Two Algorithms for General List Matrix
Partitions

Tomaés Feder
Stanford University
268 Waverley St., Palo Alto, CA 94301, USA

E-mail: tomas@theory.stanford.edu,

Pavol Hell
School of Computing Science
Simon Fraser University
8888 University Drive, Burnaby, B.C., Canada V5A 156

E-mail: pavol@cs.sfu.ca,

Daniel Kral’
Institute for Theoretical Computer Science (ITT)*
Charles University
Malostranské nam. 25, 118 00 Prague, Czech Republic
E-mail: kral@kam.mff.cuni.cz,

Jifi Sgall
Mathematical Institute
Academy of Sciences of the Czech Republic
Zitn4 25, 115 67 Prague, Czech Republic
E-mail: sgall@math.cas.cz.

*Institute for Theoretical Computer Science is supported by the Ministry of Education

1

Abstract

List matrix partitions are restricted binary list constraint satisfac-
tion problems which generalize list homomorphisms and many graph
partition problems arising, e.g., in the study of perfect graphs. Most of
the existing algorithms apply to concrete small matrices, i.e., to parti-
tions into a small number of parts. We focus on two general classes of
partition problems, provide algorithms for their solution, and discuss
their implications.

The first is an O(n"+?)-algorithm for the list M-partition problem
where M is any r by r matrix over subsets of {0,1}, which has the
“bisplit property”. This algorithm can be applied to recognize so-
called k-bisplit graphs in polynomial time, yielding a solution of an
open problem from [2].

The second is an algorithm running in time (rn)
for the list M-partition problem where M is any r X r matrix over
subsets of {0,1,...,¢ — 1}, with the “incomplete property”. This
algorithm applies to all non-NP-complete list M-partition problems
with 7 = 3, and it improves the running time of the quasi-polynomial
algorithm for the “stubborn problem” from [4], and for the “edge-free
three-colouring problem” from [11].

O(logrlogn/loglogn)

1 Introduction

1.1 List Matrix Partition Problems

In a list matrixz partition problem, we have a fixed structure H, consisting
of a set V(H) with 7 elements and ¢ binary relations Ey(H), Ei(H), ...,
E,_1(H). The structure H can also be viewed as a directed multigraph
(with loops allowed) on the vertex set V(H) whose arcs are colored with
colors 0,...,¢g — 1. An instance of the list matriz partition problem for H
is an arc-colored irreflexive symmetric complete digraph with a list given
for each vertex. More precisely, an instance is a structure GG consisting of a
set V(GQ) of size n = |V(G)| with a list L(v) C V(H) for each v € V(G),
with ¢ irreflexive binary relations Ey(G), ..., E,—1(G) such that for any two
(distinct) vertices v, v' € G, there exists a unique ¢ = 0,...,q — 1 such that
w' € E;(G). The solution to the instance is a mapping ¢ : V(G) — V(H)

of the Czech Republic as project LNOOA056.

which is a list homomorphism of the structure G to H with respect to the
lists L, i.e., it has the following properties:

e ©(v) € L(v) for every vertex v € V(G), and
o o(v)p(v') € E;(H) for all v, v' and 7 such that vv' € E;(G).

In other words, each vertex of GG is mapped to a vertex from its list and each
arc of G is mapped to an arc of H with the same color. In the sequel, we
omit the word “list” if L(v) = V(H) for each vertex v of G. We also consider
the surjective version of the problem [5,16], in which the homomorphism
¢ : V(G) — V(H) is required to be onto V(H).

The adjacency matriz of the target structure H with r = |V(H)| is an
r X r matrix M whose elements are subsets of the set {0,...,¢ — 1}. The
element Mjy;, of the matrix contains an index ¢ € {0,...,¢ — 1} if and only
if hh' € E;(H). Note that the matrix M need not to be symmetric. The
list matrix partition problems for H is called the list M -partition problem,
where M is the adjacency matrix of H. A list homomorphism ¢ of G to H
with respect to L can also be understood as a partition of the set V(&) into
subsets ¢ 1(h), h € V(H). Such a partition is called a list M-partition of
G. With this interpretation in mind, the elements of V(H) are called parts
throughout the paper. Thus the surjective version of the problem requires
all parts to be nonempty.

In the most studied case, ¢ = 2 with symmetric relations Ey(H), E1(H)
(i.e., the case of symmetric matrices M over the subsets of {0,1}), the in-
stances of the list M-partition problem, which are 2-edge-colored complete
graphs G, can be viewed as ordinary graphs G’ [4,11,14,15]: the edges of the
colors 1 and 0 in G correspond to the edges and non-edges in G’, respectively.
Note that we impose some restrictions on the images of both the edges and
the non-edges of G'. Hence, graph M-partition problems seek partitions of
the graph G’ into parts which are complete subgraphs, independent sets, and
arbitrary sets, and certain pairs of the parts are completely adjacent or non-
adjacent as described by the matrix M. Since any two vertices of G are in
one of the relations, all the entries of a matrix M can be required without
loss of generality to be nonempty subsets of {0,1}. For the sake of brevity,
the entries of M which are {0}, {1} and {0,1} are denoted by 0, 1 and x,
respectively. List homomorphisms of different structures, and graphs in par-
ticular, form an important theoretical model for other problems in the area;
the reader is referred to a recent monograph [17] for various examples.

3

In the closely related binary list constraint satisfaction problems, we re-
move the restriction that each pair of distinct vertices of G belongs to a
unique relation E;(G). Again, each structure H defines a separate binary
list constraint satisfaction problem. Bulatov [3] has recently classified the
complexity of all list constraint satisfaction problems. In particular, it fol-
lows from his results that each binary list constraint satisfaction problem is
NP-complete or solvable in polynomial time.

1.2 Ouwur Results

Most of the existing algorithms for list M-partition problems focus on small
matrices M [4,5,7,14-16]. The notable exceptions are [6,11-13]; the algo-
rithms in [12] apply to restricted classes of input graphs, while the algorithms
in [6] only apply to one concrete family of matrices M. By contrast, in this
short paper we describe two general properties of matrices M, which guar-
antee the existence of certain list M-partition algorithms.

Our first algorithm is a polynomial-time algorithm for the list M-parti-
tion problem for ¢ = 2 in the special case where the matrix M has the bisplit
property, defined later in Section 2.

This result is motivated by an even more restricted case that includes
bisplit and k-bisplit graphs from [2]. A graph G is bisplit if the vertices
of G can be partitioned into three (possibly empty) independent sets X,
Y and Z such that the subgraph of GG induced by Y and Z is a complete
bipartite graph, i.e., G contains all edges yz for y € Y and z € Z. In brief,
the graph G can be partitioned into an independent set and a complete
bipartite graph. In general, a graph G is a said to be k-bisplit if it can be
partitioned into an independent set and k independent complete bipartite
graphs. In other words, the set V(G) can be partitioned into 2k + 1 (possibly
empty) independent sets X, Yy, Z,..., Y, Zx such that yz € E(G) for all
pairs y € Vi, z € Z;, and wv € E(G) if u € Y;U Z;,v € Y; U Z; for all i # j.
Observe that a graph G is bisplit if and only if it admits an M-partition for
the following matrix M:

M =

* % O
_ O %
S = ¥

Similarly, a graph G is k-bisplit if and only if it admits an M-partition for a
certain (2k + 1) x (2k + 1) matrix M.

Brandstadt et al. [2] showed that the question of whether there exists an
integer k such that G is k-bisplit is NP-complete. For the case k£ = 1, they
found an algorithm with running time O(nm) recognizing bisplit graphs [2].
They asked whether k-bisplit graphs for a fixed £ > 2 can also be recognized
in polynomial time. We provide such an algorithm running in time O (n?*!)
the same bound applies also to the surjective version. Since the problem is
NP-complete if k£ is part of the input, it is very unlikely that there is an
algorithm whose running time is polynomial in both n and k. In addition,
the surjective version of the problem includes the k-clique problem, which is
known to be W{l]-complete [8,9], and therefore one cannot even expect to
find an algorithm where the exponent of n would not depend on & [10].

Generalizing notion of k-bisplit graphs, we define (A, B)-bisplit graphs.
Let A and B be any k£ x k and any ¢ X £ matrices, respectively, whose entries
are 0 and 1. A graph G is said to be (A, B)-bisplit if the vertices of G can
be partitioned into k + £ sets X,..., Xk, Y1, ..., Y, such that the following
two conditions hold:

)

e If v € X; and v’ € X, then vv' is an edge of G if and only if A;; = 1.
o If v € Y; and v' € Y}, then vv' is an edge of G if and only if B;; = 1.

Thus, k-bisplit graphs are (A, B)-bisplit graphs where A is the 1 x 1 matrix
whose single entry is 0 and B is the (2k) x (2k) matrix whose all entries are 0
except for the entries with coordinates (2:—1,2¢) and (24,2i—1),i=1,...,k,
which are equal to 1. Note that A and B are symmetric matrices in this case,
but we do not require them to be symmetric in the general case of (A, B)-
bisplit graphs. All the problems of recognition of (A, B)-bisplit graphs are
treated as list M-partition problems with ¢ = 2 where the (k + ¢) x (k + £)
matrix M consists of blocks A and B on the diagonal and * in all the other
entries.

The bisplit property, which generalizes all the above notions, is somewhat
technical. The exact formulation of it, as well as the statement of our result
(and algorithm) in full generality is postponed to Section 2.

Our second algorithm is a subexponential algorithm for the list M-par-
tition problem with general ¢, such that each relation E; forbids, for any
two triples of parts B, B’ C V(H) (not necessarily disjoint), at least one
combination of a part from B with a part from B’. Formally, a matrix
M has the incomplete property, if for any two three-element subsets B and

B' of V(H), and any i, we have B x B" ¢ FE;(H). We give an algorithm
with running time (rn)@(c1087108m/l0glogm) g0 1igt A7 partition problems for
r x r matrices with the incomplete property. Note that the complexity of
our algorithm remains quasi-polynomial even for unbounded r. Actually,
our algorithm solves a more general class of problems, the exact statement
of which is again postponed to Section 3 where the algorithm is presented.
This algorithm also implies that all problems with three parts (i.e., r = 3, ¢
arbitrary) have complexity n©(°gn/181oen) ynless they are NP-complete.

Our motivation for considering this type of problems comes from the
classification of Feder and Hell [11] of all list partition problems as having
either quasi-polynomial complexity n°1°%€™ or being NP-complete. In the
special case of list digraph partition problems with three parts (i.e., ¢ = 2
and r = 3), each problem is either polynomial or NP-complete, as shown by
Feder, Hell, and Tucker-Nally [15]. For the special case of list graph partition
problems with at most four parts (¢ = 2 and r < 4), all quasi-polynomial
problems turned out to be polynomial, with the exception of a single four-
part problem dubbed the stubborn problem [4]. A similar three-part problem
with ¢ = 3 was given in [11], with an n®1°8™) algorithm (again, no polynomial
algorithm is known for this problem.) Our algorithm improves the bound for
both these partition problems by a factor of loglogn in the exponent.

2 The Bisplit Property

In this section, we present our polynomial-time recognition algorithm for
(A, B)-bisplit graphs and the generalization to list M-partition problems on
graphs for M with the bisplit property defined below.

A cross of a matrix of M is a pair formed by some row M,, and the
corresponding column M,;. We say that the cross ¢ dominates the cross j
if, for every s, M;; C M;, and M,; C M. (Recall our convention that
x is a shortcut for {0,1} and 0 and 1 are shortcuts for the corresponding
singletons.) Note that if cross ¢ dominates cross j, then any vertex of G
mapped to a j can be also mapped to i. (However, in the surjective case we
need to keep one vertex of G in each class.)

Two crosses ¢+ and j of a matrix M are said to be independent if the
sets of *’s in the corresponding crosses are incomparable by inclusion. More
precisely, there exists s such that M;, = x # M;, or My; = * # M,;, and
there exists s such that M;, # x = M, or My # * = M,;. The matrix M

is said to have the bisplit property if it does not contain three independent
crosses. Clearly, all matrices M corresponding to recognizing (A, B)-bisplit
graphs have the bisplit property, as the x’s in M consist of two symmetric
rectangles and thus at most two crosses can be independent.

Note that for any two crosses ¢ and j, (at least) one of the following
three possibilities occurs: (i) the crosses i and j are independent, (ii) or
they dominate each other (i.e., i dominates j or j dominates 7) or (iii) the
crosses ¢ and j are incomparable, where two crosses ¢ and j are said to be
incomparable, if there exists one s such that M;, and M, are incomparable
(i.e., one of them is equal to 0 and the other one is equal to 1), or M; and
M,; are incomparable.

If we allow three independent crosses, in general, the problem becomes
NP-hard. For example, note that a complement of graph G is 3-colorable if
and only if it admits an M-partition for

M =

* % =
* = %
— % X

We are now prove the main result of this section:

Theorem 2.1 Let M be an rxr matriz over the non-empty subsets of {0,1}.
If the matrix M has the bisplit property, then the list M-partition problem
can be solved in time O(n"2). This also applies to the surjective version of
the problem.

Proof. Given a graph G, we first select at most one representative vertex
v, € V(G) for each element h € V(H) and map v, to h; in the surjective
version of the problem we choose exactly one representative for each h €
V(H). Note that there O(n") ways in which this can be done.

For each such choice, we delete from the matrix M all the crosses cor-
responding to the parts in V(H) that do not have a representative, and we
delete, from any list L(v), all parts that have no representatives. Note that
the resulting matrix M’ still has the bisplit property. Furthermore, whenever
the list of a vertex v of G contains ¢ and j such that the cross + dominates
the cross j in M', remove j from the list of v. Clearly, if the original list
partition problem had a solution, the new one has a solution as well: a solu-
tion which maps v to j can be changed so that v is mapped to 7. Finally, we
remove from the list of each vertex v of GG all the parts to which v cannot be

7

mapped because of the structure of M and the preselected representatives.
Specifically, if v is adjacent to v, but M(h, k) = 0, then remove k from the
list L(v), and if u is nonadjacent to v, but M (h, k) = 1, then remove k from
the list L(u). Since the size of H is constant, the restriction described above
can be performed in linear time.

We claim that after this procedure, every two crosses i,j € L(v) are
independent, for every v € V(G). They cannot dominate each other, as
dominated crosses have been removed. They also cannot be incomparable,
as otherwise there exists a cross s where the crosses ¢ and j are incomparable,
and based on the existence of an edge between v and the representative of s
from the preselected vertices one of i and j was removed from L(v). As noted
above, if two crosses neither dominate one another nor are incomparable, they
are independent.

Since M has the bisplit property, L(v) has at most two elements, for each
v € V(G). We may thus assign to each vertex a Boolean variable which
represent whether the vertex v is mapped to the first or the second part
contained in L(v). If the list contains just a single part, we introduce a
corresponding clause of length 1. Given vertices v and v’, the parts chosen
for v and v' are possibly constrained by M depending on whether v and v’
are joined by an edge or not. This constraint gives one or more clauses with
the two Boolean variables corresponding to v and v’. The corresponding
instance of the 2-satisfiability problem can be solved in time O(n?) [1]. Since
there are O(n") choices of the initial partition, the total running time of our
algorithm is O(n"*?). O

If the matrix M corresponds to the recognition problem for (A, B)-bisplit
graphs, the running time of the algorithm can be improved by a factor of n2.
The key observation is that we can omit assigning a representative to one
part from A and to one part from B.

Theorem 2.2 For any matrices A and B with dimensions k X k and £ X
¢, respectively, (A, B)-bisplit graphs can be recognized in time O(nf*%). In
particular, for any integer k > 1, k-bisplit graphs can be recognized in time

O(n2k+1).

Proof. First, if the matrix A contains two equal crosses (i.e., such that
A;s = Ajs and A, = A, for all s), remove one of them. We proceed similarly
for the matrix B.

Given a set U of crosses of A, call two crosses ¢ and j in A separated by
U if Ajs # Ajs or Ay # Agj for some s € U. We claim that there exists
a (k — 1)-element set U of crosses of A such that every two crosses i and j
in A are separated by U. Observe that the relation of “not being separated
by U” is an equivalence on crosses of A for each U and adding elements to
U can only refine this equivalence. We start with U empty and sequentially
add crosses of A to the current set U. Pick up two crosses ¢ and j of A not
separated by U. There exists s such that A;; # A;, or A # Asj, since there
are no equal crosses in A. Add one such s to U. Clearly, this separates ¢
and 7 and thus increases the number of equivalence classes by at least one.
After at most k — 1 steps, every two crosses of A are separated and the claim
follows.

Similarly, for the matrix B, there exists a set U’ of at most £ — 1 crosses
that distinguish all crosses of B.

Now follow the previous algorithm with the following modification: if
less than k crosses of U should have a representative, we proceed as in the
general case. If all crosses of A should have a representative vertex, choose a
representative vertices only for the at most £ — 1 crosses in U, but keep the
remaining cross(es) available in the restricted matrix M’'. Similarly, proceed
with B. Remove now the dominated crosses of M’ from all the lists L(v).
After this, each list contains at most one element from A and at most one
element from B; to show this if M contains all the crosses of A or B, we use
the fact that chosen U distinguishes all the rows. Solve the corresponding
2-satisfiability problem.

There are O(n*+*=2) choices of the representatives and the total running
time of the algorithm is O(n**¥%).

The statement for k-bisplit graphs immediately follows. O

3 The Incomplete Property

In this section, we present our second algorithm. We actually treat the
problem in a more general, multi-domain, setting: An instance consists of n
variables x; that range over respective sets A; of size at most r. In addition,
each pair of distinct variables x;, z; is constrained by some C;; C A; x A;
which has the following property: If B; C A; and B; C A; are subsets of size
exactly 3, then B; x B; Z C;;. Clearly, every instance of a list M-partition

problem is of the above type if the matrix M has the incomplete property.
Indeed, in this case A; = V(H).

Theorem 3.1 Consider instances of an r-part list partition problem with n
variables where each variable is constrained by a list A; and each pair of two
distinct variables x; and x; is constrained by some relation C;; C A; X A;
with the property that for each B; C A; and B; C A; with |B;| = |B,| = 3,
we have (B; x Bj) € Cyj. This r-part list partition problem can be solved in
time (,rn)O(logrlogn/loglogn).

Proof. Let ¢t =logn/loglogn. If t < 6, then n is constant and the problem
can be solved by brute force in time bounded by a polynomial in r.

The algorithm proceeds by double recursion. The outer recursion de-
creases 1 by a factor of 2/3 in each level. More precisely, let p be the maximal
size of any list |A;| at the beginning of a level of the outer recursion. Then at
the end of the level, in all the calls to the next level of the outer recursion, the
size of all the lists |4;| is at most |2(p+ 1)/3]. Consequently, after O(logr)
levels, the size of the lists is at most 2. Such instances are instances of the
2-satisfiability problem and can be solved in time O(n?).

List A; is said to be large if |A;| > 2(p+1)/3, where p is the maximal size
of any list |4;| at the beginning of the current level of the outer recursion.
The inner recursion gradually decreases the number of variables with large
lists.

Let s denote the number of large lists; note that s < n. We define f(s) to
be the maximal number of calls within one level of the outer recursion taken
over all instances with at most s large lists. The value f(s) also implicitly
depends on r and n which are fixed for the whole proof. If s = 1, assign all
possible values of the last large list to the corresponding variable and recurse
to the next level of the outer recursion; thus f(1) < n.

For each i and a € A;, let g;(a) be the number of large lists A; such
that there more than |A;|/3 — 1 elements d € A; with ad ¢ C;;. Thus, if
x; is assigned a, the size of at least g;(a) large lists is decreased to less than
|A;| — |4,]/3+1 < 2p/3+1, ie., they are no longer large, and s decreases
to at most s — g;(a).

We claim that for any ¢+ and any three distinct a,b,c € A;, we have
gi(a) + gi(b) + gi(c) > s — 1. Otherwise there exists one large list A;, j # 1,
such that there are at most |A;|/3—1 elements d € A; with ad & C;;, at most
|A;]/3 — 1 elements d € A; with bd ¢ C;;, and at most |A,|/3 — 1 elements

10

d € A; with cd ¢ C;;. Thus there exists a three-element subset B C A; such
that {a,b,c} x B C Cj;, contradicting the incompleteness assumption.

We now distinguish two cases according to the number of elements a € A;
with g;(a) < s/t.

Assume first that each list A; contains at most one element a; with
gi(a;) < s/t. Assign to each z; the element a; € A; with the smallest g;(a;)
and check whether this is a valid assignment. If yes, we are done with no re-
cursion. If no, there must exist 4 and j such that a;a; & Cj;; fix one such pair
i, 7. Recurse on |A;| — 1 problems obtained by assigning to x; all elements
¢; € A; \ {a;} and on |A,| — 1 problems obtained by assigning to z; all ele-
ments ¢; € A; \ {a;}. Since a;a; ¢ C;;, this covers all possible solutions. We
now bound the number of recursive calls. Observe that g;(b;) < (s—1)/3 for
at most one value of b; € A; \ {a;}, as otherwise we would get, together with
a;, three elements of A; with values of g; smaller than (s —1)/3, contradicting
the previous claim. Furthermore, for this value of b; we have ¢;(b;) > s/t.
Using the same argument for j, we have at most two recursive calls with s
decreased to at most s — s/t and at most 2r calls with s decreased to at most
(2s + 1)/3. Consequently, the number of calls to the next level of the outer
recursion is at most

rs () (D)

The remaining case is that there is a list A; with two elements a,b € A;
such that g;(a) < s/t and g;(b) < s/t. By the above claim, each element
c € A; \ {a,b} has g;(c) > s(1 —2/t) — 1. We now form |A4;| — 1 recursive
calls. First we assign to x; all elements ¢ € A; \ {a,b} and recurse on the
remaining instance with at most 1+2s/¢ large lists. If none of these instances
has a solution, we can restrict the list A; to {a, b} and eliminate z; as follows:
For every two indices j, 7' # 4 and each ¢ € A; and ¢’ € Aj such that ca & C};
and bc' & Cjr, remove cc’ from Cj; (if cc’ € Cjj;). Clearly, the new instance
(without the variable x;) has a solution if and only if the original one has a
solution with z; € {a,b}. The new instance is solved by a recursive call; note
that it has at most s — 1 large lists. The number of calls to the next level of
the outer recursion is at most

2s

f(s—1)+r-f(—).

t

11

Unwinding the last call of the recursion in the second case until the first case
occurs we obtain the following bound for f(s):

<1 () s (5 s o1 1)

Solving this recurrence we obtain, for a suitable constant C,

f(S) S (,,«n)CIOgtS(QT)ClogSQC’tlogs — (pn)O(Tlgol%)

Since there are O(logr) levels of the outer recursion and all the other com-
putations are polynomial-time for each recursive call, the overall number

of recursive calls and also the running time of the presented algorithm are
(Tn)O(logrlogn/loglogn)‘ 0

Given a three-part list partition problem, if one of the ¢ binary constraints
allows all pairs, then the problem is just a list constraint satisfaction problem,
and thus polynomial or NP-complete by Bulatov’s classification [3]. If each
of the ¢ binary constraints forbids at least one pair, then the problem satisfies
assumptions of Theorem 3.1. We thus have the following:

Corollary 3.2 Every three-part list partition problem has either complexity
at most nOlogn/loglogn) o is NP_complete.

The complexity in the preceding Corollary is either polynomial or NP-
complete in the special case of list digraph partition problems as shown
in [15], and noted in the introduction.

The graph list partition problems with at most four parts (¢ =2, r < 4)
were classified as polynomial or NP-complete, with the exception of the so-
called stubborn problem, which is quasi-polynomial [4]. This is the problem
with parts 0, 1, 2, 3 where one symmetric binary relation forbids just the loop
at 0, and the other symmetric binary relation forbids only the loops at 2
and 3, and the edge 13. As 1 dominates 3, the lists may be assumed to
not contain both 1 and 3, i.e., the given lists are contained in {0, 1,2} or
{0,2,3}. We thus have a four-part partition problem without the relation
that allows all combinations of two choices of three parts: on {0, 1,2} one
relation forbids 00 and the other 22, on {0, 2,3} one relation forbids 00 and
the other 33, and between {0,1,2} and {0, 2,3} one relation forbids 00 and
the other 13. Theorem 3.1 yields the following bound.

12

Corollary 3.3 The stubborn problem can be solved by an algorithm with
O(logn/loglogn)

running time n :

The edge-free three-colouring problem from [11] is closely related to the
stubborn problem (cf. [11]), but has only three parts and ¢ = 3; it can be
formulated as follows. An instance of the edge-free three-colouring problem
is a complete graph with edges coloured by 0,1,2. The solution to such an
instance is a three-colouring of the vertices of the complete graph without
a monochromatic edge, i.e., an edge of colour 7 having both end vertices
coloured 7. (Note that the analogous edge-free two-colouring problem is the
recognition problem for the class of split graphs, and hence solvable in poly-
nomial time; the edge-free four-colouring problem is easily seen to be N P-
complete [11].) Clearly, the edge-free three-colouring problem is a restriction
(to the case where all lists are {0, 1,2}) of the list M-partition problem with
the following matrix M (we again let * denote {0,1,2}):

{1,2} =
M = « {0,2}
* « {0,1}

Theorem 3.1 also yields the following bound (which also applies to the
general list M-partition problem with the above M).

Corollary 3.4 The edge-free three-colouring problem can be solved by an
algorithm with running time n@Uosn/loglogn)

Acknowledgments

Part of this research was conducted during the Dagstuhl seminar on Graph
Colorings in September 2003 in which the last three authors took part. They
would like to thank the International Conference and Research Center Schloss
Dagstuhl for support from the program High Level Scientific Conferences of
the European Union. The third author would also like to thank Ladislav Sta-
cho from Simon Fraser University for his kind hospitality and support during
his visit at SFU in May 2004. The last author acknowledges support by the
Institute for Theoretical Computer Science, Prague (project LNO0OA056 of
MSMT CR) and grant IAA1019401 of GA AV CR. The first two authors
acknowledge support from an NSERC Discovery Grant.

13

References

1]

[5]

(6]

[7]

8]

[10]

[11]

[12]

B. Aspvall, M. R. Plass, and R. E. Tarjan, A linear-time algorithm for
testing the truth of certain quantified Boolean formulas, Information
Processing Letters 8 (1979) 121-123.

A. Brandstadt, P. L. Hammer, V. Bang Le, and V. V. Lozin, Bisplit
graphs, DIMACS Technical Report 2002-44, October 2002.

A. A. Bulatov, Tractable conservative constraint satisfaction problems,
in: Proc. 18th IEEE Symposium on Logic in Computer Science (LICS)
2003, 321-330.

K. Cameron, E. E. Eschen, C. T. Hoang and R. Sritharan, The list
partition problem for graphs, in: Proc. 15th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA) 2004, 391-399.

S. Dantas, C. M. H. de Figueiredo, S. Gravier, S. Klein, On H-partition
problems, available as technical report PESC UFRJ ES-579/02.

S. Dantas, C. M. H. de Figueiredo, S. Gravier, S. Klein, Extended skew
partition problems, manuscript 2004.

S. Dantas, C. M. H. de Figueiredo, S. Gravier, S. Klein, B. Reed, Stable
skew partition problem, manuscript 2003.

R. G. Downey, M. R. Fellows, Fixed-parameter tractability and com-
pleteness II: On completeness for W[1], Theoretical Computer Science
141 (1995) 109-131.

R. G. Downey, M. R. Fellows, Fixed-parameter tractability and com-
pleteness III: Some structural aspects of the W hierarchy, in: Com-
plexity Theory: Current Research, Cambridge University Press (1993)
191-226.

R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer-
Verlag, New York (1999).

T. Feder and P. Hell, List constraint satisfaction and list partition,
submitted.

T. Feder and P. Hell, Matrix partitions of perfect graphs, submitted.

14

[13] T. Feder, P. Hell, J. Huang, J. Graph Theory 42 (2003) 61 - 80.

[14] T. Feder, P. Hell, S. Klein, R. Motwani, List partitions, SIAM J. Dis-
crete Math. 16 (2003) 449-478.

[15] T. Feder, P. Hell, and K. Tucker-Nally, List partitions and trigraph
homomorphisms, submitted.

[16] C. M. H. de Figueiredo, S. Klein, Y. Kohayakawa, B. Reed: Finding
skew partitions efficiently, Journal of Algorithms 37 (2000) 505-521.

[17] P. Hell, J. Negetiil: Graphs & homomorphisms, Oxford University
Press, Oxford (2004).

15

