachedgee, VP, V2 +1,..., V2 +d-1)<e< (VP,...,VY |,N) is tested
at most once, and

o cach edge e, e > (V?,...,V? | N) is tested at most twice.

Since the only edges tested before the main loop are the edges smaller than
(VO VP +1,...,V2+d—1) and each of them is tested at most once (line 6), the
estimate on the number of tests from the statement of the lemma readily follows.
It is routine to verify that we have not used assumption on the consistency of
the input in our argumentation and thus the same bounds also hold for faulty
inputs. Similarly, the procedure always terminates.

It remains to establish the bound on the space complexity of the procedure.
The number a4 of auxiliary [log N'|-bit variables is computed by induction on d.
If d = 2, Lemma 1 yields as = 3. Assume now that d > 3. Besides the auxiliary
variables needed in the macro independent, there are d + 1 auxiliary [log N |-
bit variables Vi,...,V; and A. Note that since the content of the variables
Vi,...,V4_1 is altered, they have to be considered when estimating the space
complexity of the procedure. An induced subhypergraph of H passed to the
recursive call is determined by the value of V;. However, since the value of V;
is preserved until the pipe is closed, this does not result in additional space
requirements. We do also not need any additional space to maintain the pipe
as explained when describing the procedure. Finally, the macro independent is
executed only when there is no recursive copy of CLIQUE running. In particular,
we can utilize the space dedicated for the recursive calls of CLIQUE for storing
the d — 1 auxiliary [log N'|-bit variables needed in the macro. This leads us to
the following equality for ag4:

ag=(d+1)+max{d—1l,a5_1} =(d+1)+as-1 =
(d—1)>+3(d-1)—-4 d*+3d—4
2 B 2 '

Hence, the space complexity of the procedure CLIQUE is dz*‘gﬁ log N + O(1)
bits. Again, we have not used the assumption on the consistency of the input,
and therefore the bound holds for the case when the input is faulty, too.

(d+1) +

14

Input: a d-uniform hypergraph H of order N, d>=3
Auxiliary variables: V[1], ..., V[d], K

for V[1]:=1 to N do
for V[2]:=V[1]+1 to N do

1
2
3 e
4 for V[d]:=V[d-1]+1 to N do

5 if edge(V[1], ..., V[d]) then

6 break all for-cycles;

7 if not broken then reject;

8 K=1;

9 while V[d]<N do

10 V[d]:=V[d]+1;

11 if edge(V[1], ..., V[d]) then K:=K+1;
12 if K <> N/2-(d-1) then reject;

13 CLIQUE(H, V[1], ..., V[d-11);

Figure 3: The algorithm from Theorem 1.

3.3 Main results

We are now ready to design a log-space algorithm for the function excl?\,:

Theorem 1 Letd > 2 be a fixed integer. There is an algorithm which accepts a
d-uniform N -vertex hypergraph H if and only if the hypergraph H is formed by a
hyperclique of order N/2 and the vertices of H not contained in the hyperclique
are isolated. Moreover, the algorithm has the following properties (even if the
input is faulty):

e the algorithm terminates,

e cach edge of H is tested at most twice, and
e the space complexity of the algorithm is % log N + O(1) bits.

Proof: The pseudocode of the algorithm can be found in Figure 3. The
algorithm tests the variables corresponding to edges in increasing order until it
finds the first edge (V1,...,Vy) present in H (lines 1-6). If H contains no edges
at all, the algorithm rejects (line 7). Otherwise, the algorithm verifies that the
number of vertices A such that H contains the edge (V1,...,Vy_1, A) is precisely
N/2 —(d—1) (lines 8-12). If this is not the case, the algorithm rejects. Finally,
the procedure CLIQUE from Lemma 2 is applied for V;,...,V4_; (line 13).

If the procedure CLIQUE rejects, then the hypergraph H is clearly not of
the required form. If it accepts, then H is formed by a hyperclique containing
vertices Vi,...,V3_1 and its remaining vertices are isolated. Since there are
exactly N/2—(d—1) vertices A such that the edge (V1,...,V4_1,A) is contained

15

in H, the order of the hyperclique is N/2 and the algorithm should accept. Note
that we actually test twice that the vertices 1,...,V; — 1 are isolated: for the
first time when searching for the smallest edge, and for the second time in the
procedure CLIQUE.

The only edges tested by the algorithm before the call of the procedure
CLIQUE are those smaller or equal to (Vi,...,V;_1,N). Hence, each edge is
tested at most twice by Lemma 2 even in the faulty environment. Since the
preprocessing steps requires only d+ 1 auxiliary [log N]-bit variables, the space
demands of the algorithm are dominated by space needed for the procedure
CLIQUE. Therefore, the space complexity does not exceed % log N + O(1)
bits by Lemma 2. Finally, the algorithm always terminates, again, by Lemma 2.

|

Proposition 2 and Theorem 1 immediately yield:

Theorem 2 Let d > 2 be a fized integer. There exists a syntactic 2-BDD
2 _
representing the function excljiv which has at most O(Nd 3¢ 4) nodes.

4 Lower bound for excld,

We modify the lower bound proof (Theorem 6.2.6 [12]) on the size of 1-BDDs
representing the function excl‘fv for d = 2 to the case of hypergraphs. Note that
the bound of Theorem 3 is slightly better than the bound presented in [12] for
d=2.

Theorem 3 The size of an FBDD representing the function excl’fv 15 at least
(NA/[Q) for every d > 2 and every even integer N > 2d.

Proof: Let N and d be fixed integers throughout the proof and GG be an FBDD
representing the function excl%. Let A be the set of all the (N]\/[2) hypergraphs H
accepted by G. For H € H, we define vy to be the first node on the computation
path for H such that for each vertex x of the hyperclique of H, at least one
edge containing x has been tested (including the test at the node vp).

We claim that if H and H' are different hypergraphs from #, then vy # vy .
Assume the opposite. Let P be the path in G comprised by the computation
path for H to the node vy = vy and the computation path for H' from the
node vy = vg. Since G is a free binary decision diagram, no edge can be tested
twice on the path P. In particular, the path P corresponds to some hypergraph
Hp which is accepted by G.

Let Ay and A be the set of the vertices of the hyperclique in H and H',
respectively. By the choice of the node vy, for each vertex x of Ay, at least one
edge containing x has been tested on P before vy (inclusively). Therefore, the
degree of each vertex of Ay in Hp is at least one. Let xg be the vertex of Ag
such that the first edge containing z is tested at vg:. Because of the choice of
vy and g, all the edges of H' containing xg are tested on the path P from the

16

node vy (inclusively). In particular, the degree of each vertex of Ay in Hp is
at least one (because each such vertex is contained together with z in at least
one edge).

We can now conclude that the degree of each vertex of Ay U Ay in Hp is
at least one. Therefore, Hp has less than N/2 isolated vertices and it should be
rejected by G — a contradiction. We have shown that all the nodes vy, H € H,
are different. This directly implies that the size of G is at least |H| = (N]\/IZ)'

]

The bound presented in Theorem 3 is of order 22(*"") where n =)
O(N9) is the number of input bits. Since it is not hard to construct FBDDs
representing the function excl? of size 20(V10g(N)) = 90(dn'/*log(n'/")) "5 gjo

nificantly better lower bound cannot be established for excl‘f\,.

5 Conclusion

The function exclfv is not the only hypergraph function which was suggested as a
possible candidate for separation of polynomial-size /-BDDs and (¢ + 1)-BDDs.
In the monograph [12], the function exreg% which is described in the sequel
is considered (Problem 7.7): The input is formed by (%) bits corresponding
to possible edges of a d-uniform hypergraph H on N vertices. The function
exregd (H) is true if the hypergraph H is [(dljl) /2]-regular, i.e., each vertex of H

is contained in exactly | (djf 1)/2] edges. Tt is not hard to construct a polynomial-

size d-BDD for exreg%;, but the existence of a polynomial-size (d —1)-BDDs for
exregd; is unsettled:

Problem 1 Are there polynomial-size (d — 1)-BDDs representing exreg%; ?

Let us remark that the exponential lower on the size of (d—1)-BDDs representing
exregd; for d = 2 can be found in [8].

Another Boolean function of the similar kind defined for d-uniform hyper-
graphs is a “perfect matching” function. Again, the input is formed by (Zj) bits
corresponding to possible edges of a d-uniform hypergraph H. The function
match? (H) is true if H is 1-regular, i.e., each vertex is contained in exactly one
edge of H. It is not hard to prove an exponential lower bound on the size of
(d—1)-BDDs for the function match% if d = 2. However, if d > 3, the situation
becomes more difficult:

Problem 2 Are there polynomial-size (d — 1)-BDDs representing match?, #

Acknowledgement

This research was conducted while the author was visiting Simon Fraser Uni-
versity in May 2004. The author would like to thank his host, Ladislav Stacho,
and Veselin Jungi¢ for providing an excellent atmosphere during his entire stay

17

in Burnaby, BC. He would also like to thank Ondrej Pangrac for careful reading
a preliminary version of the manuscript.

References

[1] M. Ajtal, L. BaBal, P. HaiNAL, J. KoMLOs, P. PUDLAK, V. RODL,
E. SzZEMEREDI, G. TURAN: Two lower bounds for branching programs,
in: Proc. 18th ACM Symposium on Theory of Computing (STOC), 1986,
30-38.

[2] A. BoroDIN, A. A. RAZBOROV, R. SMOLENSKY: On lower bounds for
read-k-times branching programs, Computational Complexity 3, 1993, 1-
18.

[3] A. CoBHAM: The recognition problem for the set of perfect squares, in:
Proc. 7th IEEE Symposium on Foundations of Computer Science (FOCS),
1966, 78-87.

[4] J. KArRA, D. KRAL: Optimal Free Binary Decision Diagrams for Com-
putation of FAR,,, in: Proc. 27th International Symposium Mathematical
Foundations of Computer Science (MFCS), LNCS vol. 2420, 2002, 411-422.

[5] P. PUDLAK, S. ZAK: Space complexity of computations, Math. Inst.,
CSAV, Prague, 1983, 30 pp.

[6] A. A. RAZBOROV: Lower bounds for deterministic and nondeterministic

branching programs, in: Proc. 8th International Symposium Fundamentals
of Computation Theory (FCT), LNCS vol. 529, 1991, 47-61.

[7] M. SAUERHOFF: On nondeterminism versus randomness for read-once
branching programs, available as technical report in Electronic Colloquium
on Computational Complexity (ECCC) TR97-030, 1997.

[8] J. SimON, M. SzEGEDY: A new lower bound theorem for read only once
branching programs and its applications, in: Advances in computational
complexity (J. Cai, ed.), DIMACS Series in Discrete Mathematics vol. 13,
1993, 183-193.

[9] J. S. THATHACHAR: On separating the read-k-times branching program
hierarchy, in: Proc. 30th ACM Symposium on Theory of Computing
(STOC), 1998, 653—662.

[10] I. WEGENER: The complezity of Boolean functions, B. G. Teubner, 1987.

[11] I. WEGENER: On the complexity of branching programs and decision trees
for clique functions, J. of ACM 35(2), 1988, 461-471.

[12] I. WEGENER: Branching Programs and Binary Decision Diagrams — The-
ory and Applications, STAM Monographs on Discrete Mathematics and
Applications 4, 2000.

18

[13] S. ZAK: An ezponential lower bound for one-time-only branching programs,
in: Proc. 11th International Symposium on Mathematical Foundations
of Computer Science (MFCS), LNCS vol. 176, 1984, 562-566.

19

