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Abstract

We consider a game played by two players, Paul and Carol. Carol
fixes a coloring of n balls with three colors. At each step, Paul chooses
a pair of balls and asks Carol whether the balls have the same color.
Carol truthfully answers yes or no. In the Plurality problem, Paul
wants to find a ball with the most common color. In the Partition
problem, Paul wants to partition the balls according to their colors. He
wants to ask Carol the least number of questions to reach his goal. We
find optimal deterministic and probabilistic strategies for the Partition
problem and an asymptotically optimal probabilistic strategy for the
Plurality problem.

1 Introduction

We study a game played by two players, Paul and Carol, in which Paul wants
to determine a certain property of the input based on Carol’s answers. Carol
fixes a coloring of n balls by k colors. Paul does not know the coloring of the
balls. At each step, he chooses two balls and asks Carol whether they have
the same color. Carol truthfully answers YES or NO. Paul wants to ask the
least number of questions in the worst case to determine the desired property
of the coloring.

The first problem of this kind which was considered is the Majority prob-
lem, in which Paul wants to find a ball b such that the number of balls colored
with the same color as b is greater than n/2, or to declare that there is no such
ball. Saks and Werman [10], later Alonso, Reingold and Schott [4], showed
that n — v(n) questions are necessary and sufficient for Paul to resolve the
Majority problem with n balls of two colors, where v(n) is the number of
I’s in the binary representation of n. Fisher and Salzberg [6] showed that
[3n/2] — 2 questions are necessary and sufficient to solve the Majority prob-
lem with n balls and an unrestricted number of colors. Some variants of the
Majority problem were also considered in [1, 7].

In this paper, we consider the Plurality problem, introduced by Aigner et
al. [2], and the Partition problem. In the Plurality problem, Paul seeks for a
ball such that the number of balls with the same color exceeds the number
of balls of any other color (or he finds out that there is a tie between two
or more different colors). In the Partition problem, Paul wants to partition
the balls according to their colors. Aigner et al. [2] found a strategy to solve



The problem Lower bound Upper bound
The Plurality Problem

Deterministic strategy [2] 312 —2 |1%2] —2
Probabilistic strategy 2n— O (ynlogn)  3n+0(1)
The Partition Problem

Deterministic strategy 2n — 3 2n — 3
Probabilistic strategy 2n — 3 2n — 2+ o(1)

Table 1: Bounds for the Plurality and Partition problems with n balls of
three colors.

the Plurality problem with n balls of three colors such that Paul asks at
most | %] — 2 questions. On the other hand, Carol can force Paul to ask
at least 3|5 | — 2 questions. In addition, if the number & of colors of the
balls contained in the input is not fixed to be three, Aigner et al. [3] provide
lower and upper bounds of order ©(kn). A problem similar to the Plurality
problem was also studied by Srivastava [11].

We focus on the case when the balls are colored with three colors and
present a probabilistic strategy for the Plurality problem and both deter-
ministic and probabilistic strategies for the Partition problem. In the prob-
abilistic setting, Paul may flip coins and use the outcome to choose his ques-
tions. The quality of a probabilistic strategy is measured as the maximum
of the expected number of Paul’s questions over all inputs. For both the
deterministic and probabilistic strategies, we assume that Carol knows the
strategy and chooses the worst coloring. In the deterministic setting, Carol
can also choose the coloring on-line in response to the questions. This is not
appropriate for probabilistic strategies, since we assume that Carol does not
know outcome of the coin flips.

Our results are summarized in Table 1. In the case of deterministic strat-
egy of the Partition problem, we provide matching lower and upper bounds
on the number of Paul’s questions. The result can be generalized for balls
with arbitrary number of colors (see Section 6). In the probabilistic setting,
our bounds for the Partition problem match up to the o(1) term. For the
Plurality problem, we managed to prove a lower bound in the probabilistic
setting which is close to the lower bound proved by Aigner et al. [2] in the
(more constrained) deterministic setting and we show that the lower bound
is asymptotically tight by providing a matching upper bound.



2 Notation

In this section, we introduce a compact way of representing a deterministic
strategy for Paul, and the state of his information about the colors of the
balls as the strategy proceeds.

The game of Paul and Carol can be viewed as a game on a graph whose
vertices are the balls. Initially the graph is empty. At each turn, Paul chooses
a pair of nonadjacent vertices and adds that edge to the graph. Carol then
colors the edge by red if the two vertices have the same color, or by blue if
the two vertices have a different color. This edge-colored graph represents
the state of Paul’s knowledge and is referred to as Paul’s graph. Notice that
each connected component of red edges consists of vertices corresponding to
balls with the same color. The reduced graph has as its vertex set each of
these red connected components, with two components joined if there is at
least one blue edge between them. In the Partition problem with & colors,
the game ends when the reduced graph is uniquely vertex k-colorable (up
to a permutation of the colors). In the Plurality problem with &k colors, the
game ends when there is a vertex v in the reduced graph with the property
that in every vertex k-coloring, v belongs to a largest color class, where the
size of a color class is the sum of orders of the contracted components.

A deterministic strategy for Paul can be represented by a rooted binary
tree in which the left edge from each internal vertex is colored with red and
the right edge with blue. The root is associated with Paul’s first question.
The left subtree represents Paul’s strategy for the case when Carol answers
that the colors of the balls are the same, and the right one for the case when
she answers that they are different. At each node, Paul’s information can be
represented by a graph as described above. For a given coloring of the balls,
there is a unique path from the root to a leaf in the tree. This path in the
tree is called the computation path.

3 Yao’s Principle

Yao [12] proposed a technique for proving lower bounds on probabilistic algo-
rithms which is based on the minimax principle from game theory. Informally,
to prove such a lower bound, instead of constructing a hard coloring of the
balls for every probabilistic algorithm, it is enough to find a probability dis-
tribution on colorings which is hard for every deterministic algorithm. Yao’s



technique applies to our setting, too. We formulate the principle formally
using our notation as a proposition. Since the proof follows the same line as
in the original setting, we do not include it and refer the reader, e.g., to [9,
Subsection 2.2.2] if necessary.

Proposition 1 If for the Plurality or Partition problem with n balls of k
colors, there exists a probability distribution on colorings of the balls such that
the expected number of Paul’s questions is at least K for each deterministic
strategy, then for each probabilistic strateqy there exists a coloring I of the
balls such that the expected number of Paul’s questions for the coloring I is
at least K.

4 Probabilistic Strategy for the Plurality
Problem

We are now ready to present the first of our results, an asymptotically optimal
probabilistic strategy for the Plurality problem:

Theorem 2 There is a probabilistic strategy for the Plurality problem with
n balls of three colors such that the expected number of Paul’s questions does
not exceed 3n + O(1) for any coloring of the balls.

Proof: Fix a coloring of the balls and choose any subset By of 3n’ balls from
the input, where n’ = ng Partition randomly the set By into n' ordered
triples (a;, b, ¢;), 1 < i < n'. For each i, 1 <1i < n/, Paul asks Carol whether
the balls a; and b; have the same color and whether the balls b; and ¢; have
the same color. If Carol answers in both the cases that the balls have different
colors, Paul asks, in addition, whether the colors of the balls a; and ¢; are
the same.

Based on Carol’s answers, Paul is able to classify the triples into three

types:

type A All the three balls of the triple have the same color. This is the case
when Carol answers both the initial questions positively.

type B Two balls of the triple have the same color, but the remaining one
has a different color. This is the case when Carol answers one of the
initial questions positively and the other one negatively, or both the
initial questions negatively and the additional question positively.



type C All the three balls have different colors. This is the case when Carol
answers the initial questions and the additional question negatively.

Paul now chooses randomly and independently a representative ball from
each triple of type A or B. Let B be the set of (at most n') chosen balls. In
addition, he chooses randomly a ball d from B,.

For each ball from the set B, Paul asks Carol whether its color is the
same as the color of d. Let B’ C B be the set of the balls whose colors are
different. Paul chooses arbitrarily a ball d € B’ and compares the ball d’
with the remaining balls of B’. Paul is able to determine the partition of the
balls of B according to their colors: the balls of B\ B, the balls of B’ which
have the same color as the ball d’ and the balls of B’ whose color is different
from the color of d'.

Finally, Paul determines the partition of all the balls from the triples of
type A or B. The balls contained in a triple of type A have the same color as
its representative. In the case of a triple of type B, Paul asks Carol whether
the colors of balls d; and dy are the same, where d; is a ball of the triple
whose color is different from the color of the representative, and ds is a ball
of B whose color is different from the color of the representative. In this
way, Paul obtains the partition of all the balls from triples of type A or B
according to their colors.

After at most 2(n — 3n’) additional questions, Paul knows the partition
of the balls of B according to their colors, where B is the set of all the n balls
except for the balls of By which are contained in triples of type C. Since each
triple of type C contains one ball of each of the three colors, the plurality
color of the balls of B is also the plurality color of all the balls. If there is no
plurality color in B, then there is no plurality color in the original problem
either.

Before we formally analyze the described strategy, we explain some ideas
behind it. Let a, 8 and ~ be the fractions of the balls of each of the colors
among the balls of By. If the ratios «, 8 and + are close to 1/3, then a lot of
the balls belong to the triples of type C. Clearly, such balls can be removed
from the problem and we solve the Plurality problem for the remaining balls
(this reduces the size of the problem). However, if the ratios a, § and =y
are unbalanced, then the previous fails to work. But in this case, with high
probability, the ball d has the same color as a lot of the balls of B and Paul
does not need to compare too many balls of B with the ball d'.



We are now ready to start estimating the expected number of Paul’s
questions. The expected numbers of triples of each type are the following:

o (a®+ 32+ 73+ 0 (5))n triples of type A,

o (3(a?B+ oy + PPa+ %y +y*a++%8) + O () n' triples of type B,
and

e (6aBy+ O (L)) n triples of type C.

The expected numbers of Paul’s questions to determine the type of the triple

are 2, % and 3 for types A, B and C, respectively. Therefore, the expected

number of Paul’s questions to determine the types of all the triples is:

(2(043 + B2+ ) + 7(?B + oy + BPa+ By + Yia + ¥6) + 18aﬁ7) n'+0(1)

(1)

Next, we compute the expected number of Paul’s questions to determine
the partition of the balls of B. Fix a single ball by out of the 3n balls. Assume
that the color of by is the color with the fraction a. Since the probability that
the ball by is in a triple of type C' is 23v + O(#), the ball by is contained in
the set B with the probability % — %B'y + O (#) If by € B and the colors of
the balls by and d are the same, Paul asks Carol a single question; if by € B,
the colors of by and d are different, and by # d’, he asks two questions. The
former is the case with the probability . Hence, if by € B, Paul asks 2 — «
questions on average. We may conclude that in this stage, the expected

number of Paul’s questions involving balls of the color with the fraction «

does not exceed:
1 2 1
!
- _“ - 9
3an (3 3B’y+0 (n’)) (2—a)

Hence, the expected number of the questions to determine the partition of
B is:

st (32040 (1)) - ar+ 330 (3 2as0 (1)) -

+ 3vyn/ (%—§QB+O (%)) (2 —7)

= 2—a*— B2 —9Hn' —2aByn'(6 —a— B — )+ O(1)
= (2—0a®—p%—=~H)n' — 10aByn’ + O(1)
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Next, Paul asks Carol a single question for each triple of type B. The
expected number of such questions is:

3B+ &y + BPa+ B2y + v Pa+ v B)n' + O(1) (3)

Finally, Paul asks at most 2(n — 3n’) < 4 questions to find the partition of
B.

The expected number of all the questions asked by Paul is given by the
sum of (1), (2) and (3), which is equal to the following expression:

(24 2(a® + 82 +7°) + 10(&” B + oy + fPa+ 27 + Ya + v*B)
+ 8afy—ao’— B> =)' +0(1) (4)

It can be verified, see Proposition 3 following the proof of this theorem, that
the maximum of (4) for a, 3,7 € [0,1] with o+ 8 4+ v = 1 is attained for
a = =1/2 and v = 0 (and the two other symmetric permutations of the
values of the variables «, # and ). Therefore, the expected number of Paul’s
questions does not exceed:

2.2410-248-0 2
(2+ T 08 8 O—Z)n'JrO(l):gn'+0(1):gn+0(1).

We now prove technical Proposition 3 that is referred in the proof of
Theorem 2:

Proposition 3 The mazimum, which is equal to %, of the function

2+42(c®+ 8 +9)+10(a? B+ v+ B2 a+ B2y +v a++* B) +8afy—a’ — 37—+

with the variables o, B, € [0, 1] and with the additional constraint a+ S+ =
1 is attained for the following combinations of the values of o, B and ~y:

° a:ﬁ:%andq/:(),
° azvz%andﬁzO, or
e f=y=1anda=0.



Proof: First, we apply several substitutions to the function. Since o+ 3+
v =1, we have the following:

?B+a’y+ fa+Py+at =+ 1+ o = =9 (5)
Plug the equality (5) to the examined function:
2 —8(a® + 8% + %) + 8aBy + 9(a® + 57 +7°) (6)

Similarly, we establish the following equality using the constraint a+p+v =1
and (5):

1 = (a+B+7)
1 = &4+ +3(’8+ v+ fPa+ 2y + Yo+ ~°B) + 6aby

1 = —2(®+ 8 +7%) +3(a® + 52 +2) + 6afy
—6afy = —1-2(’+5 +7°) +3(c’ + B +7)
8afly = % + g(a:” + 8% +9°) = 4(a® + B2+ 97) (7

We combine (6) and (7) and obtain that the examined function is equal to:

T D(aP B+ ) +5(0” + 5+ ) )

Let S C R3 be the set of o, 3,7 € [0,1] satisfying a + 8 + v = 1.
Clearly, the set S is an equilateral triangle in the 3-dimensional space which is
contained in the plane with the norm vector equal to (1,1,1). The maximum
of the function is attained on the boundary of the set S or in an internal point
of S where the gradient of the function is a multiple of the norm vector of
the support plane.

We first examine the function on the boundary of the set S. In such case,
one of the variables «, £ and -y is equal to zero. We can assume v = 0 by
symmetry. We substitute 5 =1 — « and v = 0 to (8):

%— ?(1—3a+3a2)+5(1—2a+2a2) (9)
Since the first derivative of (9) is 16(1 — 2a) — 10(1 — 2a) = 6(1 — 2a) and
it is equal to zero only for @ = 1/2, the extremes of (9) for a € [0, 1] can
be attained only for « = 0, @« = 1/2, and o = 1. For these values of a, the
expression (9) is equal to 3, 9/2 and 3, respectively.

9



We now examine the possibility that the extreme of (8) is attained at
an internal point of S. In such case, the gradient determined by partial
derivatives of (8) is a multiple of the vector (1,1,1). The partial derivatives
of (8) are the following:

g(%—?(a + 82 +9%) +5(c?+ B2 +9?) = —16a? + 10«
T (W B(ad 4+ 5+ 9%) +5(0> + F7+97) = —168°+108 , and
5 (53— 3@+ 8+ +5(e®+ 82 +9%) = —167°+ 107

Since the gradient (—16a? + 10a, —164% + 1083, —16+% + 107) is a multiple
of the vector (1,1, 1) only if all the right hand sides are equal, it holds that
a:ﬁora:%—ﬂ. Similarly,ozzyorazg—'y, and,B:’yorB:%—y.
Hence, = § = v = 1/3, or two of the variables are equal to 3/8 and the
remaining one to 1/4. The value of (8) fora = f = ~v = 1/3 is equal to
12 < 2. The value for o = f =3/8 and vy = 1/4 is equal to 35 < 3

We conclude that the maximum of the function from the statement of the
proposition is equal to g and it is attained for « = = 1/2 and 7 = 0 and
the other two permutation of the values of the variables «, 5 and ~.

5 Lower Bound for the Plurality Problem

We first survey some basic results from information theory that we use in the
proof of Lemma 6. The reader is welcome to see [5] for further details. If X
is a random variable taking values in the finite set S, the entropy H(X) of
X is ) .o Dslog, 1/ps where p; is the probability that X is equal to s € S.
In particular, if X is a zero-one random variable such that X = 1 with
probability p, then the entropy of X is equal to h(p) := plog, ; L1 -

p) log, —— g We need the following elementary result on entropies of random
variables taking values in finite sets:

Proposition 4 Let Xi,..., Xy be (not necessarily independent) random
variables and let X = (Xy,...,Xg) be the vector random wvariable whose
entries are equal to random variables X1, ..., Xg. The following holds:
k
H(X) <) H(X))
i=1



In addition to the previous proposition, we state the following well-known
combinatorial estimate on the middle binomial coefficient which can be found,
e.g., in [8]:

Proposition 5 Let n be a positive even integer. The following bounds hold:

2" < ( n ) < 2"
Von TL/2 - \/ﬁ .
We are now ready to prove the following lemma on binary trees of bounded
depths:

Lemma 6 Let n be an even positive integer, and let T' be a rooted binary
tree of depth at most n — 1 with (n72)/2 leaves. Assume that for each inner
node w of T, the edge which leads to its left child is colored by red and the
edge which leads to its right child by blue. The average number of blue edges
on the paths from the root to the leaves in T is at least:

2 —0(Vnlogn) .

Proof: We first assign each leaf w of T a string o(w) of R’s and B’s of length

n. If vy, ..., v is the path in T" from the root to a leaf w = v, then the ¢-th
letter of the sequence o(w) is R if the edge v;_1v; is red, and B otherwise. If
i > k, the i-th letter of o(w) is R. Observe that the strings assigned to the
leaves of T" are mutually distinct. Moreover, the average number p of blue
edges on the paths from the root to the leaves is equal to the average number
of letters B contained in the strings o(w).

Choose uniformly at random a leaf w of the tree T and let X; be the
random variable equal to the i-th letter of the string o(w) for 1 <i < n. Let
p; be the probability that X; is equal to B. Clearly, 4 = > | p;. Consider
the random variable X equal to the vector (Xi,...,X,). For every string
o(w), X is equal to o(w) with probability 2(n72)_1. Hence, we have the
following by Proposition 5:

n

)/2 > log ;2 (10)

On the other hand, we can infer from Proposition 4:

n

H(X) = log (n /2

H(X) <3 h(p) (1)

11



We combine the inequalities (10) and (11), and using the fact that h(p) is a
concave function on the interval (0, 1), together with the estimate h(1/2 —
z) <1—2z?forxz € (—1/2,1/2), we obtain the required bound (recall that

= Z?:l pi):

n

log

1 B < log 8n
2 n - 2n
1 1
1 /log 8n <
2 2n -

T O3 Ix

" o(vam)

The statement of the lemma now follows.

We are now ready to prove the desired lower bound:

Theorem 7 For any probabilistic strateqy for the Plurality problem with n
balls of three colors, there is a coloring of the balls such that Paul asks at
least %n -0 (\/nlog n) questions on average.

Proof: By Yao’s principle (Proposition 1), it is enough to find a probability

distribution on colorings of the balls such that if Paul uses any deterministic
strategy, then he asks at least %n -0 (\/nlog n) questions on average. If n
is even, then the desired distribution is the uniform distribution on colorings
in which half of balls have the first color, the other half have the second
color, and there are no balls of the third color. If n is odd, then the desired
distribution is the uniform distribution on colorings such that half of the first
n — 1 balls have the first color, the other half the second color, and the n-th
ball has the third color. Clearly, there is no plurality color for any of these
colorings. Let Z be the set of all (n?’/’z) such colorings where n' = n, if n is
even, and n’ = n — 1, otherwise.

12



Fix a deterministic strategy of Paul. Let G be Paul’s final graph for one of
the colorings from Z. We claim that each of the two subgraphs of G' induced
by the balls of the first or the second color is connected. Otherwise, let V}
and V5 be the sets of the vertices corresponding to the balls of these colors,
and assume that G[V;] contains a component with a vertex set W C V7.
Based on G, Paul is unable to determine whether the balls of W have the
same color as the balls of V1 \ W, and thus he is unable to decide whether
there is a plurality color (which would be the case if the balls of W had the
third color). We conclude that Paul’s final graph contains at least n' — 2 red
edges.

Let T be the rooted binary tree corresponding to Paul’s strategy and let
Vir be the set of the leaves of T' to which there is a valid computation path
for a coloring of Z (note that T contains additional leaves corresponding to
colorings not contained in Z). Since for each of the colorings of Z the two
subgraphs induced by the balls of the first two colors in Paul’s final graph
are connected, each leaf of T' can correspond to two such colorings (which

differ just by a permutation of the first two colors). Therefore, Vi consists
of (nﬁz/'z) /2 leaves of T

We now modify T to a tree 7" and eventually to a tree T”. The tree 1" is
a subtree of T" formed by the union of the paths from the root to the leaves
contained in Vj;. In particular, 7' has exactly (n7;2) /2 leaves. Color the edges
of T" by red and blue according to whether they join an inner vertex with its
left or right child. For each inner vertex w with a single child in 7", contract
the edge leading from w to its only child. Let 7" be the obtained binary tree
with (#;2) /2 leaves. The colors of the edges which have not been contracted
are preserved.

The tree T" corresponds to a deterministic strategy for distinguishing
the colorings from the set Z restricted to the first n’ balls. At each inner
node w of T", the edge corresponding to Paul’s question at the node w joins
two different components of Paul’s graph. Otherwise, the answer is uniquely
determined by his graph. Consequently, the node w has a single child (there
are no colorings of Z consistent with the other answer) and the edge leading
from w to its child should have been contracted.

Since all Paul’s questions correspond to edges between different compo-
nents, Paul’s final graph (for his strategy determined by T") is a forest for
each coloring of Z. In particular, Paul’s final graph contains at most n' — 1
edges. Therefore, the depth of T” does not exceed n’ — 1. By Lemma 6, the

13



average number of blue edges on the path from the root to a leaf of 7" is at
least %’ -0 (\/n’ log n’). Since the number of blue edges on such a path is
equal to the number of blue edges in Paul’s final graph G” if Paul follows the
strategy determined by 7", and n = n’ + O(1), the average number of blue
edges in Paul’s graphs is at least 2 — O (y/nlogn).

Observe that for each coloring of Z, the edges of the computation path
in T” form a subset of the edges of the computation path in 7. Therefore,
the average number of blue edges in Paul’s final graphs with respect to the
strategy corresponding to 7' is also at least 5 —O (\/ nlog n) Since each final
graph contains also (at least) n’ —2 > n— 3 red edges, the average number of
Paul’s questions, which is equal to the average number of edges in the final
graph, is at least 2n — O (v/nlogn).

m

6 Deterministic Strategy for the Partition
Problem

We first describe Paul’s strategy:

Proposition 8 There is a deterministic strategy for the Partition problem
with n balls of k colors such that Paul always asks at most (k — 1)n — (g)
questions if n > k, and at most (g’) questions otherwise.

Proof: Paul’s strategy is divided into n steps. In the i-th step, Paul
determines the color of the i-th ball.

If the first i —1 balls have only k' < k different colors, then Paul compares
the 7-th ball with the representatives of all the k&’ colors found so far. In this
case, Paul finds either that the ¢-th ball has the same color as one of the first
¢ — 1 balls, or that its color is different from the colors of all of these balls.

If the first © — 1 balls have k different colors, then Paul compares the
i-th ball with the representatives of & — 1 colors. If Paul does not find a
ball with the same color, then the color of the i-th ball is the color with no
representative.

In this way, Paul determines the colors of all the balls. We estimate the
number of comparisons in the worst case. Since the first + — 1 balls have at
most ¢ — 1 different colors, the number of comparisons in the ¢-th step is at

14



most min{i — 1,k — 1}. Therefore, if n < k, the number of questions does

not exceed: .

d-n="=(3)

=1

In the general case n > k, we have the following bound:

z;(z'—1)+§k;1(k—1)_wﬂn—k)(k—m:n(k—n—(’;).

m
Next, we show that Carol can force Paul to ask (k — 1)n — (%) questions:

Theorem 9 If Paul is allowed to use only a deterministic strategy to solve
the Partition problem with n balls of k colors, then Carol can force him to
ask at least (k — 1)n — (’2“) questions if n > k, and at least (g) questions
otherwise.

Proof: We can assume that Paul never asks a question whose answer is
uniquely determined. Therefore, Carol can answer each question that the
colors of the pair of the balls are different. Let G be Paul’s graph at the
end of the game. Note that all the edges of G are blue because of Carol’s
strategy.

If n < k and GG is not a complete graph, then all the balls can have n
distinct colors or the two balls which are not joined by an edge in G’ can have
the same color and the remaining balls can have n — 2 additional distinct
colors. Therefore, Paul cannot determine the partition of the balls. We
may conclude that if n < k, G must be a complete graph and Paul asked
(Z) questions.

In the rest of the proof, we consider the general case n > k. Let V;,...,V}
be the vertices of G corresponding to the sets of the balls of the same color.
Each of the sets V;, 1 <1 < k, is non-empty: otherwise, there exist an empty
set V; and a set Vi with at least two vertices (recall that n > k). Move a
vertex from V; to V;. The new partition is also consistent with the graph G
and therefore Paul is unable to uniquely determine the partition.

Assume now that the subgraph of G induced by V; U V;: for some ¢ and
i, 1 < i < ¢ <k, is disconnected. Let W be the vertices of one of the

15



components of the subgraph. Move the vertices of V; "W from V; to V; and
the vertices of Vi N W from V; to V;. Since the new partition is consistent
with the graph GG, Paul cannot uniquely determine the partition of the balls
according to their colors. We may conclude that each set V; is non-empty
and the subgraph of G induced by any pair of V; and V; is connected.

Let n; be the number of vertices of V;. For every i and ¢/, 1 < i< ¢ <k,
the subgraph of GG induced by V; UV contains at least n; + ny — 1 edges
because it is connected. Since the sets V; are disjoint, the number of edges of
G, which is the number of questions asked by Paul, is at least the following:

k

Z (ni—|—ni1—1):Z(k—1)ni— Z 1:(k—1)n—<];).

1<i<i! <k i=1 1<i<i' <k

7 Probabilistic Strategy for the Partition
Problem

We first state the following auxiliary lemma:

Lemma 10 Consider a random ordering of n balls, out of which, &n balls
are white and (1 — &)n are black. The expected length of the initial segment
comprised entirely of white balls in the random ordering is at least:

nfoteo ()}

Proof: Because of the O-term, it is enough to prove the lemma for suf-
ficiently large n, say n > 1000. We distinguish several cases according to
whether £ is close to one, to zero or to neither of them. Assume first that
£ > 2. The probability that the initial segment of length 10 is comprised

100
entirely by white balls is the following:

gn En—1_ &n-9_ <§n—9)1°> (98)10> 9

n n-—1 n—9 n—9 99 10°

Hence, the expected length of the initial segment comprised entirely by white
balls, is at least = - 10 = 9.
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In the rest, we assume that & < 3%, Let m = [{/nlogn]. If £ < 22,
the expected length of the initial segment of white balls is at least & (the
probability that the first ball is white). Since the difference between 5 and

—£
the lower bound ¢ is small:

£ e N log®n logn
e tesoe-o (M) <o (7).

the expected length of the initial segment of white balls is at least 1'5?5 —

O (1(\’%”) as claimed in the statement of the lemma.

Therefore, we assume that 2m <¢€< 100 in what follows. The expected
length of the initial segment comprlsed by white balls is at least:

iP(the first ¢ balls are white) ihgn_j >Z<§:__ )
=1 1=1 5=0
_ (e oxh (e my ) - (e
B ;( n ) Z;(S_E) B 1- (- ™)
13 m —o(m 13 logn
ST -m) (%) (”)Zm—()(ﬁ)

We can now describe Paul’s strategy:

Theorem 11 There is a probabilistic strateqy for the Partition problem with
n balls of three colors such that the expected number of Paul’s questions does

not exceed Sn — 8 + O log” for any coloring of the balls.
3 3

Proof: Fix a coloring of the n balls. Let a, § and v be fractions of the
balls of each of the three colors in the coloring. Paul first chooses a random
ordering of the balls. His strategy is divided into n steps, and in the ¢-th
step Paul determines the color of the i-th ball (in the random ordering).

If the first 2—1 balls have the same color, then Paul just compares the ¢-th
ball with any of the first + — 1 balls. If the first : — 1 balls have two distinct
colors, then Paul randomly chooses one of the two colors and compares the
i-th ball with a representative of this color. If Carol answers that the balls
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have different colors, then he compares the i-th ball with a representative
of the other color. Finally, if the first ¢ — 1 balls have three distinct colors,
then he randomly chooses one of the colors and compares the i-th ball with
a representative of this color. If Carol answers that the balls have different
colors, Paul randomly chooses one of the two remaining colors and compares
the i-th ball with its representative.

If the input does not contain balls of all three colors, then the expected
number of Paul’s questions in each step is at most 3/2. Consequently, the
expected number of all the questions asked by Paul does not exceed %n, and
the statement of the lemma readily follows. Therefore, we assume in the rest
that there is a ball of each of the three colors, i.e., a, 5,7 > 0.

Fix an ordering of the balls. Let j be the largest integer such that the
first 7 balls have the same color, and j' the largest integer such that the first
4" balls have at most two different colors. We compute the expected number
of Paul’s questions for the fixed ordering. In the first j 4+ 1 steps (except
for the first step), Paul always asks a single question. At each of the next
j" — j — 1 steps, Paul asks 3/2 questions on average. In the (5’ + 1)-th step,
Paul asks two questions. At each of the n — j' — 1 remaining steps, Paul asks
5/3 questions on average. Hence, the expected number of Paul’s questions
for the fixed ordering is:

R 9 y 5 1. 1, 7
JroU —i-D+2+g—g-1)=gn-cj—ci~¢.
The expected number of the questions (averaged through all the orderings)

is:
5 1- 1 7

O gL 12
3" 720 T T (12)

where j and j” are the expected lengths of the initial segments in the random
ordering comprised by balls of one color and two colors, respectively.

Let ja, jg and jo be the expected lengths of initial segments in the
ordering formed entirely by balls of the color with the fractions «, § and -,
respectively. Similarly, jag, jac and jpc are the expected lengths of initial
segments formed by balls of two indexed colors. Clearly, the following holds:

ja+ijs+jc
= JaB tJjac +JBc —Ja—JB — JC

=]

j + 7' is at least 9, and the expected number of Paul’s questions is at least
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gn — % — % = gn— %. If none of the numbers exceed 9, we have by Lemma 10:
i = S+ 5+E40 (1‘\’%1) and
JHT = i g B0 ()
Since the function 1% is convex and a + 8 + v = 1, the minimum of both

the expressions on the right hand side in the above equations is attained for
a = = =1/3. Therefore, we have the following:

7> 3 i_0<logn):§_0<logn) (13)

1-1/3 vn ) 2 Jn
o7 = oo () =eo()  w

Let us plug the estimates (13) and (14) to the expression (12) for the expected
number of Paul’s questions:

5 1- 1 - — 7 5 1 7 logn 5 8 logn
P Nt <2p—2—1-L40 - 2n-210 .
33l g U+7)—g<3n5 1 5" (ﬁ) 3" 73" (\/ﬁ)

As the first step towards our lower bound, we state the following lemma
on the average depths of leaves in binary trees with unbalanced inner vertices:

Lemma 12 Let T be a rooted binary tree with N leaves. Assume that on
each path from the root of T' to a leaf, at least ¢ inner nodes have the following
property (x): the number of the leaves in the left subtree is precisely half of
the number of the leaves in the right subtree. The average length of the path
from the root to a leaf of T is at least the following:

log N 1
0g n 5 log3 ’
log 2 3 log2

Proof: The proof proceeds by induction on N. If N =1, the tree consists
just of its root, ¢ must be equal to zero and the average length of the path
from the root to a leaf is also zero. Assume that N > 1. In particular, the
root has two children. Let N; and N, be the numbers of leaves in each of
the two subtrees. Clearly, N = N; + Ns.
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If the root does not have the property (%), then there are at least ¢ inner
nodes with the property (x) on every path from the root to a leaf in each
of the two subtrees. Using the induction, we infer that the average length
of the path from the root to each of the leaves in the tree 7' is at least the
following:

(1 4 logM (% log3) g) Ny + (1 4 logNo (g _ log3) g) Ny

log 2 o log 2 log 2 log 2
N
_ 14 Nilog Ny + Ny log N 5 log3 ,
B Nlog?2 3  log?2
log%y (5 log3 logN (5 log3
> 1422 (2 082), 08N (0 087,
log 2 3  log2 log 2 3  log?2

On the other hand, if the root has the property (%), then Ny = N/3,
Ny = 2N/3, and there are at least £ — 1 inner nodes with the property (x) on
every path from the root to a leaf in each of the two subtrees. We again use
the induction and derive the following lower bound on the average length of
the paths:

<1+9ﬁﬂ+(§—bw)w—loAﬁ+(1+@ﬂ@+<§—bw)w—1»A&

log 2 log 2 log 2 log 2

NMog ¥ 4 2N 19g 2NV 5 log3
_ 1.3 83 3 10873 ( Og)(g_l)

Nlog?2 3 log2
10gN—10g3—|—%10g2 5 log3
= ——— (-1
* log 2 T 3  log?2 ( )
logN 5 log3 5 log3 log N 5 log3
= B2 I8 (2 )y =81 (2280,
log2 3 log?2 3  log?2 log 2 3  log?2

We are now able to show that the number of Paul’s questions in Theo-
rem 11 is optimal:

Theorem 13 For any probabilistic strategy for the Partition problem with n
balls of three colors, there is a coloring of the balls which forces Paul to ask
at least %n — g questions on average.
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Proof: By Yao’s principle (Proposition 1), it is enough to find a probability
distribution on colorings such that if Paul uses any deterministic strategy,
then he asks at least gn— % questions on average. We claim that the uniform
distribution on all 3" possible colorings has this property.

Fix a deterministic strategy and let T' be the corresponding binary tree.
Since Paul is able to solve the Partition problem using this strategy, the
computation paths may end in the same leaf for at most six different colorings
(they can differ only by a permutation of the colors). Hence, T has at least
N = 3"/6 leaves.

Consider an inner node w of T at which Paul’s question corresponds to
an edge between two different components of Paul’s graph. Let Z be the
set of colorings whose computation path reaches the node w. Since the edge
corresponding to the question joins two different components, for exactly one
third of the input colorings Carol answers that the balls have the same colors,
and for exactly two thirds she answers that their colors are different: for each
coloring X € Z, the set Z contains all the five other colorings obtained from
X by permutation of the colors in one of the components. We conclude
that if Paul’s question at the node w corresponds to an edge between two
different components of his graph, then the node w has the property (x) from
the statement of Lemma 12.

Observe now that Paul’s final graph is connected: otherwise, we could
permute the colors of the balls in one of the components while keeping the
colors of the remaining balls the same, which would yield a different partition
consistent with Paul’s final graph, and Paul would be unable to uniquely
determine the partition of the balls. Since Paul’s final graph is connected,
on each path from the root to a leaf, there are at least n — 1 nodes in which
Paul asked a question which corresponds to an edge between two different
components. Therefore, on each such path, at least n — 1 nodes have the
property (x) from Lemma 12.

By Lemma 12, the average length of the path from the root to a leaf of
T, which is equal to the expected number of Paul’s questions, is at least:

log &~ 5 log3 log 3 log 3 5 log3
Og6+<——£)(n—1)—og o8 —1+(——&)(n—1)

log 2 3  log2 _10g2n_10g2 3  log?2
5 ] 5 5 8
=-n—-1—--=-n—_
3 3 3 3
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The arguments of this section can be generalized to inputs with balls of
more colors. However, the obtained lower and upper bounds do not match:
if Paul uses a probabilistic strategy similar to that in Proposition 11, he asks
’“2;—,’;_271 + O(1) questions on average for the Partition problem with n balls
of k colors. On the other hand, the tree of any deterministic strategy must
contain at least n — 1 nodes w on any path from the root to a leaf such that
the subtree of the left child of w contains exactly the fraction of 1/k of the

leaves of the whole subtree of w. Based on this, one can establish the lower

bound (%10%(()1;;1) + 1) n — ©(klogk) on the expected number of questions

asked by Paul (in the worst case).
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