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Abstract

We prove that the strong product of any at least (In2)A 4+ O(V/A)
non-trivial connected graphs of maximum degree at most A is pan-
cyclic. The obtained result is asymptotically best possible since the
strong product of |(In2)D| stars K p is not even hamiltonian.

1 Introduction

Hamilton cycles in graphs form one of the most intensively studied topics in
graph theory. There are numerous surveys on the subject, e.g., [4, 5, 8, 9].
Gray codes [12] which are just special types of Hamilton cycles are important
in the computer science because of their relation to the efficient enumeration
of combinatorial objects. In the present paper, we study what is the least
number hpa(A) such that the hpya(A)-th strong power of each non-trivial
connected graph G of maximum degree A is hamiltonian. We treat this
problem in a more general setting by considering strong products of connected
graphs of maximum degree A.

The strong product of graphs Gy, ..., Gy is the graph G X --- x G, with
the vertex set V(Gp) x --+ x V(Gg) where two distinct vertices [vy, ..., vg]
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and [v],...,v;] are joined by an edge in G x - - - X G, if for every coordinate
i, 1 <i<k,v; =v orvw, € E(G;). Since we consider throughout the paper
only strong products of graphs, we often leave the adjective “strong”. The
k-th power G* of a graph G is the strong product of k copies of G. A graph
G is hamiltonian if it contains a Hamilton cycle, i.e., a cycle through all the
vertices of G. The order of a graph G is the number of its vertices; the size
of G is the number of its edges. A graph is said to be non-trivial if its order
is at least two. A graph G of order n is pancyclic, if it contains cycles of all
lengths between 3 and n.

We show that the (strong) product of any (In2)A + (10 + In4)vVA +
0.5log, A+O(1) non-trivial connected graphs with maximum degree at most
A is pancyclic. This proves Conjecture 2 from [10, 11]. Our proof is based on
the concept of fractional factors in graphs which we introduce in Section 3.
Let us remark that the obtained constant at the linear term is the best
possible since the graph K 1“21 241'is not hamiltonian [15], In fact, the graph

K}(E 24) contains an independent set of size greater than half of its order.

Since the product of slightly more than (In2)A stars Kj A still contains a
large independent set and its toughness is close to one, our results might
seem quite surprising at the first sight.

Before we proceed further, let us survey the history of the considered
problem and previous results.

1.1 Previous results

The problem which we address can be traced back to the 1970’s to the work
of Barnette and Rosenfeld [2]. Zaks [15] in 1975 asked whether for each non-
trivial connected graph G, there exists a number A(G) such that the graph
GM) is hamiltonian. Note that the following theorem from [2, 3] implies
that if the number h(G) exists, then for every k > h(G), the graph G* is also
hamiltonian:

Theorem 1 If G is a connected hamiltonian graph of order at least A and H
is a connected graph of maximum degree at most A, then the product G x H
18 hamiltonian.

Therefore, we define h(G) to be the least integer such that G*(©) contains a
Hamilton cycle.

Bermond, Germa and Heydemann [3] answered the question of Zaks in
affirmative by showing the existence of the number h(G) for each non-trivial
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connected graph G. In their paper, they also conjectured that the following
should hold:

Conjecture 1 If G is a non-trivial connected graph of maximum degree A,
then the A-th power of G is hamiltonian.

If we define hAnyax(A) to be the maximum of A(G) taken over all non-trivial
connected graphs G of maximum degree A, then Conjecture 1 asserts that
hmax(A) < A. Conjecture 1 have been proved only recently by Kral’,
Maxové, Podbrdsky and Sdmal [10] in the following stronger form:

Theorem 2 Let Gi,...,GaA be any non-trivial connected graphs of mazi-
mum degree at most A. The product G X - -+ X Ga 18 hamiltonian.

However, the function hyay(A) is not equal to A. In the subsequent
paper, Kral” et al. [11] showed that lim sup,_, hm%m) <In2+ -+ <1and
conjectured [10, 11] the following:

Conjecture 2 The following equality holds:

7hmax(A) =In2.

lim

A—00

Note that the result of Zaks [15] on the powers of stars implies that the limit
cannot be smaller than In 2, since hyax(A) > (In2)A — O(1).

In the present paper, we prove Conjecture 2 in the following stronger form

(Theorem 12): the product of any (In2)A+(10+1In4)vA+0.5log, A+O(1)

non-trivial connected graphs of maximum degree at most A is pancyclic.

2 Preliminaries

Throughout the paper, we use the standard notation from graph theory which
can be found, e.g., in [7]. In this section, we just introduce less standard
concepts which we use and we also recall some results on factors in strong
products of graphs mostly from [10, 11].

The star Si of size k > 1 is the complete bipartite graph Kj ;. The
vertices of the star Sy are denoted by {x,1,...,k} where x stands for the
central vertex and 1,...,k for the peripheral vertices. The set of all stars of
size at most D is denoted by S(D).



A k-factor of a graph G is a k-regular spanning subgraph of G. If T is a set
of graphs, a I'-factor of G is a spanning subgraph of G whose each component
is isomorphic to a graph from the set I'. In particular, a {Ks}-factor is just
a perfect matching (which is just a 1-factor).

The proof of our main result is divided into several steps. In the first
step, we show the existence of “good” S(D)-factors in products of graphs of
bounded maximum degree for suitable small D. The tools to reach this goal
are developed in Section 4. Let us now recall some previous results on the
existence of S(D)-factors in graphs and their strong products. It is not hard

to see that each non-trivial connected graph of maximum degree at most A
has an S(A)-factor [1, 10, 11]:

Lemma 3 Let G be a non-trivial connected graph of mazimum degree at
most A. The graph G has an S(A)-factor.

A sufficient and necessary condition on the existence of S(D)-factors for
D > 2 was proved by Amahashi and Kano [1]. The condition found by
Amahashi and Kano when applied to the strong products of stars readily
yields the following [11]:

Lemma 4 Let k > 1, £ > 2 and ny,...,n; be any integers such that 1 <
n; < kl for each i, 1 <i < k. The graph S, X ---x Sy, has an S({)-factor.

In the second step (Section 5), we show how to find 2-factors comprised
by long cycles in products of good stars. One of the cases, which we will need
to handle is the case that all the stars in the considered product have small
sizes. At this point, the following corollary of Theorem 2 becomes helpful:

Corollary 5 The product of any A stars of size at most A is hamiltonian.

In the final step of the proof, presented in Section 6, we find a 2-factor
comprised by cycles of lengths at least A and apply the following lemma
which was implicitly proven in [11] (see the proof of Theorems 9 and 10
in [11]):

Lemma 6 Let G be a connected graph which has a 2-factor comprised by
cycles of lengths at least A and let G1 and Go be two connected graphs of
mazximum degree at most A. The product G x G x G4 s pancyclic.



3 Fractional matchings and factors

In the proofs in Sections 4 and 5, we use the concept of fractional matchings
and factors in graphs. In this section we provide a gentle introduction to
this concept. The interested reader is referred to any monograph on polyhe-
dral combinatorics and combinatorial optimization, e.g., [6, 13, 14], for more
details.

Let G be a fixed graph for the rest of the paragraph. If f: V(G) —» N
is a function which assigns vertices of G non-negative integers, a spanning
subgraph H of G is said to be an f-factor if each vertex v of G has degree
f(v) in H. Note that if f is a function constantly equal to an integer k,
then an f-factor is just a k-factor. A fractional factor of G is a function
z : E(G) — R which assigns each edge of G' a real number between 0 and
1 (inclusively). If the sum of the values z(e) taken over all edges e incident
with a vertex v is equal to f(v), the fractional factor is a fractional f-factor.

The concept of fractional factors is a relaxation of ordinary factors: if
the values z(e) are restricted to be only integers, then the fractional factor
x corresponds to the factor of G (include to the factor the edges e with
z(e) = 1). If a graph G has an f-factor, then it has also a fractional f-factor,
but the converse is not true in general: any odd cycle has a fractional 1-factor
(assign each edge 1/2) and clearly it does not have a 1-factor. However, if
a graph G is bipartite, the converse is also true [6, 13, 14]. We decided to
include a proof of this simple fact for the sake of completeness:

Lemma 7 Let G be a bipartite graph and let f : V(G) — N be any func-
tion assigning the vertices of G non-negative integers. If the graph G has a
fractional f-factor, then G has also an f-factor.

Proof: Let x be a fractional f-factor such that the least number of edges of
G are assigned non-integral values. If G contains no edge whose value z(e)
is an integer, then the edges e with z(e) = 1 form an f-factor of G. Assume
in the rest that G contains an edge e = vjvy with 0 < x(vjvy) < 1. Since
the sum of the edges incident with the vertex vy is an integer, the vertex
vy must be incident with another edge vyvs whose value is not an integer.
Similarly, the vertex v is incident, besides the edge vyv3, with an edge vsv,
whose value is not an integer, etc. Since the graph G is finite, we eventually
reach a vertex v, which is already among the vertices vy, ..., v,_1.

Assume now that v, = v, and all the vertices vg,...,vy,_1 are distinct.
Since the graph G is bipartite, £ — k is an even integer. Let us define § to be



the following number:

0 =min {z(vkvk+1), T(Vk12Vk+3)s - -, T(Ve—ovp_1) } U

{1 — z(vk10k+2), 1 — T(Vk43Vk+4), - - 1 — T(ve—1v0) }

Modify the fractional factor z to another fractional factor z’: decrease the
values £(vgVry1), T(VkioVkyis), ---, T(Ve_ovp_1) by § and increase the values
(Vg r1Vk12), T(Vpi3Vksa), - -+ (ve_1vg) by 6. Clearly, the obtained assign-
ment z’ is a fractional f-factor. In addition, one of the values z'(vgviy1),
' (Vk41Vk42), - -, T'(ve_1vp) is an integer. However, this contradicts the fact
that fractional f-factor x has the least number of non-integral values among
all fractional f-factors.

u

4 Star factors in the products of stars

In the next section, we show that the product of stars whose sizes are mul-
tiples of s has a 2-factor comprised by large cycles. In order to be able to
apply this result, we need a tool to construct a factor comprised by stars
whose sizes are either multiples of a given number s or are small. We call
such stars s-good: a star is s-good if its size is a multiple of s or it is smaller
than 4s. The set of all s-good stars of size at most D is denoted by S,(D).

The next lemma provides us the wanted tool to construct a factor com-
prised by s-good stars:

Lemma 8 Let A and s be two positive integers. The product of any two
stars of size at most A has an Sg(A/2 + s)-factor.

Proof: Fix integers A and B between 1 and A. We aim to show that the
product S4 x Sp has an S;(A/2 + s)-factor. If either A < 4s or B < 4s,
the claim trivially holds (e.g., if A < 4s, consider the factor formed by the
B + 1 copies of S4 in Sy x Sg). In the rest, we assume that both A > 4s
and B > 4s.

Let « = |2 ] and 8 = [£]. In addition, let § = AB — aBs — $As. The
integer 0 is non-negative:

5:AB—aBs—ﬁAs:AB—L%JBS—LZ%JASZ
AB_ABS_ABSZO (1)

2s 2s




Note that = 0 if and only if both A and B are multiples of 2s. Next, we
bound the integer ¢ from above:
§=AB—aBs— (As <AB— (£ —1)Bs+ (£ —1) As =
AB— 28 Bs— 485 4 As = (A+ B)s (2)

Fix integers A’, 0 < A’ < A,and B',0 < B' < B,such that —1 < A'+B' <
8. Such integers A’ and B’ exist by the inequalities (1) and ( ) unless § = 0.
If d =0, set both A" and B’ to zero. Note that if § # 0, then § — (A’ + B')s
is a positive integer smaller or equal to s.

Let us now consider the following partition of the vertex set of S4 x Sp:

V = {lab,1<a<A&1<b< B}
W = {la,x],1 <a< A} U{[*,0],1 <b< B}U({[, %]}

Next, we construct a fractional factor in the bipartite subgraph of S4 x S
with the parts V and W. The fractional factor x is defined as follows:

((Bths BB ifj < A and j < B,
o Be BBl ifi> Aand j < B,
x([z7]][27*]) = 9 (ﬂ+1)s B's o / . !
—|—AB if i < A"and j > B’,
\ ﬂs + E otherwise,
( EQE; + :"Ajg‘)s if i < A'and j < B,
o atl)s | A's ifi> A" and j < B,
(liilbnd) = § LA s T s
L+ ifi <A and j > B,
\ ‘j‘: + 3 A' otherwise,
. d— (A’+B’)s
o(lidlle ) = A

where ¢ ranges from 1 to A and j from 1 to B. Since both the integers A
and B are at least 4s, we infer that:

as (i =1)s _ 1
A°7 4 2

-2

Y

| o
I

and similarly:

b5
7 2

e~ =



On the other hand, we have also the following bounds:

(B’—B)s> 5 1 and (A’—A)s> 5 S 1
— - >——>— and ——F—>——>——.
AB B AB — B~ 4
These bounds together with (2) imply that each z(e) is a non-negative real
number.
Fix integers i, 1 < i < A, and j, 1 < j < B. The sum x([i, j][4, *]) +
x([4, 7][*, j]) is equal to the following:
Bs as A's aBs+ [As N (A"+ B')s

B AB St At aBT B AB
AB—-0+ (A +B')s _ - d—(A"+B')s
AB AB
Therefore, the sum of the values assigned to all the three edges [i, j][i, *],
[i, 7][*, 4] and [4, j][*, *] incident with the vertex [i, j] is equal to one. Since
all the values z(e) are non-negative, we infer that 0 < z(e) < 1 for each edge
e.

In this paragraph, we compute the sums of the values z(e) taken over
the edges e incident with the vertices of W. First, let us consider a vertex
[i, %] with ¢ < A’. Out of all the B edges between the vertex [i, %] and the

vertices of V', B’ of them are assigned (ﬁﬂ)s + (B’_B)s and B — B’ of them

are assigned (ﬂ H)s + 5 T3+ Hence, the total sum of the values assigned to the
edges incident Wlth the vertex [z, x| is the following:

B ((64—1)5 + (B'_B)S) +(B-B). ((BH)S + Bls) = (B+1)s

B AB B AB

Similarly, the sum of the values assigned to the edges incident with a vertex
[i, %], i > A, is (s, the sum of the values of the edges incident with a vertex
[*,7] is (e + 1)s if 7 < B’, and as, otherwise. Finally, each of the AB edges
incident with the vertex [x, x| is assigned %, and thus the sum of the
values of the edges incident with [, *] is § — (A" + B')s < s.

If 6 # 0, then z, is a fractional S;(A/2+s)-factor of the bipartite subgraph
of S4 x Sp with the parts V and W. By Lemma 7, this bipartite subgraph of
S4xSp has also a S;(A/2+s)-factor which immediately yields the statement
of the theorem.

If § = 0, each edge incident with the vertex {[x,*]} is assigned 0 by z.
Therefore, x is a fractional S;(A/2 + s)-factor of the bipartite subgraph of
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(SaxSg)\{[*, %]} with the parts V and W\ {[«, x|}. By Lemma 7, the graph
(Sa x Sg) \ {[*, *|} has an S;(A/2 + s)-factor. Moreover, since A’ = 0 and
B’ = 0, the degree of each vertex [i,*], 1 < i < A, is B/2 and the degree of
each vertex [*,7], 1 < j < B, is A/2. Since B > 4s, the degree of the vertex
[1, %] in the constructed factor is at least 2s. We now turn the obtained factor
into an S;(A/2 + s)-factor of Sy x Sp. Let X be a set of any s neighbors of
the vertex [1,*] in the factor. Reconnect each vertex of X from the vertex
[1, %] to the vertex [, *|. The degrees of all the vertices of X remain equal to
one, the degree of the vertex [1, x| drops to B/2 — s, which is still a positive
multiple of s, and the degree of the vertex [, x| is now equal to s. Therefore,
we have obtained an S;(A/2 + s)-factor of the entire product S4 x Sp.

]

5 Cycle factors in the products of stars

In this section, we show that the product of s-good stars contains a 2-factor
comprised by large cycles. Before we do so, we introduce several defini-
tions which will simplify our presentation. The vertices of the product of
stars Sp, X --- xSy, are denoted by k-tuples whose entries are from the set
{x,1,2,...}. A pattern of a vertex v is a k-tuple in which each entry of v
which is not a star is replaced with the circle (o). In particular, a pattern
is always k-tuple whose entries are stars () and circles (o). A k-pattern is
a pattern which contains exactly k stars, and a k-verter is a vertex whose
pattern is a k-pattern. Note that the 0-vertices form an independent set in
the product.

As the first step towards the main goal of this section, we show that the
product of stars whose sizes are positive multiples of s contains a 2-factor
comprised by large cycles:

Lemma 9 Let s > 2 and D > s be positive integers, and let k = [(D +
1)In(2+5%5)]. The product of any k stars of sizes ni, ..., ny, where each size
n; is a positive multiple of s smaller or equal to D, has a 2-factor comprised
by cycles of lengths at least 2s.

Proof: Let G be the product S,, x --- x5, . The proof of the lerﬁma is
divided into two major steps. In the first step, we find a subgraph F' of G
formed by vertex-disjoint cycles whose lengths are at least 2s such that each



0-vertex of G is contained in one of the cycles of F'. In the second step, we
modify the subgraph F to get the desired 2-factor of G.

Let P; be the set of all i-patterns of length k. Note that the set P,
contains (’:) patterns. Split now each P; into disjoint sets P}, ..., P§ of size

B (f)J each and discard (at most s) remaining patterns contained in P;. Let
W7, 1 < j < s, be the set of all the vertices of G whose pattern is in the
union Ule P/. Note that all the sets T/ are disjoint. Let W’ be the set of
cardinality |W7| whose vertices one-to-one correspond to the vertices of W7,
Finally, let V7, 1 < j < s, be the set of all the O-vertices of the graph G
whose sum of entries modulo s is equal to j. Note that V| = ([T, n:)/s
for every j.

Fix j, 1 < 7 < s, and let us consider an auxiliary bipartite graph H J with
the vertex set VI UWJUW’ UV7*! (indices are taken modulo s if necessary).
A vertex v € V7 is joined to a vertex w € WY if the edge vw is contained in
G. Similarly, a vertex v € Vi*! is joined to a vertex w € W’ if the graph G
contains the edge vw where w is the counterpart of w. Finally, H J contains
a perfect matching between W7 and W’ consisting of edges which join the
pairs of the corresponding vertices. Clearly, H J is a bipartite graph with the
parts VI U W’ and W7 U Vil

We now show that the graph H’ contains a fractional 1-factor. For each
pattern 7 € |JX_, P/, define a variable y, which is initially equal to s/D" if
7 is an i-pattern. We establish the following inequality:

Y. un>1 (3)

Since each Pij contains exactly E(’;)J patterns, we can infer the following:

= - L0 -

relUh_, PJ i=1 i=1
il’“_li_iki_ki_
, s\ i Di <4 i) Di 4L~ Di
=1 1=1 1=1
k k
E\ 1 DfF —1 1
3 1 O L R R
i ) Di Dk(D —1) D D1
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1 [(D+1)In(2+5%7)] S
(1+5> —1—D_1 >

1\ @+D)m(2+5%5) 5
(1+5) —1—D_1 >

The inequality (3) now readily follows.

In this paragraph, we construct the fractional 1-factor of H’. First, de-
crease the value of some of the variables y, so that the sum Zweule pi Yn
becomes equal to one but all the variables ¥y, remain non-negative. The value
z(vw) for an edge vw between v € V7 and w € W7 is set to y, where 7 is the
pattern of w. Similarly, the value z(vw) for an edge vw between v € VI+!

and w € W is set to yx where 7 is the pattern of the counterpart of w. Fi-
nally, choose the value of x(ww) so that the total sum of the values assigned
to all the edges incident with the vertex w is equal to one.

We verify that we have constructed a fractional 1-factor. The number of
neighbours of a vertex w € W7 that are in V7 is equal to ([],.; n:)/s where
I are the indices of the star entries of w. Indeed, there are [],.,n; choices
how to replace star entries of w in order to obtain a 0-vertex, but only the
fraction of 1/s of them have the sum of their entries equal to j modulo s.
Since ([ [,c; mi)/s < DVl /s, the value of z(w®) is non-negative. Similarly, the
number of neighbors of a vertex @ € W” in VI+! is equal to ([],.; n:)/s where
I are the indices of the star entries of the counterpart vertex w. Note that
the vertex w and its counterpart w have the same degree in H’. Therefore,
the sum of the values assigned to the edges between V7 and w is equal to the
sum of the values assigned to the edges between V7*! and w. By the choice
of the value of z(ww), the sum of the values of the edges incident with each
of w and w is equal to one.

It remains to verify that the sum of the values assigned to the edges
incident with each vertex v € VI U VIt! is equal to one. For each pattern
m e U, P/, the vertex v € VJ U V7*! is adjacent to precisely one vertex of

WJ UW’ with the pattern 7. Hence, the sum of the values assigned to the
edges incident with v is equal to 3° ¢ piyr = 1.
We have shown that each H7, 1 < j < s, has a fractional 1-factor. Since

the graph H7 is bipartite, it has a 1-factor by Lemma 7. Fix for the rest
of the proof a 1-factor FV of H’. In addition, contract in each H’ the edge

11



between a vertex w and its counterpart w. Let I be the resulting graph
with the vertex set ¥/ UTV/ UV7+! and let F~ be the spanning subgraph of
H’ comprised by the edges contained in the 1-factor F7 of H’. Observe that,

in F’, each vertex v € V7 U VI*! has degree exactly one and each vertex
w € W has degree either zero or two.

Since the sets W7, 1 < j < s, are mutually disjoint, the union Fu - -UF
induces a 2-regular subgraph F' of G which contains all the 0-vertices of G
(the vertices of degree zero are not included to F). In each cycle of F, the
0-vertices alternate with the other vertices of G and the sum of the entries
of the 0-vertices increases by one (modulo s) when traversing the cycle. We
conclude that the length of each cycle of F is a multiple of 2s, in particular,
it is at least 2s.

As announced in the beginning of the proof, we now turn the subgraph
F into a 2-factor of G. Assume that a vertex v of G is not contained in F.
Note that v is not a O-vertex. Let v’ be the vertex of GG obtained from v
by substituting all the star entries of v with 0. Since v’ is a 0-vertex, it is
contained in a cycle of F. Let v” be a neighbor of ¢/ in the cycle. Replace the
edge v'v" by the edges v'v and vv” (observe that G contains the edge vv").
In this way, insert all the vertices to the cycles of F. Since the length of the
cycles cannot decrease during this process, we eventually obtain a 2-factor of
GG whose each cycle has length at least 2s.

|

We now extend Lemma 9 to the case of products of s-good stars:

Lemma 10 Let D and s be positive integers such that 2 < s < D and let

k=[(D+1)In(2 + 5%5)] + 45 — 2. The product of any k stars from S,(D)

has a 2-factor comprised by cycles of lengths at least 2s.

Proof: Consider k stars from S;(D) and let nq, ..., n; be their sizes. Note
that at least 4s — 1 of the numbers nq, ..., n; are smaller than 4s or at least
[(D+1)In(2+ 5%5)] of them are divisible by s. We deal with the two cases
separately.

Assume first that at least 4s—1 of the numbers nq, ..., n; are smaller than
4s. Without loss of generality, let us say that these numbers are ny, ..., n45_1.
By Corollary 5, the product of S,,, X - -+ x Sy,,_, is hamiltonian. Clearly, the
order of Sy, X «+- X Sy, is [[;_;(n; + 1) > 2s. The copies of the obtained
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Hamilton cycle in the product of S,, x --- x S,,, , with S,,, X -+ x S,
comprise a 2-factor whose cycles have length at least 2s.

We now consider the case that at least k—4s+2 = [(D+1) In(2+5%)] of
the numbers nq,...,n; are divisible by s. Assume without loss of generality
that the numbers nq,...,ng_4s19 are multiples of s. By Lemma 9, the graph
Spy X+ X Sp, .., has a 2-factor comprised by cycles of lengths at least 2s.
The copies of the cycles of the 2-factor in the product of S, X -+ xSy, _, .,
with Sp, , ., X -+ xS, form a 2-factor comprised by cycles of lengths at

least 2s.

6 The main result

As the final step towards our main result, we show that the product of
approximately (In2)A stars of sizes at most A has a 2-factor comprised by
cycles of lengths at least A:

Lemma 11 Let A > 1 be an integer. The product of any (In2)A + (10 +
In4)v/A+0.5log, A+O(1) stars of sizes at most A has a 2-factor comprised
by cycles of lengths at least A.

Proof: Let s = [V/A] and D = £ + 5. In addition, let k be the following
number:

[0.510gy A

k:2<[(D+1)ln(2+%)-‘+4S—2)+ > [2%1

=1

We show that the product of any k stars of sizes at most A has a 2-factor
comprised by cycles of lengths at least A. Note that the number £ is of the
magnitude claimed in the statement of the lemma:

[0.5logy A]

kz?([(D—l—l)ln(Q—l—%)-‘ —|—4s—2) + Y [QA«J —

=1

[0.5logs A

2(D+1)1n(2—|—%)+83—|— Z [ﬁ—sw +0(1) =
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2(%+\/K+0(1)> (1n2+%+0(;—22)) + 85+

[0.5logy A A
2 oAl

2 <%+\/K+O(1)> (an%—%%—O (%)) +8VA+

+0.5log, A+ 0O(1) =

+0(1) =

<A
2 5Va
(In2)A + VA +2(In2)VA + O(1) + 8VA + VA 4+ 0.5log, A + O(1) =
(In2)A 4 (10 + In4)vV/A + 0.5log, A + O(1) .

Let nq,...,n; be any positive integers between 1 and A. We aim to find
a 2-factor of S, x -+ x S,,. Let k' = [(D+1)In (2 + 55)| + 45 — 2. For
each ¢, 1 <¢ < k', apply Lemma 8 to the product of S,,,, , and S, to get an
Ss(A/2+ s)-factor of Sp,,_, X Sy,,. Let Si,..., S be the components of the
obtained S,(A/2 + s)-factor of S,,, , X Sy,,- By Lemma 10, each individual
product S}l X oo X SJ’?’:/, 1 < j; < m;, has a 2-factor comprised by cycles of
lengths at least 2s. Since the stars S},..., S form a factor of S,,,_, X Sy,
for each 4, 1 <4 < k', we infer that the product Sy, x---x S, , has a 2-factor
comprised by cycles of length at least 2s.

For the rest of the proof, fix a 2-factor of S, x---x .S, , formed by cycles
of length at least 2s and let (', ..., C,, be the cycles which comprise it. The
product S, cee X S"zkur[QA} has an §(2s)-factor by Lemma 4 used with

A

parameters k = [—] and ¢ = 2s. Similarly, the product Sn2

2k +1 X

2s K[ 4]+ XX

Sn%,wﬁ]%m has an S(4s)-factor, the product of the next [£] stars has an
S(8s)-factor, etc. Let m; denote the number of the components (stars) of the
S(2's)-factor, 1 < i < [0.5log, A], and let S, ... ,gbmi be the components.
Let k" = [0.51log, A]. Since the length of each cycle Cj,, 1 < jo < m, is
at least 2s, the product Cj, X 5;1 is hamiltonian for every 1 < j; < m; by
Theorem 1. Recall that the size of the star 3;1 is at most 2s. Since the length

of the Hamilton cycle of C, x g;l is at least 4s, the product Cj, X g;l X gi
is also hamiltonian for every 1 < j5 < msy by Theorem 1. In this way, we

14



. = —k" . : : .
infer that the product Cj, x S;l XX S jr 18 hamiltonian for every choice

of jo, j1,- .., jx, and the length of its Hamilton cycle is at least 2" *+'s. Since
ok'+1g > 205loga AV/A — A, the Hamilton cycles of Cj, X §;1 X oo X gﬁk”

form a 2-factor of S X - -+ x S comprised by cycles of lengths at least A.
|

We are now ready to prove the main result of this paper:

Theorem 12 Let A > 1 be an integer. The product of any (In2)A + (10 +
In4)v/A + 0.5log, A+ O(1) non-trivial connected graphs of mazimum degree
at most A 1is pancyclic.

Proof: Let k = (In2)A + (10 + In4)v/A +0.5log, A + O(1) be the number
of stars from the statement of Lemma 11. We show that the product of any
k+2 non-trivial connected graphs of maximum degree at most A is pancyclic.

Let Gy, ..., Ggio be any non-trivial connected graphs of maximum degree
at most A. Each G;, 1 < i < k, has a S(A)-factor by Lemma 3. Let
Si,..., S}, the components of the S(A)-factor of G;. Each of the products
S}l X oee X S]’?k, 1 < j3; < m;, has a 2-factor comprised by cycles of lengths
at least A by Lemma 11. The cycles of these 2-factors form a 2-factor of
G1 X --+ X G} whose each cycle has length at least A. By Lemma 6, the
product (G X -+ X G) X Gjy1 X Gyyo is pancyclic.

m

7 Conclusion

The original motivation for our research was the question related to the
existence of Hamilton cycles in strong powers of graphs. We have managed to
improve the bound Amax(A) < (In 2 + &) A+ 0(A) from [11] t0 hmax(A) <
(In2) A+O(v/A). As noted in Introduction, the coefficient at the linear term
is the best possible since the graph S g““ 28] is not hamiltonian. Therefore,
hmax(A) > [(In2)A] + 1. On the other hand, the gap between the lower
bound and the upper is still non-constant, namely, it is of order ©(v/A).
Using our technique based on fractional factors, we are not able to close the
gap further. Therefore, the following remains as an open problem:

Problem 1 Is it true that hpa(A) < (In2) A4+ 0(1)?

15



Or, in the stronger form:

Problem 2 Is it true that the product of any (In2)A + O(1) non-trivial
connected graphs of marimum degree at most A is pancyclic?

Note that in order to answer Problem 2 in affirmative, by Lemma 6, it is
enough to show that the product of any (In2)A + O(1) non-trivial connected
graphs of maximum degree at most A has a 2-factor whose each cycle has
length at least A.
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