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Abstract

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free
graph is hamiltonian), by Thomassen (every 4-connected line hraph is hamiltonian)
and by Fleischner (every cyclically 4-edge-connected cubic graph has either a 3-edge-
coloring or a dominating cycle), which are known to be equivalent, are equivalent
with the statement that every snark (i.e. a cyclically 4-edge-connected cubic graph
of girth at least five that is not 3-edge-colorable) has a dominating cycle.

We use a refinement of the contractibility technique which was introduced by the
last author and R.H. Schelp as a common generalization and strengthening of the
reduction techniques by Catlin and Veldman and of the closure concept introduced
by the last author.
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1 Introduction

In this paper we consider finite loopless undirected graphs. However, we allow the graphs
to have multiple edges. We follow the most common graph-theoretic terminology and
notation and for concepts and notation not defined here we refer the reader to [2]. Unlike
in [2], the induced subgraph of a graph G on a set of vertices M C V/(G) is denoted (M ).
A graph G is claw-free if G does not contain an induced copy of the claw K 3.

In 1984, Matthews and Sumner [10] posed the following conjecture.
Conjecture A [10]. Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free (see [1]), the following conjecture by Thomassen is
a special case of Conjecture A.

Conjecture B [13].  Every 4-connected line graph is hamiltonian.

A closed trail T'in a graph (' is said to be dominating, if every edge of G has at least
one vertex on T, i.e., the graph (V(G) \ V(7)) is edgeless (a closed trail is defined as
usual, except that we allow a single vertex to be such a trail). The following result by
Harary and Nash-Williams [7] shows the relation between the existence of a dominating
closed trail (abbreviated DCT) in a graph and hamiltonicity of its line graph.

Theorem 1 [7].  Let G be a graph with at least three edges. Then L(() is hamiltonian
if and only if G contains a DC'T.

For an integer k, a graph G with |E(G)| > k is said to be essentially k-edge-connected
if ¢ contains no edge-cut R such that |R| < k and at least two components of G — R
are nontrivial (i.e. containing at least one edge). If G contains no edge-cut R such that
|R| < k and at least two components of G — R contain a cycle, GG is said to be cyclically
k-edge-connected.

It 1s well-known that G is essentially k-edge-connected if and only if its line graph
L(G) is k-connected. Thus, the following statement is an equivalent formulation of Con-
jecture B.

Conjecture C. FEvery essentially 4-edge-connected graph contains a DC'T.

Specifically, if G is cubic (i.e. regular of degree 3), then a DCT becomes a dominating
cycle (abbreviated DC). Since a cubic graph is essentially 4-edge-connected if and only if it
is cyclically 4-edge-connected (see [6]), the following statement, known as the Dominating
Cycle Conjecture, is a special case of Conjecture C.

Conjecture D. Every cyclically 4-edge-connected cubic graph has a dominating cycle.



Restricting to cyclically 4-edge-connected cubic graphs that are not 3-edge-colorable,
we obtain the following conjecture posed by Fleischner [5].

Conjecture E [5].  Every cyclically 4-edge-connected cubic graph that is not 3-edge-
colorable has a dominating cycle.

In [11], a closure technique was used to prove that Conjectures A and B are equivalent.
Fleischner and Jackson [6] showed that Conjectures B, C and D are equivalent. Finally,
Kochol [8] established the equivalence of these conjectures with Conjecture E. Thus, we
have the following result.

Theorem 2 [6], [8], [11]. Conjectures A, B, C, D and E are equivalent.

Note that recently Kuzel and Xiong [9] showed the equivalence of these conjectures
with the statement that every 4-connected line graph is hamiltonian-connected.

A cyclically 4-edge-connected cubic graph G of girth ¢(G') > 5 that is not 3-edge-
colorable is called a snark. Restricting our considerations to snarks, we obtain the follow-

ing special case of Conjecture E.
Conjecture F.  Every snark has a dominating cycle.

In the main result of this paper, Theorem 11, we show that Conjecture F is equivalent
with the previous ones.

Note that it is easy to observe that every cyclically 4-edge-connected cubic graph other
than K4 must be triangle-free. Thus, the difference between Conjectures E and F consists
in restricting to graphs which do not contain a 4-cycle. For the proof of the equivalence
of these conjectures we develop a refinement of the technique of contractible subgraphs
that was developed in [12] as a common generalization of the closure concept [11] and
Catlin’s collapsibility technique [3].

2 Weakly contractible graphs

In this section we introduce a refinement of the contractibility technique under a special
assumption which is automatically satisfied in cubic graphs. We basically follow the
terminology and notation of [12].

For a graph H and a subgraph F' C H, H|r denotes the graph obtained from H by
identifying the vertices of F' as a (new) vertex vp, and by replacing the created loops by
pendant edges (H|r may contain multiple edges). For a subset X C V(H) and a partition
A of X into subsets, E(A) denotes the set of all edges aja; (not necessarily in H) such
that a; and ay are in the same element of A, and H# denotes the graph with vertex set
V(H*) = V(H) and edge set E(H*) = E(H)U E(A) (here the sets E(H) and E(A) are
considered to be disjoint, i.e. if e; = ajaz € E(H) and e; = ajaz € E(A), then ey, ey are
parallel edges in H%).



Let F' be a graph and A C V(F). Then F is said to be A-contractible, if for every
even subset X C A and for every partition A of X into two-element subsets, the graph
F# has a DCT containing all vertices of A and all edges of E(A) (specifically, if X = 0,
then F4 = F).

If H is a graph and F' C H, then a vertex z € V/(F) is said to be a vertez of attachment
of F in H if z has a neighbor in V(H) \ V(F). The set of all vertices of attachment of
Fin H is denoted by Ay(F). Finally, d7(H) denotes the maximum number of edges of
a graph H that are dominated by a closed trail T'in H (i.e., H has a DCT if and only if
dr(H) = |B(T)).

The following was proved in [12].

Theorem 3 [12].  Let F' be a connected graph and let A C V(F). Then F is A-
contractible if and only if

dr(H) = dr(H|F)
for every graph H such that F C H and Ag(F) = A.

Specifically, F' is A-contractible if and only if, for any H such that ¥ C H and
Ap(F) = A, H has a DCT if and only if H|r has a DCT.

Let F be a graph of minimum degree 6(F) > 2 and let A C V(F). The graph F
is sald to be weakly A-contractible, if for every nonempty even subset X C A and for
every partition A of X into two-element subsets, the graph F4 has a DCT containing all
vertices of A and all edges of E(A).

Thus, in comparison with the contractibility concept as introduced in [12], we do not
consider the case X = (). Since obviously every A-contractible graph F' satisfies §(F) > 2,
every A-contractible graph is also weakly A-contractible.

We show that, in a special situation, weak contractibility is sufficient to obtain the
equivalence of Theorem 3.

Theorem 4. Let F' be a connected graph and let A C V(F). Then F is weakly
A-contractible if and only if
dr(H) = dr(H|r)

for every graph H such that F' C H, Ay(F) = A, dg_p(a) = 1 for every a € A, and at
least one vertex of A is not a cutvertex of H.

Proof. The proof of Theorem 4 basically follows the proof of Theorem 2.1 of [12].

If /' C H, then every closed trail T in H corresponds to the closed trail T'|p in H|p,
dominating at least as many edges as T'. Hence immediately dy(H) < dp(H|p).

Suppose that F'is weakly A-contractible and let 7" be a closed trail in H|p dominating
maximum number of edges. If vy ¢ V(T"), then T" is also a closed trail in H, implying
dr(H|r) < dr(H), as requested. Hence suppose vy € V(T”). Since not every vertex of A
is a cutvertex of H, T is nontrivial. Then the edges of T" determine in H a system of
trails P = {Py,..., Py} such that every P; € P has endvertices in A (note that all trails



in P are open since dy_p(a) = 1 for all a € A). Clearly, every z € A is an endvertex of
at most one trail from P.

Set X = {z € Ay(F)| z is an endvertex of some P; € P} and A = {A;,..., A},
where A; is the (two-element) set of endvertices of P;, 1 = 1,... k. Since vr € V(T"), the
set X 1s nonempty.

By the weak A-contractibility of F, FA has a DCT @, containing all vertices of A
and all edges of E(A). The trail ) determines in F a system of trails Q,..., Q% such
that every (); has its two endvertices in two different elements of A. Now, the trails @),
together with the system P form a closed trail in H, dominating at least as many edges

as T'. Hence dr(H|r) < dr(H), implying d7(H|p) = dr(H).

Next suppose that F'is not weakly A-contractible. Then, for some nonempty X C A
and a partition A of X into two-element sets, F* has no DCT containing all vertices of
A and all edges of E(A). Let A= {{},27},...,{z},2}}, and construct a graph H by
joining k vertex disjoint z!, z/-paths P; of length at least 3, ¢+ = 1,...,k, to the vertices
of X, and by attaching a pendant edge to every vertex in A\ X. Since I' is not weakly
contractible, H has no DCT. Since clearly H|r has a DCT, we have dr(H) < dr(H|r). R

In the special case of cubic graphs, we have the following corollary.

Corollary 5.  Let F' be a connected graph with §(F) = 2 and A(F) = 3 and let
A={z € V(F) | dr(z) =2}. Then F is weakly A-contractible if and only if

dr(H) = dr(H|F)

for every cubic graph H such that ' C H, Ay(F) = A, and at least one vertex of A is
not a cutvertex of H.

Proof. Clearly dg_r = 1 for every a € A, since H is cubic. If F is weakly A-
contractible, then dr(H) = dy(H|r) immediately by Theorem 4. For the rest of the
proof, it is sufficient to modify the last part of the proof of Theorem 4 such that the
constructed graph H is cubic. To achieve this, it is sufficient to use a copy of the graph
in Figure 1(a) instead of each of the paths P;, and a copy of the graph in Figure 1(b)
instead of each of the pendant edges attached to the vertices a; € A\ X. Then H|r has

a closed trail dominating all the edges e; while in H there is no such closed trail. ]
€
aj
x¥
(a) (b)
Figure 1

We say that a subgraph F' C H is a weakly contractible subgraph of H if F'is weakly
Ap(F)-contractible. We then have the following corollary.
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Corollary 6. Let H be a cubic graph and let F' be a weakly contractible subgraph of
H. Then H has a dominating cycle if and only if H|p has a DCT.

Proof. First note that in a cubic graph every closed trail is a cycle. Since H is cubic
and 6(F) > 2, Ag(F)={x € V(F) | dr(z) = 2}. Rest of the proof follows immediately
from Corollary 5. [ |

Examples. 1. The graphs in Figure 2 are examples of graphs that are weakly A-
contractible but not A-contractible (vertices of the set A are double-circled).

2. As shown in [3], the triangle (35 is collapsible, and hence Cj is also A-contractible
for any subset A of its vertex set.

3. Let C be a cycle of length £ > 4, let z,y € V(C') be nonadjacent and set A = V(C),
X ={x,y} and A= {{x,y}}. Then there is no DCT in C containing the edge zy € C4
and all vertices of A. Hence no cycle C' of length at least 4 is weakly V(C')-contractible.

In Section 3 we will develop a technique that allows to handle large cycles by replacing
them with another suitable non-contractible graph. Note that an alternative attempt to
refine the collapsibility technique allowing to (partially) handle cycles of length 4 was
done in [4].

Figure 2

We conjecture the following.

Conjecture G. FEvery cyclically 4-edge-connected cubic graph contains a weakly con-
tractible subgraph.

Theorem 7.  Conjecture G is equivalent with Conjectures A, B, C, D and FE.

Proof. We first show that Conjecture G implies Conjecture D. Thus, suppose Conjec-
ture G is true and let G be a minimum counterexample to Conjecture D. Let F' C G be
a weakly contractible subgraph of G and set A = Ag(F), t = |A| > 4. By Corollary 6,
the graph G|r has no DCT.



We use the following operation (see [6]). Let H be a graph, let v € V(H) be of degree
d=dy(v) >4, and let z1,..., 24 be an ordering of the neighbors of v (allowing repetition
in case of multiple edges). Let H' be the graph obtained by adding edges z;y;,1 = 1,...,d,
to the disjoint union of the graph H — v and the cycle y1y2...yay1. Then H' is said to
be an inflation of H at v. The following fact was proved in [6].

Claim [6]. Let H be an essentially 4-edge-connected graph of minimum degree 6(G) > 3
and let v € V(H) be of degree d(v) > 4. Then some inflation of H at v is essentially

4-edge-connected.

Now let G' be an essentially 4-edge-connected inflation of G| at vp. Then G’ is a cubic
graph having no DC (since otherwise G| would have a DCT). Since no cycle of length
¢ > 4 is weakly contractible, F' is not a cycle. But then |E(G")| < |E(G)|, contradicting
the minimality of G.

For the rest of the proof, it is sufficient to show that Conjecture D implies Conjec-
ture G. Indeed, if C' is a dominating cycle in G, e = wv € E(C) and A = {u, v}, then the
graph F' = (G — e is a weakly A-contractible subgraph of G. [ |

It should be noted here that the second part of the proof of Theorem 7 is based on a
construction with |A| = 2, which forces G — F' to be trivial since GG is cyclically 4-edge-
connected. It is straightforward to observe that the following stronger statement implies
Conjectures A — G. However, we do not know whether these statements are equivalent.

Conjecture H. FEvery cyclically 4-edge-connected cubic graph G contains a weakly
contractible subgraph F with |Aq(F)| > 4.

3 Replacement of a subgraph

Let G be a graph, F' C (G, and let G_g be the graph with vertex set V(G_p) = V(G) \
(V(F)\ Ag(F)) and with edge set E(G_p) = E(G) \{zy € E(G) | z,y € V(F)} (i.e.
G/_p is obtained from G by removing all non-attachment vertices of F' and all edges with
both vertices in V(F)). Let F' be a graph such that V(F')NV(G) = 0, let A’ C V(F') be
such that |A'| = |Ag(F)| and let ¢ : Ag(F) — A’ be a one-to-one mapping. Let H be the
graph obtained from G'_g by identifying each € Ag(F') with its image ¢(z) € A’. We
say that H is obtained by replacement of F by F' modulo ¢ and denote H = G[F 5 F'].

The following observation shows that the replacement of a weakly contractible sub-
graph by another one affects neither the existence nor the nonexistence of a DCT.

Proposition 8.  Let G be a graph and let F' C G be a weakly contractible subgraph
of G such that dg_p(z) = 1 for every * € Ag(F). Let F' be a weakly A'-contractible
graph for an A C V(F'), and let ¢ : Ag(F) — A’ be a one-to-one mapping. Then GG has
a DCT if and only if the graph H = G[F % F'] has a DCT.



Proof. By Theorem 4, G has a DCT if and only if G|r has a DCT. Similarly, H has a
DCT if and only if H|p has a DCT. But the graphs G|p and H|p: are, up to the number
of pendant edges at vg (vg), isomorphic. [ |

In the special case of cubic graphs, we obtain the following consequence.

Corollary 9.  Let GG be a cubic graph and let F' C G be a weakly contractible subgraph
of G. Let F' be a graph with 6(F') = 2 and A(F') =3, let A’ = {z € V(F")| dp(z) = 2}
and suppose that F' is weakly A'-contractible. Let ¢ : Ag(F) — A’ be a one-to-one
mapping. Then G has a DC if and only if the graph H = G[F % F'] has a DC. [ |

Let F' be a graph, A C V(F), let X be a nonempty even subset of A and let A be a
partition of X into two-element subsets. Let 7(A) denote the system of all closed trails in
F4 containing all edges from FE(A). For a trail T € T(A), weset C(T) = {z € A\ X| z €
V(T)}. We say that (X, A) is a good pairif there is a T' € T(A) with C(T) = A\ X.

Let Fy, F; be graphs, A, C V(F;), 1 = 1,2, and let ¢ : Ay — Az be a one-to-one
mapping. For any X C A;, we denote ¢(X) = {p(z)| + € X} and, for any partition A
of X, we set p(A) = {p(A4;)| Ai € A}. A mapping ¢ : Ay — A, is a compatible mapping
if ¢ is a one-to-one mapping such that for any pair (X, A) and 7' € T(A) there is a trail
T" € T(¢(A)) such that o(C(T)) C C(T").

Note that a compatible mapping always maps a good pair on a good pair. Although

a compatible mapping is one-to-one, the inverse ! need not be compatible.

Example. Let Fy, Fy be the graphs in Figure 3, A; = {a},d},a},a'}, i = 1,2, and let
@ A7 = Ay be the mapping that maps a} on a?, 7 =1,2,3,4. Then ¢ is a compatible
mapping. Note that there is no compatible mapping of A, onto A;.

a%O/ ‘\”)a% a; @ ® a3

F1 F2

aze\ / 1C ®a

1
L4 @ G/S a4

Figure 3

Theorem 10.  Let GG be a graph having a DCT, let F' C G and suppose that dg_p(a) =
1 for every a € A = Ag(F). Let F' be a graph, let A C V(F') and let ¢ : A — A’ be a
compatible mapping. Then the graph H = G[F % F'] has a DCT.

(Note that if both ¢ and ¢~' are compatible, then G has a DCT if and only if H =
G[F % F'] has a DCT.)

Proof. Let T be a DCT in . Then the edges of T in E(G) \ E(F) determine a

nonempty even subset X C A and a partition A of X into two-element subsets in a way
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similar to that in the proof of Theorem 4. Specifically, T(A) # 0. By the compatibility
of p, there is a T" € T (p(A)) with C(T") D ¢(C(T)). Then the edges of the set (FE(T)N
(E(G)\ E(F))U (E(T") N E(F")) determine a DCT in H. |

Example. Let F; be the graph in Figure 4, set A3z = {a}, a3, a3, a3}, and let Fy and A,
be as in the previous example. The graph F3 has no DCT containing the edge aja3 and
both the vertices aj, aj, and symmetrically also no DCT containing the edge aja; and

2

both the vertices af, a3. Hence it is easy to check that ¢ : A3 — A, that maps a? on a3,

7 =1,2,3,4, is a compatible mapping.

Figure 4

Now we are ready to prove that Conjectures A — F can be equivalently restricted to snarks.

Theorem 11.  Conjecture F is equivalent with Conjectures A, B, C, D and E.

Proof. Clearly, Conjecture E implies Conjecture F. By Theorem 2, it is sufficient
to show that Conjecture F implies Conjecture D. Thus, let G be a counterexample to
Conjecture D, i.e. a cyclically 4-edge-connected cubic graph without DC. For any cycle
C' of length 4 in G, choose a compatible mapping of the graph F3 of Figure 4 on (', and
let G’ be the graph obtained by recursively replacing every cycle of length 4 by a copy
of F5. Then (' is a cyclically 4-edge-connected cubic graph of girth ¢(G") > 5 and, by
Theorem 10, G’ has no DC. If G’ is not 3-edge-colorable, GG is a snark and we are done.
Otherwise, we use the following fact and construction by Kochol [8].

Claim [8]. If a cubic graph (G contains the graph H of Figure 5 as an induced subgraph,
then (G is not 3-edge-colorable.



"TA A

Vg

H

(%)

Figure 5

We use the claim as follows. Let zy € E(G), let 2/, 2 (y', y”) be the neighbors of
z (of y) different from y (z), respectively, and let G%, i = 1,2,3, be three copies of the
graph G — x — y (where 2!, 27, y!, y!' are the copies of ', 2", ¢, y" in G;), 1 = 1,2,3.
Then the graph G obtained from Gy, (i3, Gi3 and H by adding the edges z’vs, "vy, y! ),
yilelh, yhal, yhxl, yior and yfv, is a cyclically 4-edge-connected graph of girth g(G) > 5.
By the claim, G is not 3-edge-colorable. It remains to show that G has no DC.

Let, to the contrary, C' be a DC in G. Then it is easy to check that for some i €
{1,2,3}, the intersection of C' with G; is either a path with one end in {z}, 2/} and
second in {y},y/}, or two such paths. But, in both cases, the path(s) can be easily

extended to a DC in (7, a contradiction. [ |
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