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Abstract

The gravity of a graph H in a given family of graphs # is the
greatest integer n with the property that for every integer m, there
exists a supergraph G € H of H such that each subgraph of G, which
is isomorphic to H, contains at least n vertices of degree > m in G.
Madaras and Skrekovski introduced this concept and showed that the
gravity of the path P, on k > 2 vertices is k — 2 for each k # 5,7,8, 9.
They conjectured that for each of the four excluded cases the gravity
is k — 3. In this paper we show that this holds.

1 Introduction

Throughout the paper, we consider connected graphs without loops or mul-
tiple edges. Let H be a family of graphs, and let H be a connected graph
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such that infinitely many members of H contain a subgraph isomorphic to
H. Let ¢(H,H) be the smallest integer with the property that each graph
G € H which contains a subgraph isomorphic to H, contains also a subgraph
K = H such that, for every vertex v € K,

deg.(v) < o(H, H).

If such a finite ¢(H,H) does not exist, we write p(H,H) = +o0o. We say
that the graph H is light in the family H if o(H,H) < 400, otherwise we
call it heavy. Thus, H is heavy in H if, for every integer m, there is a graph
G € H such that each isomorphic copy of H in G contains a vertex of degree
> m in G.

It is well known that every plane graph contains a vertex of degree at
most 5. Kotzig [9] stated that each 3-connected plane graph contains an
edge of weight at most 13 and at most 11 in the case of absence of 3-vertices,
and these bounds are sharp. This result was generalized in many directions;
namely, it served as starting point for looking for subgraphs of small weight
in plane graphs.

Borodin [2] extended Kotzing’s theorem by showing that every simple
planar graph with minimum degree > 3 has also an edge of weight < 13. This
extension of Kotzing’s theorem will be applied in few proofs in this paper.
Fabrici and Jendrol’ [3] proved that the only light graphs in the family of
all 3-connected plane graphs are paths; this holds also for the family of all
3-connected plane graphs of minimum degree 4 (see [4]) and of minimum face
size 4 (see [6]). In the family of plane graphs of minimum degree 5, there are
light graphs other than paths [1, 5, 7, 13]. The lightness of paths and some
other graphs in various families of planar graphs was studied also in [10, 12].
The survey of results on light graphs in various families of plane, projective
plane, and general graphs can be found in the paper Jendrol’ and Voss [8].

The gravity of a connected graph H in the family H of planar graphs is
the greatest integer n with the property that for every integer m there exists
a supergraph G' € H such that each subgraph of G, which is isomorphic to
H, contains at least n vertices of degree > m in G. Hence, a graph is light
in a family of graphs if and only if its gravity is zero.

The concept of gravity was introduced by Madaras and Skrekovski [11].
They determined the gravity of stars in the class P, of planar graphs of
minimum degree > d for d € {1,...,5}. In P; the gravity of the path P is
k — 1 for each k # 3,5 and it is k — 2 for k = 3,5. In Py the gravity of the



path Py is at most k& — 2 for each £ > 2 and the gravity reaches the bound
of k — 2 for each k # 5,7, 8,9. Skrekovski and Madaras conjectured that for
each of the four excluded cases the gravity is £k — 3. In this paper we show
that this holds. Our arguments are based on the fact that every planar graph
of minimum degree three has an edge of weight < 13 [2] and avoid direct
use of the discharging metod.

For a fixed integer b, a vertex is called b-big if its degree is at least b, and
b-small if the degree is less than 0. If b is known from the context, we drop
the b-prefix and call the vertex big or small, respectively. If x and y is a pair
of adjacent b-small vertices in a graph, we call the edge xy b-light, or just
light if b is known from context.

By P, we denote the path on k vertices, we call it also a k-path in order
to emphasize that it is a copy of Pj in some graph. Similarly, we define a
k-cycle as a cycle of k vertices in some graph and a k-verter as a vertex of
degree k.

2 Long and Heavy Paths in P,

In this section we study the structure of the graphs from P, which contain
Py as a subgraph and each such k-path contains at most two b-small vertices.
Denote by Py(b, k) this subclass of graphs of P,. Notice that if @ > b, then
Pa(a, k) C Po(b, k). Thus, if by, by, b3, ... is an increasing infinite sequence of
integers and Py(b;, k) # 0 for each ¢ > 1, then Py(b, k) # 0 for each integer
b>1.

Lemma 1 Let k and b be two integers such that b > k > 3. Suppose that G
is a graph from Py(b, k). Then G contains a (k+ 1)-path. Furthermore, if G
contains a k-path P with two b-small vertices s; and so such that the distance
between s, and sy in P is at most k — 2, then G also contains a (k + 1)-path
P’ such that s; and sy belong to P', their distance in P' is the same as in P
and one of vertices s; and sy is an end vertex of P'.

Proof. Let P = z125- - x5 be a k-path in G. If 2 or xy is big, then it has a
neighbour outside of P, so we can extend P to a path on k + 1 vertices. The
same argument holds if z,, z; are small and some of them has a neighbour
outside of the path. So we may assume that both x; and z; are small and
all their neighbours are on the path. Let x; be one of the neighbours of x;
distinct from x,. Such a vertex exist since G € P,. Then x;_; must be big,
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otherwise P would contain three small vertices. Therefore it has a neighbour
w outside of P. Then zyxg_1---x;z122 -+ - x;_qw is a (k + 1)-path in G.

Now consider the case that P contains two small vertices z; and z; in
distance at most k£ — 2. We may assume xj is big and i < j. We first
construct a k-path P’ = x5 ---x) such that ) = z; and 2}, = z;. If
i =1, we set P = P. Otherwise let v be a neighbour of the big vertex z
such that v does not belong to P. We consider a k-path P" = x9.--x3v
instead of P. The distance of z; and z; in P” is unchanged and z; is closer
to start of P, so after a finite number of repetitions of this construction we
construct the path P’ as desired.

Vertex zj is big and therefore it has a neighbour v outside of P. The
k-path P’ can then be extended to a (k + 1)-path x|z}, - - - 2} v that satisfies
the conditions of the lemma. O

For an integer b, let [,(G) be the number of b-light edges in G. We define
the following ordering: G; <, G2 if and only if either [,(G1) < l,(G2), or
Iy(Gh) = l,(Ge) and |E(G1)| < |E(G3)|. We denote by P; (b, k) the set of all
minimal graphs of Py (b, k) in this ordering. Obviously, P; (b, k) is non-empty
if and only if Py(b, k) is non-empty. The following lemma shows that some
configurations do not appear in the graphs of P; (b, k).

Lemma 2 Suppose that G € P;(b, k), with b > k > 4. Then G does not
contain any of the following configurations as a subgraph:

(C1) Two adjacent small vertices u and v such that the degree of each of
them s at least 3.

(C2) A vertex v of degree 2 adjacent to two nonadjacent vertices x and y.

(C3) Two adjacent vertices x and y of degree 2 with a common small neigh-
bour v of degree at least 4.

(C4) Two adjacent vertices x and y of degree 2 with a common small neigh-
bour v of degree 3.

(C5) Vertices v1 and ve of degree 2 with common adjacent neighbours x and
y such that x s big and y is small.
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Figure 1: Forbidden configurations and their reductions.

Proof. Suppose that G contains some of these configurations. We construct
a graph G’ such that G' € Py(b, k) and G' <, G. Thus G’ will contradict the
minimality of G. Fig. 2 illustrates the construction of G’ from G for each
of these configurations (dotted lines present that vertices are non-adjacent
and labels B, S that corresponding vertices are big or small, respectively).
Consider each of the above configurations separately:

(C1)

(C2)

In the first configuration we remove the edge e = wv. This produces
the planar graph G’ with minimum degree at least 2 and with smaller
number of light edges than G. Thus G’ <, G.

We only have to show that G' € Py(b, k). A vertex is big in G’ if and
only if it is big in G, and since G’ is a subgraph of G, the graph G’ does
not contain any k-path with more than two small vertices. The graph
GG must have at least one k-path, since if P is a k-path in G using the
edge e, then according to Lemma 1, G also contains a (k + 1)-path @
such that u and v are the first two vertices of (). Say w is the first one.
Then @ — u is a k-path in G'. Therefore, G’ belongs to Py (b, k).

In this configuration, we remove v and add an edge zy in order to
obtain G’. This could create a new light edge xy, but then both z and
y are small and so we remove two light edges vx and vy. Therefore we



(C3)

(C4)

(C5)

do not increase the number of light edges and we always decrease by
one the number of edges. Thus, G’ <, G.

We have to show that G’ € Py(b, k). Obviously, G’ has minimum de-
gree at least 2. We claim that the graph G’ contains a k-path, since
according to Lemma 1, a k-path () is a subgraph of G and the corre-
sponding path in G’ is of length &k or £k + 1 (depending on whether v
belongs to () or not). We also could not create a new k-path containing
more than 2 small vertices. Suppose P is such a path. Observe that
P contains the edge zy. In G there is a corresponding path P’ where
the edge xy is replaced by path zvy. Thus, P’ is a (k + 1)-path with
at least 4 small vertices, and so P’ contains a subpath of length £ with
at least 3 small vertices.

In the third configuration we remove the vertices x and y to obtain G'.
This removes three light edges, and so G’ <, G.

If P is a k-path in G that does not occur in G’, then P contains v and
one of x and y. We may assume that P = zvu;---ug_s. But then
P'" = yzvu, - - - ug_3 would be a k-path containing three small vertices
in GG, which is a contradiction. Therefore all k-paths in G also exist in
G’ and it is now easy to see that graph G’ belongs to P (b, k).

Let u be the third neighbour of v. We remove v from G and add edges
zu and yu in order to obtain G’'. This operation reduces the number
of light edges by at least one. Thus G’ <, G and G’ € Ps.

Similarly to the configuration (C3), we observe that no k-path of G
uses a vertex from {v,z,y}, since otherwise we would find a k-path
in G using three small vertices v,  and y. Therefore we preserve all
k-paths of GG by the described operation and so G’ contains a k-path.

Note that we have increased the degree of u by one in this operation, so
u is big in G’. Let P = v vy - - - vy, be a k-path of G'. If P occurs in G,
it obviously has at most two small vertices. Otherwise we may assume
v1 = z and vy € {y,u}. Then either vuvs---vg or xvuvy---vg is a
k-path in G containing the same number of small vertices. Therefore

G' e Pg(b, k)

If K = 5, consider the path vyyvox. It contains 3 small vertices and it
can be extended to a 5-path, since x is big. This is a contradiction.



If K > 6, we add b — 2 new vertices vs, ..., vy and connect them to
both z and y to obtain G'. Let S = {vy,vq,...,v,}. Since y is big in
G', the edges v1y and vyy are not light in G’. Thus the number of light
edges is reduced by at least 2, and hence G' <, G.

In the construction of G’, we have not removed any path in G, so it
is sufficient to argue that we could not create a k-path with at least
three small vertices. Let P be a k-path of G'. Then P cannot use
three of the vertices of S, since it would have length at most 5. If P
uses at most two vertices of S, we may assume these vertices belong
to {v1,v2} and then P also exists in G. Since we have not decreased

degree of any vertex, P contains at most two small vertices in G’. Thus,
G' € Pz(b, k‘)

]

If zyz is a 3-cycle in a graph, x and y have degree 2 and z is big, then we
call the subgraph induced by these vertices a 3-booster. Similarly, if xywz
is a 4-cycle in a graph, x and y have degree 2, w and z are big, we call the
subgraph induced by these four vertices a 4-booster.

Figure 2: Tllustration of a 3-booster and a 4-booster.

Lemma 3 Let k > 4 be an integer. Suppose that for each integer b > k the
class P3 (b, k) is nonempty. Then for each integer b > k there exists a planar
graph G1(b, k) € P2(b, k) satisfying the property:

(P1) If x and y are adjacent b-small vertices in G1(b, k), then x and y are of
degree 2 and have a common b-big neighbour (i.e. x and y are a part
of a 3-booster).

Proof. Let us fix one such b and let G’ € P;(2b, k). Due to Lemma 2:



e Graph G’ does not contain two adjacent 2b-small vertices of degree at
least three.

e If G’ contains two adjacent vertices x and y of degree 2, then they have
a common neighbour that is 2b-big (otherwise, G’ contains one of the
configurations (C2), (C3) or (C4)).

e If x and y are adjacent, z has degree 2, y is a 2b-small vertex of degree at
least 3, then they have a common neighbour z that is 2b-big. Moreover,
there is no 2-vertex distinct from z, which is a commmon neighbour of
both y and z.

We construct a graph G = G1(b, k) from G’ in the following way: For
each pair of vertices x and y such that x and y are adjacent in G’, z is 2b-
big, 2 < deg(y) and there exists a 2-vertex v adjacent to z and y but not
belonging to a 4-booster, we remove the vertex v.

A vertex with degree d in G' has a degree at least [g] in G. Otherwise
if ¢ is such a vertex and v a 2-vertex adjacent to ¢ that is removed, the
other neighbour r of v is adjacent to ¢ and r and ¢ have no other common
neighbour of degree 2 due to the restrictions on the structure of G’ described
above. Consequently a vertex that has degree at least 2b in G’ has a degree
at least b in G.

In order to conclude the proof, let us check that graph G satisfies condi-
tions of the lemma:

e Graph G has a minimum degree at least 2. The vertices incident to the
removed edges had degree at least 3 in G', so their degrees are at least
[é] =2in G

5 :

e Fach k-path in G contains at most two b-small vertices. Suppose P is
a k-path in G with more than two b-small vertices. In G’, the path P
contains at most two 2b-small vertices, therefore there must be a vertex
g on P that has degree smaller than b in GG, and degree at least 2b in
G', which is a contradiction.

e Graph G contains a k-path. Let S = V(G') \ V(G) be the set of
removed vertices. Let us arbitrarily order the elements of S into a
sequence $i, So,...,S,. Thus we obtain a sequence of graphs G' =
Go,G1,...,Gp = G where G141 = G; — s;11. We prove by induction



on i that each G; belongs to P2(b, k). By the above case we know
that G; does not contain k-path with more than two b-small vertices,
therefore it suffices to prove that there is a k-path in G.

We proceed by induction. For Gy the statement is true. Let us assume
that G; contains a k-path. We will show that G;,; contains a k-path
as well. Note that the assumptions of Lemma 1 are preserved (for big
vertices being those that have degree at least b). Therefore there also
exists a (k + 1)-path P in G;. If s;41 is an endvertex of P, the path
P — s;yq is a k-path of G;1. If s;41 is some of inner vertices of P, we
know that the two adjacent neighbours x and y of s;,; belong to P and
therefore P — s; ;1 together with the edge xy is a k-path in G;4.

e Graph G satisfies (P1). Suppose x and y are adjacent b-small vertices
in G. No vertex with degree at least 2b in G’ has degree less than b in G.
This means that both z and y are also 2b-small in G'. Due to properties
of G' one of x and y, say x, has degree 2 in G’. If degree of y in G’ is as
least three, then x and y have a common 2b-big neighbour in G’ and z
should have been removed during construction of G. Otherwise degree
of y in G’ is 2 as well and z and y have a common neighbour z that is
2b-big in G’, and consequently z is b-big in GG. Therefore vertices z, y
and z induce a 3-booster in G.

[

Lemma 4 Let k > 4 be an integer. Suppose that for each b > k the class
Ps(b, k) is nonempty. Then for each integer b > k there ezists a planar graph
Go(b, k) € Py(b, k) satisfying the property (P1) of Lemma 3 and the property

(P2) If x is a vertex of degree two in G, then it is part of either a 3-booster
or a 4-booster.

Proof. Let us fix one such b. Let G' = G1(2b, k) be a graph obtained by
Lemma 3.

We construct G = G5(b, k) in the following way: First we create a graph
G" by supressing one by one 2-vertices of G' whose neighbours are not adja-
cent. Then we construct a graph G by removing each 2-vertex of G” which
does not belong to a 4-booster and whose neighbours are 20-big.

Using the same argumentation as in the proof of the second case of Lemma
2, one can show that G” belongs to P»(b, k) and that it has the property (P1).
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Additionally, any vertex of degree two in G” is either part of a 3-booster or
a 4-booster, or its neighbours are two adjacent big vertices.

Similarly as in the proof of Lemma 3, one can show that G € Py(b, k)
and that it has the property (P1). Let us show that G satisfies the property
(P2) as well. This will finish the proof of the lemma.

Suppose x has degree 2 in G and it does not belong to a 3-booster. Then
its two neighbours u and v are b-big. We need to show that z belongs to a
4-booster. Suppose this is not the case. The degree of x in G” is 2, since we
did not change degree of any vertex that was not 2b-big in the construction
of G. Due to suppressing the vertices of degree two in G', we know that u
and v must be adjacent in G”. Since they are adjacent to a 2-vertex in G”,
vertices u and v are 2b-big in G”. Therefore z should have been removed
during construction of GG, which is a contradiction. ]

Lemma 5 Let k > 4 be an integer. Suppose that for each b > k the class
P5 (b, k) is nonempty. Then for each integer b > k there ezists a planar graph
G3(b, k) € Py(b, k) satisfying the property (P1) of Lemma 3, the property (P2)
of Lemma 4 and the property

(P3) No vertex of G belongs to both a 3-booster and a 4-booster.

Proof. Let us fix one such b. By Lemma 4 we may assume G' = Gs(b, k)
exists. Only a big vertex of G' can belong to both a 3-booster and a 4-
booster. Let us construct the graph G = G35(b, k) in the following way: For
each vertex v in G’ such that it belongs both to a 3-booster with vertices
{z1,22,v} and to a 4-booster with vertices {v,w,y1,y2} (where w is a big
vertex), we perform the following operation: Let R, be a set of all vertices
of degree 2 adjacent to v and belonging to 3-boosters. Add a set S, of |R,|
new vertices to GG, and remove the vertices of R, from G. Join all vertices in
S, to both v and w.

Let S"(v) = S(v) U{y1,y2}. Let f: V(G') — V(G) be a bijection that
maps each element of R, to an element of S, and it is an identity on vertices
of V(G) NV (G").

The graph G obviously satisfies the properties (P1), (P2) and (P3), it is
therefore sufficient to show that G € Py(b, k) in order to finish the proof.

If £ = 5, the configuration described in the construction cannot occur,
otherwise we obtain a 5-path zizovy,2z with at least three b-small vertices.

So G = @', and therefore G belongs to Py (b, k).
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Now, we consider the case k > 6. Let P = vyvy--- v, be a k-path in G’
that does not exist in G. We may assume that no inner vertex of the path
belongs to a 3-booster: If v; and vy are both 2-vertices, we can use Lemma
1 to get a (k + 1)-path @ starting with v;v5 and so Q — vy is a k-path in G
such that all its inner vertices are big. Then only v; and v, could have been
removed during the construction of G and f(vy)f(ve) -+ f(vg) is a k-path in
G. Therefore G contains a k-path.

It remains to show that GG does not contain a k-path with more than two
small vertices. Let P be a k-path in GG. For each vertex v the path P uses at
most two vertices of S;, since kK > 6. So we may assume that P only uses the
vertices of S/ \ S, and that therefore P also occurs in G'. Then P contains
at most two small vertices in G’ and since the construction does not decrease
the degree of any vertex, P also contains at most two small vertices in G. [

3 Configurations of boosters

In this section we present lemmata showing that boosters are in some sense
both frequent and rare in the graphs in Py(b, k) for k € {7,8,9}. We use
these results in the next section to determine the gravity of some paths.

Let v be a big vertex of a graph G € Py(b, k). We say that v is boosted
if v either belongs to a booster, or if v has k + 1 neighbours vy, ..., v, such
that for each 0 < ¢ < k the vertex v; belongs to a 3-booster (notice that each
v; must be big).

Madaras and Skrekovski [11] have proved that the gravity of k-paths in P,
is at most k£ —2. This means that for each k, there exists an integer bj(k) such
that for each b > bj,(k), any graph in P, that contains a k-path also contains
a k-path with at least two b-small vertices. Let by(k) = max(k, by(k)).

Lemma 6 For k > 5 and b > by(k), let G = G5(b, k) be the graph con-
structed in Lemma 5. Suppose that for each k-path P in G with exactly two
b-small vertices s; and so, the distance between s; and sy in P is k — 2 or
k — 1. Then G contains a b-big vertex that is not boosted.

Proof. Since b > bj(k), the graph G contains a k-path P = vy -- - v, with
two small vertices s; and so. Let P be such that the distance between s,
and s, in P is the smallest possible. Vertices s; and s, have distance at least
k — 2 in P due to assumptions of the lemma, so we may assume that s; = v;
and so € {vg_1, vk}

11



If for any 2 < ¢ < k the vertex v; is adjacent to s;, then the graph G
contains the k-path v;_qv;_o- - v1v;v;41 - - - v, Where the distance from s; to
s9 is smaller by at least one than in P. Similarly if s; is adjacent to v, then
the distance from s; to sy in the path viv,vi_1 - - - v9 is at most two.

Therefore, the vertex s; cannot have a neighbour in P distinct from wvs.
Since the degree of s; is at least two, s; has a neighbour v outside of P.
The vertex v cannot be small, otherwise vv; ---vi_; is a k-path in G with
two adjacent small vertices. Therefore v is big. We show that v cannot be
boosted. If v belongs to a booster, then let x be the 2-vertex of the booster
that is not in P. Then xvwvy ---vi_9 1s a k-path where small vertices have
distance two. Finally, if v has k£ + 1 neighbours and each of them belongs to
a 3-booster, then let x be one of them that does not belong to P and let x;
and zo be the 2-vertices of the 3-booster of z. Then xizoxvvy - vi_4 1S &
k-path in GG with three small vertices, a contradiction. [

Lemma 7 For k € {7,8,9} and b > k, let G = G3(b, k) be the graph con-
structed in Lemma 5. Suppose that G contains a k-path P in G with two
b-small vertices s and sy such that the distance between sy and sy in P is at
most k — 3. Then G contains a b-big vertex v that is not boosted.

Proof. Let P = vy ---v;. By Lemma 1, we may assume that vy = s;. Then
vk_1 is big. The vertex v,_; does not belong to a booster, otherwise it has
a neighbour x of degree two distinct from v; and so vy - --vg_17 is a k-path
in G with three small vertices. Therefore, if v,_; is boosted, it must have a
neighbour distinct from vy, ...,vx_s which belongs to a 3-booster. We may
assume that vy is such a neighbour and let v, and v 9 be the 2-vertices of
its 3-booster. Then the remaining small vertex of P must be vy (otherwise
the k-path vs - - - vg 9 contains three small vertices), and therefore {vy, vo, v3}
must induce a 3-booster in G due to property (P1).

Now, let us argue that vs cannot be boosted. The vertex vs cannot belong
to a 3-booster, since if 1 and x5 are the 2-vertices of such a 3-booster, then
T1XoUsVg * - - Ugro 1S & k-path with four small vertices. The vertex wvs also
cannot have a neighbour outside P belonging to a 3-booster, since if z is such
a neighbour and y is a small vertex of the 3-booster, then yxvsvg - - - vpio is
a k-path with three small vertices.

So if v5 is boosted, it belongs to a 4-booster. Let z be the other big
vertex and y is a 2-vertex of this 4-booster. By property (P3),  # vg. Then
x € {vg,...,vk_1}, otherwise zyvsvg---vgs1o is a k-path with three small
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vertices. But v,_; does not belong to any booster as argued before, and if
x = v; for i € {6, 7}, then v1v9v3V4V5YV; - - - V47 is @ k-path containing three
small vertices. Since k < 9, we considered all possible values of . ]

By putting Lemma 6 and Lemma 7 together, we obtain

Corollary 8 For k € {7,8,9} and b > by(k), let G = G5(b, k) be the graph
constructed in Lemma 5. Then G contains a b-big vertex v that is not boosted.

We further study the structure of the neighbourhood of a vertex v that
is not boosted. We are especially interested in the following configurations,
where z is a neighbour of the vertex v from Corollary 8:

(B1) Vertex z is big and belongs to a 3-booster.
(B2) Vertex z is big and belongs to a 4-booster.

(B3) Vertex z is big and has k + 1 big neighbours, where each belongs to
some 3-booster.

(B4) Vertex z is small and adjacent to a big vertex w that belongs to some
3-booster.

(B5) Vertex z is small and adjacent to a big vertex w that belongs to some
4-booster.

(B6) Vertex z is small and adjacent to a big vertex w having k& + 1 big
neigbours, where each belongs to some 3-booster.

Notice that w # v in configurations (B4) — (B6), since v is not boosted.
Let us call the edge vz in each of these configurations important. Let us em-
phasize that in case of the configuration (B2), if v is also adjacent to the other
big vertex of the 4-booster, we consider this as two separate instances of the
configuration (B2), and that each of these instances has just one important
edge.

Lemma 9 For k € {7,8,9} and b > k, let G = G3(b, k) be the graph con-
structed in Lemma 5. Let v be a big vetex of G that is not boosted. Then v
15 incident with at most

(a) k important edges of instances of configuration (B1);
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(b) 4 important edges of instances of configuration (B2);
(c) 1 important edge of an instance of configuration (B3);
(d) 1 important edge of an instance of configuration (B4);
(e) 3 important edges of instances of configuration (B5);

(f) 3 important edges of instances of configuration (B6).

Proof. Note that such vertex v exists due to Corollary 8. Let us handle the
configurations (B1)—(B6) one by one:

(B1) If v is incident with £+ 1 important edges of instances of configuration
(B1), then v is boosted.

(B2) Suppose that v is incident with 5 important edges of instances of con-
figuration (B2). Then no two 4-boosters in these instances are disjoint,
otherwise G' contains a k-path with at least three small vertices. Using
the pigeonhole principle, we observe that among these 5 instances there
must be three of them that share only the big vertex of the 4-boosters
that is not incident to the important edge of each of the instances (see
Figure 3). Note that this configuration contains a k-path with at least
three vertices of degree two for each k € {7,8,9}, which is a contradic-
tion.

9@)  (@2g (238
(v

7

Figure 3: Forbidden path in case (B2)

(B3) If £k = 7, the configuration (B3) contains a 7-path with four small
vertices. So we may assume k = 8 or 9.
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(B4)

(B5)

Suppose that v is incident with 2 important edges of instances of con-
figuration (B3). Let z; and 29 be the vertices of these edges distinct
from v. Then we can find two distinct big vertices x; and x5 such that
each of them is distinct from z; and 29, both z; and x5 belong to 3-
boosters and x;2; and 525 are edges of G. This configuration however
contains a k-path with at least three small vertices.

Let v be incident with 2 important edges of instances of configuration
(B4). Let z; and 25 be the small vertices incident with the important
edges of the configurations. By property (P1), vertices z; and 2, are
not adjacent. The two configurations corresponding to them cannot
be disjoint, otherwise they contain a k-path with at least three small
vertices. More precisely there is a big vertex w adjacent to both z;
and 29 such that w belongs to a 3-booster. Let w; and wy be the small
vertices of that booster. Since v is not boosted, it is not adjacent to
vertex of degree two, and therefore degree of z5 must be at least three.
Consequently the vertex z; has other big neighbour x distinct from v
and w. Since z is big, it has a neighbour not in {2y, 22, v, w}, let this
neighbour be y.

Then ) = wywewz1v29xy is an 8-path containing at least four small
vertices, which cannot occur unless £ = 9. If y would have a neighbour
outside (), we could extend @ to a 9-path. Consequently, y must be
small. Besides z, the only neighbours of y could be v and w due to
property (P1). If y is not adjacent to both v and w, vertex y has
degree 2. Then the vertex y belongs to a 4-booster due to property
(P2), and consequently v or w belongs to this 4-booster. But this
cannot occur: the vertex v is not boosted, and by property (P3), the
vertex w cannot belong to both a 3-booster and a 4-booster. Therefore
y must be adjacent to both v and w.

Since y was an arbitrary neighbour of z distinct from {s1, s9, v, w}, we
observe that any neighbour of z not in this set must be adjacent to
both v and w. But due to planarity of GG the vertex x can have at most
two such neighbours, otherwise G' contains K33 as a subgraph. This
means that the degree of x is at most 6, which is a contradiction with
the fact that z is a big vertex.

Suppose that v is incident with 4 important edges of instances of con-
figuration (B5). Let z1, 2o, 23 and z; be the small vertices incident
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(B6)

4

with the important edges of the configurations. Since v is not boosted,
property (P2) implies that the degree of each z; is at least three. Let
w be the big vertex adjacent to z; belonging to a 4-booster, w; and wy
the small vertices of this booster and y the remaining big vertex of this
booster. Then @Q; = wiywowz,vz; for i € {2,3,4} is a 7-path with four
small vertices, so this cannot occur if £ = 7. If z; has a neighbour z
distinct from w, y and v, then the vertex x must be big due to property
(P1). Then z has other neighbour outside ); and together they extend
Q; to a 9-path. Therefore z; has no such neighbour. Since degree of z;
is at least three, z; must be adjacent to both w and y. But then K33
is a subgraph of G, which contradicts the planarity of G.

If £ = 7 the configuration (B6) contains a 7-path with four small ver-
tices, so we may assume k = 8 or 9.

Let v be incident with 4 important edges of instances of configuration
(B6). Let z1, 29, 23 and z4 be the vertices of these important edges
distinct from v. Similarly as in the previous case we see that the degree
of each z; is at least three. Let w be the big vertex of the configuration
adjacent to z; and let y be one of the big vertices adjacent to w that
belongs to a 3-booster. Let y; and y, be the small vertices of this
3-booster.

The 7-path Q; = y1yywzivz; (for i € {2,3,4}) contains four small
vertices. If z; has a neighbour x distinct from v, w and y, then vertex x
must be big, and therefore x together with one of its neighbours would
extend @); to a 9-path. Since degree of z; is at least three, one can
easily see that z; must be adjacent to both w and y. But this is again
a contradiction with the planarity of G.

]

Gravity of paths in P,

We are now ready to determine the gravity of k-paths in P, for k£ € {5, 7,8, 9}.

Theorem 10 Gravity of Ps in the class of planar graphs with minimal degree
2 15 2.

16



Proof. Due to [11], gravity of Ps in P, is either two or three. Suppose for
the sake of contradiction that gravity of Ps is three. This means for infinitely
many integers b, the class Py(b,5) is non-empty. So by the remark at the
begining of Section 2, one concludes that the class Py(b, 5) is non-empty for
all integers b > 1. Let us consider the graph H = G3(b,5) constructed in
Lemma 5, for sufficiently large b (at least 13).

Each big vertex v of H belongs to at most one booster, otherwise one can
find a 5-path with three small vertices. By property (P1) a small vertex of
degree at least three has only big neighbours.

We construct a graph H' by removing all vertices of degree 2 from H.
Thus, big vertices lose at most two neighbours, the degree of remaining small
vertices is unchanged. Therefore the graph H' has minimum degree three and
each its edge contains at least one vertex of degree at least b —2 > 11. But
due to [2] each planar graph with minimum degree three contains an edge e
such that sum of degrees of the vertices incident with e is at most 13, which
is a contradiction. ]

Theorem 11 Gravity of Py in the class of planar graphs with minimal degree
2isk—3 fork € {7,8,9}.

Proof. Let k£ € {7,8,9}. Due to [11] gravity of k-paths in P, is either
k —2 or k — 3. Suppose for the sake of contradiction that gravity of Py is
k — 2. Similarly as in the above theorem, one can conclude that Py (b, k)
is nonempty for all integers b > 1. Let us consider a graph H = G5(b, k)
constructed in Lemma 5, for b sufficiently large (at least max(by(k), k + 23)).
Now, we construct a graph H' by removing all boosted vertices and all small
vertices that are adjacent to boosted vertices from H (note that by property
(P2) every 2-vertex is removed).

By the choice of b, the graph H has a k-path which contains precisely
two small vertices. So, Corollary 8 implies that H contains a big vertex
that is not boosted, and therefore H' is nonempty. If v is a vertex of H'
that is big in H, then Lemma 9 implies that vertex v has degree at least
k+23—(k+12) =11in H'. If v is a vertex of H' that is small in H, then no
neighbour of v was removed and v has degree at least three both in H and
in H', since a small vertex of degree at least three has only big neighbours
due to property (P1).

Therefore H' has minimum degree at least 3 and the sum of degrees of
vertices of any of edges of H' is at least 14 (since there are no two small ad-
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jacent vertices of degree at least three in H). This however is a contradiction

with results of [2]. O
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