On the Non-Learnability of a Single
Spiking Neuron

Jit{ Sfma
Institute of Computer Science,
Academy of Sciences of the Czech Republic,
P. O. Box 5, 18207 Prague 8, Czech Republic, sima@cs.cas.cz
Jiri Sgall
Mathematical Institute,

Academy of Sciences of the Czech Republic,
Zitna 25, 11567 Prague 1, Czech Republic, sgall@math.cas.cz

Abstract

The computational complexity of training a single spiking neuron
N with adjustable synaptic delays and binary coded inputs and out-
put is studied. A synchronization technique is introduced so that the
results concerning the non-learnability of spiking neurons with binary
delays are generalized to arbitrary delays. In particular, the consis-
tency problem for N with programmable delays and its approximation
version are proven to be NP-complete. It follows that the spiking neu-
rons with arbitrary synaptic delays are not properly PAC-learnable
and do not allow robust learning unless RP = NP. In addition, the
representation problem for N, i.e., a question whether an n-variable
Boolean function given in DNF (or as a disjunction of O(n) threshold
gates) can be computed by a spiking neuron, is shown to be coNP-
hard.

1 A Spiking Neuron with Synaptic Delays

Neural networks establish an important class of learning models that are
widely applied in practical applications to solving artificial intelligence tasks
(Haykin, 1999). The prominent position among neural network models has
recently been occupied by networks of spiking neurons (Maass & Bishop,
1999). As compared to the traditional perceptron unit (Rosenblatt, 1958)
the spiking neuron represents a biologically more plausible model in which the
times that pulses need to travel through particular synapses, called delays,
are taken into account (Maass, 1997). It is known that the synaptic delays are
tuned in biological neural systems through a variety of mechanisms (Gerstner
& Kistler, 2002).

We consider a simplified model of a spiking neuron with adjustable synap-
tic delays where pulses are implemented by a step function, rather than
a smooth function of a similar shape. This makes easy silicon implementa-
tion in pulsed VLSI possible (Maass & Bishop, 1999). In addition, the spiking
neuron under consideration is used to compute Boolean functions and thus
binary coding of inputs and output is assumed. The computational power
of this model was analyzed by Schmitt (1998) while its learning complexity
was studied by Maass & Schmitt (1999).

Formally, a spiking neuron N has n inputs receiving binary values 1, .. .,
xn € {0,1}; each input i (1 < ¢ < n) is associated with a real synaptic weight
w; € R and delay d; € Ry, and the last parameter is the output threshold

2

@ € R. The input value z; = 1 is presented in the form of a unit-length
rectangular pulse (spike) of height |w;| (for w; < 0 upside down). This pulse
travels through ith synapse in continuous time producing a synaptic time
delay d;. Denote D; = [d;,d; + 1) the time interval of unit length during
which N is influenced by the spike from input i. Taking the delay into
account, a postsynaptic potential x;(t) € R at ith input to N at continuous
time ¢ > 0 can be expressed as

(t)_ w; for z; =1 and tEDzZ[dz,dz—f—l)
=N 0 otherwise

(1.1)

The (membrane) potential of N at time instant ¢ > 0 is then determined as
the sum of current postsynaptic potentials:

£ =Y wilt). (1.2)

Neuron N fires as soon as potential £(¢) reaches threshold #. Thus, A outputs
y = 1if £(t) > 6 for some t > 0 and N outputs y = 0 if £(¢) < @ for all
t > 0. Thus, for given weights wy,...,w,, delays d,,...,d,, and threshold
6, neuron N implements Boolean function yu : {0,1}* — {0,1} defined
above. Also denote by Fu the class of all Boolean functions computable
by spiking neurons. Note that A coincides with the classical perceptron
when all synaptic delays are zero.

We give several results concerning computational complexity of training
a single spiking neuron N with programmable synaptic delays. In Section 2,
the so-called consistency problem is shown to be NP-complete for NV with
arbitrary delays which solves an open problem (Maass & Schmitt 1999; Sima,
2003). In addition, only the unit weights are used in the proof and the weights
together with the threshold need not be modifiable. This implies, assuming
RP # NP, that the spiking neurons with arbitrary delays, unit weights, and
a fixed threshold are not properly PAC-learnable and also that the spiking
neurons do not allow robust learning. Finally, the representation problem
for spiking neurons is proven to be coNP-hard in Section 3.

A preliminary version of this article (Sfma, 2003) considered perceptrons
with delays having analog input values while the results presented now are
valid for spiking neurons with binary coded inputs.

2 A Single Spiking Neuron Is Not Learnable

The computational complexity of training a spiking neuron can be analyzed
by using the consistency (loading) problem (Judd, 1990) which is the problem
of finding the neuron parameters for a given training task so that the function
computed by neuron is perfectly consistent with all training data. Thus,
a training set contains m training examples, each composed of n-dimensional
input x; from {0,1}" labeled with the desired scalar output value by from
{0, 1} corresponding to negative and positive examples:

T = {(xk; b) | xx € {0,1}", b, € {0,1}, k=1,...,m} . (2.1)

The decision version for the consistency problem is formulated as follows:

Consistency Problem for Spiking Neuron (CPSN)

Instance: A training set T for spiking neuron A having n inputs.

Question: Are there weights wy, ..., w,, threshold #, and delays d,...,d,
for N such that yu(x) = b for every training example (x;b) € T

The consistency problem is related to the PAC (Probably Approzimately
Correct) learning model (Valiant, 1984) which is defined as follows. The ex-
ample oracle EX (f, D) for a Boolean target function f :{0,1}" — {0,1}
with respect to distribution D : {0,1}" — [0,1] returns the training ex-
ample (x; f(x)) where x is drawn from {0, 1}" according to distribution D.
Denote by fAg = {x € {0,1}" | f(x) # g(x)} the symmetric difference
between f and g. The spiking neuron is properly PAC learnable if there is
a learning algorithm L such that for any target function f € F, and for
any distribution D, given n > 1, accuracy € > 0, and confidence 6 > 0 as
input, L has access to oracle EX(f, D), runs in time polynomial in n, 1/¢,
1/§, and produces weights wy, ..., w,, threshold 6, and delays di,...,d, of
spiking neuron N which with probability at least 1 — § satisfies

Y D) <e. (2.2)

zEfAyn

An efficient algorithm for the consistency problem is required within the
proper PAC learning framework (Blumer, Ehrenfeucht, Haussler, & War-
muth, 1989). In addition, the VC-dimension of the problem has to be polyno-
mial; this requirement is satisfied by the common neural network models (An-
thony & Bartlett, 1999; Roychowdhury, Siu, & Orlitsky, 1994; Vidyasagar,

1997), in particular, the VC-dimension of spiking neuron A with n inputs
is O(nlogn) (Maass & Schmitt, 1999). These result on polynomiality of the
VC-dimension encouraged proposals of several learning heuristics for net-
works of spiking neurons, e.g., spike-propagation (Bohte, Kok, & La Poutré,
2000). On the other hand, NP-hardness of the consistency problem im-
plies that the neuron is not properly PAC learnable under generally accepted
complexity-theoretic assumption RP # NP (Pitt & Valiant, 1988). An al-
most exhaustive list of such NP-hardness results for feedforward perceptron
networks including single units was presented by Sima (2002).

For ordinary perceptrons with zero delays, i.e., d; =0 fort=1,...,n, the
consistency problem is solvable in polynomial time by linear programming
although this problem restricted to binary weights is NP-complete (Pitt &
Valiant, 1988). However, already for binary delays d; € {0, 1} the consistency
problem becomes NP-complete, even for spiking neurons having fixed weights
(Maass & Schmitt, 1999). This implies that neuron N with binary delays
is not properly PAC learnable unless RP = NP. The result generalizes also
to bounded delay values d; € {0,1,...,k} for fixed & > 2. For the spiking
neurons with unbounded delays, however, NP-hardness of the consistency
problem was listed among open problems (Maass & Schmitt, 1999; Sima,
2003).

In this section we prove that the consistency problem is NP-complete for
a single spiking neuron N with arbitrary delays, which answers the previous
open question. For this purpose a synchronization technique is introduced
whose main idea can be described as follows. Let A C {1,...,n} be a subset
of inputs and let (}_,.,€;; 1) € T be a consistent positive example written
as 0-1 linear combinations of basis vectors e; € {0, 1}", that is all the items of
e; are zero but its ¢th component equals 1. The simultaneous consistency of
negative examples (D, .z €;; 0) € T for every B C A such that |B| = [A| -1
implies (),c4, D; # 0. In this way it can be ensured that A is simultane-
ously influenced by the spikes from inputs A, which is then exploited for the
synchronization of the input spikes.

Theorem 1 The consistency problem for spiking neuron (CPSN) is NP-
complete.

Proof: The fact that CPSN belongs to NP has already been stated by Maass
& Schmitt (1999). In order to achieve the NP-hardness result, the following
variant of the set splitting problem which is known to be NP-complete (Garey
& Johnson, 1979) will be reduced to CPSN in polynomial time.

5

3Set-Splitting Problem (3SSP)

Instance: A finite set S = {1,...,s} of s elements and a collection C' of
subsets of S such that |c¢| = 3 for all c € C.

Question: Is there a partition of S into two disjoint subsets S; and 95, i.e.,

S =5,USy and S; NSy =0, such that all ¢ € C satisfy ¢ € S; and ¢ € S57

The 3SSP problem was also used for proving the result restricted to binary
delays (Maass & Schmitt, 1999). The synchronization technique generalizes
the proof to arbitrary delays.

Given a 3SSP instance (S,C), we construct a training set T for spiking
neuron N with n = 6(s + 1) inputs. The inputs are indexed z,; for p =
0,1,...,s,¢=1,...,6. One 6-tuple of inputs z, ; corresponds to each element
p € S; in addition the first six inputs z;; are used for overall synchronization.
The same index notation is used for corresponding weights w, ;, delays d,, ;,
time intervals D,; = [dy;,d,; + 1), and basis vectors e,; € {0,1}", for all
pairsof p=10,1,...,s,1=1,...,6.

The training set 7', written in terms of the basis vectors, is as follows:

(eo’i—FeO,j; O) for 1 < 1 <] < 6, (23)
(e01+e03+e0k, f0r1§i<j<k§6, (

1)
(ep1+epateps; 1)
(€pa+eps+epe; 1)

€;tejt+eprtey,;0
»J D, 4

O‘!

forpe S, (2.

peES,1<k<3,4<(<6, an
for { 1§z‘<j§3or4§z‘<j§6d(27

4)
)
forpe S, 1<i,k<3,and 4 < j,¢ < §2.6)
)
for {p,q,r} € Cand 1 <1i,j,k <3. (2.8)

)
(e01+e0]+epk+ep€a)
; 0)

The number of training examples is |T| = 35 + (2 +3* + 2 - 3%)s + 33|C| =
O(|S|+ |C]), and T can be constructed in polynomial time from S and C.

Now we verify that the 3SSP instance has a solution if and only if the
corresponding CPSN instance is solvable. First assume that there exists
a solution (S, S2) of the 3SSP instance (S,C). Let § = 3, w,; = 1 for all p
and ¢, and

dO,l - dO,Q = d0,3 = 057 d0,4 = d0,5 = d0,6 =1 (29)
dp,l = dp,2 = dp,3 =0, dp,4 = dp,5 = dp’ﬁ =1.5 for p < Sl, (210)
dp,l = dp,2 = dp,3 = 1.5, dp,4 = dp,5 = dp,G =0 for p € SQ, (211)

6

With these parameters, N is consistent with training examples 2.3-2.7: Two
weights wg,; = wp; = 1 cannot reach threshold 6 = 3 for negative example
2.3. For any positive example 2.4, the potential of A equals the threshold at
least for the duration of time interval [1,1.5) according to 2.9. Examples 2.5
2.7 are verified similarly. For negative example 2.8, recall that any {p, q,r} €
C intersects both S; and Sy which implies D, ; N D, ;N D, , = 0 by 2.10 and
2.11 and hence the potential never reaches the threshold. This completes the
argument for the CPSN instance to be solvable.

For the converse, assume that there exist weights w,;, delays d,;, and
threshold € such that A is consistent with training examples 2.3-2.8. Any
consistent negative example ensures # > 0, since a sufficiently large ¢ is not
in any D,; and then £(t) = 0 while £(¢) < @ is still required to hold. We
can multiply all weights and the threshold by 3/6 > 0, preserving y. Thus,
without loss of generality, we assume 6 = 3 in the rest of the proof.

From the simultaneous consistency of training examples 2.3 and 2.4 it
follows by the synchronization technique that

we; >0 fori=1,...,6, and (2.12)
DO,'L' N DO,j N DO,k 7& @ for 1 S 1 < _] <k S 6. (213)
Furthermore, for each p = 0, ..., s, positive examples e, ; +e, 2 +e€, 3 and

e,4+€p5+e,qfrom 2.4 and 2.5 together with 6 = 3 guarantee that there are
i €4{1,2,3} and j € {4,5,6} such that w,; > 1 and w, ; > 1. Since training
set T is invariant under permutations of {e,1,€,2,€,3}, resp. of {e, 4, €,5,
€,6}, we may assume without loss of generality that

wp1>1 and wy4>1 forevery p=0,...,s. (2.14)

For any p € S, consider the positive example eg; +e€92 +e€,1 + €, 4 from
2.7, and the negative examples eg; + €2 from 2.3 and ego +e€ps+€,1 +€p4
from 2.6. Together with the fact that all the involved weights are positive
due to 2.12 and 2.14, these examples imply that Dy ; intersects D, U Dy 4.
A symmetric argument shows that Dy 4 intersects D, U D, 4 as well.

Since Do1 N Doy # 0 by 2.13 and ey + €p4 + €,1 + €,4 is a negative
example 2.6, the interval D, ; is disjoint with Dy N Dy 4; by convexity this
implies that D, ; can intersect at most one of Dy; and Dy4. Similarly for
D, 4. Thus Dy ; intersects exactly one of D, and D, 4 and Dy 4 intersect the
other one.

Finally, define the splitting of S = S;US, so that p € S; if D, ; intersects
Dy, and p € Sy if D, intersects Dy 4. It remains to prove that (51, Ss2) is
a solution of the 3SSP. Let {p,q,r} € C. Suppose for a contradiction that
{p,q,r} C S, for some j € {1,2}. By the definition of (S, S2) this implies
that D, 1, Dy1, D, all intersect Dy ; for the same ¢ € {1,4}. Since D, ;,
D1, D, all are all disjoint with Dy; N Dy 4 # () and all the intervals have
the same length, this implies that D,; N D,; N D,; # 0. However, this
contradicts the consistency of the negative example e, ; +e,; +e,; from 2.8.
Thus (S, S2) solves the 3SSP instance (S, C). O

Note that the previous proof exploits unit weights and a fixed threshold
which shows that training a single spiking neuron is hard already for the
synaptic delays as the only programmable parameters.

Corollary 1 If RP # NP, then a single spiking neuron N with programm-
able synaptic delays, unit weights, and a fized threshold is not properly PAC-
learnable.

A single spiking neuron N can compute only very simple Boolean func-
tions (Schmitt, 1998). Therefore the consistency problem frequently has no
solution: for no setting of delays, weights, and a threshold, function gy, is
consistent with all the training examples. In this case, one would be satisfied
with a good approximation in practice, that is with the neuron parameters
yielding a small training error. For example, in the incremental learning al-
gorithms (e.g., Fahlman & Lebiere, 1990) that adapt single neurons before
these are wired to a neural network, an efficient procedure for minimizing
the training error is crucial to keep the network size small for successful
generalization. Thus the decision version for the approximation problem is
formulated as follows:

Approximation Problem for Spiking Neuron N (APSN)

Instance: A training set T for spiking neuron N and a positive integer k.
Question: Are there weights wy, ..., w,, threshold #, and delays d,...,d,
for N such that y(x) # b for at most k training examples (x;b) € T?

Obviously, the consistency problem is a special case of the approxima-
tion problem for £ = 0. Thus theorem 1 implies that the approximation
problem for spiking neuron (APSN) is NP-complete which was previously
proved separately (Sima, 2003). Also for the perceptrons with zero delays
for which the consistency problem is polynomial-time solvable, several au-
thors proved that the approximation problem is NP-complete (Hoffgen et

8

al., 1995; Roychowdhury, Siu, & Kailath, 1995) even if the bias is assumed
to be zero (Amaldi, 1991; Johnson & Preparata, 1978). Within the PAC
framework, the NP-hardness of the approximation problem implies that the
neuron does not allow robust learning unless RP = NP (Hoffgen, Simon, &
Van Horn, 1995). Recall that in robust learning target function f can be
arbitrary Boolean function and condition 2.2 is then replaced with

> D(x)< inf D(x) +¢. (2.15)

Thus we have the following corollary:

Corollary 2 If RP # NP, then a single spiking neuron with arbitrary delays
does not allow robust learning.

3 The Representation Problem

In this section we deal with the representation (membership) problem for
spiking neurons:

Representation Problem for Spiking Neuron N (RPSN)

Instance: A Boolean function f in DNF (disjunctive normal form).
Question: Is f computable by a single spiking neuron N/, i.e., are there
weights w1, . .., wy, threshold #, and delays d, . . ., d,, for N such that y(x) =
f(x) for every x € {0,1}"?

The representation problem for perceptrons with zero delays, known as the
linear separability problem, is known to be coNP-complete (Hegediis & Megi-
ddo, 1996). We generalize the coNP-hardness result for spiking neurons with
arbitrary delays. On the other hand, it is easily seen that the RPSN is in
the complexity class X5 from the polynomial time hierarchy (for a definition,
see Balcdzar, Diaz, & Gabarr6, 1995). Hardness of RPSN for ¥ (or for
NP) would imply (Aizenstein, Hegediis, Hellerstein, & Pitt, 1998) that the
spiking neurons with arbitrary delays are not learnable with membership and
equivalence queries (unless NP = coNP); this remains an open problem.

Theorem 2 The representation problem for spiking neuron (RPSN) is
coNP-hard and belongs to X5.

Proof: The tautology problem that is known to be coNP-complete (Cook,
1971) will be reduced to RPSN in polynomial time in a similar way as it was
done for the linear separability problem (Hegediis & Megiddo, 1996):

Tautology Problem (TAUT)
Instance: A Boolean function g in DNF.
Question: Is g a tautology, i.e., g(x) = 1 for every x € {0,1}"?

Thus given a TAUT instance g over n variables zi,...,x,, we construct
a corresponding RPSN instance f over n + 2 variables zq, ..., x,, y1, y2 in
polynomial time as follows:

f@y, . ooy, y2) = (9@, 2) Ay) V(i AG2) V(T Ayz) . (3.1)

For TAUT instance g in DNF, function f can be turned into DNF by one
application of distributivity; this DNF is an RPSN instance corresponding
to g.

We now show that this TAUT instance is a tautology if and only if the cor-
responding RPSN instance is solvable. So first assume that ¢ is a tautology.
Hence f given by formula 3.1 can be equivalently rewritten as y; V yo which
is trivially computable by a spiking neuron. On the other hand, assume that
there exists a € {0,1}" such that g(a) = 0. In this case, f(a,y1,y2) reduces
to XOR(y1,y2). Using a similar argument as to show that XOR cannot be
implemented by a single spiking neuron (Maass & Schmitt, 1999), we show
the same for f. (Note that we cannot simply refer to this result as a black
box, since the class of functions computed by spiking neurons is not closed
under substitution of constants for variables.) Assume for contradiction that
f is represented by N with weights w; and w, corresponding to the inputs
y1 and ys, respectively. Since f(a,0,0) =0, f(a,1,0) =1, and N represents
f, we have w; > 0. On the other hand, since f(a,0,1) =1, f(a,1,1) =0,
and N represents f, we have w; < 0, a contradiction.

For proving that RPSN € Y} consider an alternating algorithm for the
RPSN that, given f in DNF, guesses polynomial-size representations (Maass
& Schmitt, 1999) of weights, threshold, and delays for spiking neuron A first
in its existential state, and then verifies yy(x) = f(x) for every x € {0,1}"
in its universal state; note that y,(x) can be computed in polynomial time
since there are only linear number of time intervals to be checked.]

Maass & Schmitt observed (1999) that the class of n-variable Boolean
functions computable by spiking neurons is strictly contained in the class

10

DLT that consists of functions representable as disjunctions of O(n) threshold
gates with n inputs (computing Boolean linear threshold functions LT). Thus,
class DLT corresponds to two-layer networks with linear number of hidden
perceptrons (with zero delays) and one output OR gate. The smallest number
of threshold gates in such a representation is called the threshold number
(Hammer, Ibaraki, & Peled, 1981). It was shown (Schmitt, 1998) that the
threshold number of spiking neurons with n inputs is at most n—1 and can be
lower-bounded by [n/2]. On the other hand, there exists a Boolean function
with threshold number 2 that cannot be computed by a single spiking neuron
(Schmitt, 1998).

Note that TAUT is coNP-hard even if restricted to formulas with a linear
number of monomials: For any ¢ in DNF with m monomials, the formula
gV V... Va with m new variables z} is tautology if and only if ¢ is and in
addition it has ©(m) of both variables and monomials. Since any monomial
is a special case of a threshold gate, this DNF formula with linear number
of monomials can be further transformed into a DLT formula. It follows
that a modified version of RPSN, whose instances are Boolean functions f
from DLT (instead of DNF) is also coNP-hard. On the other hand, also this
modified version is in ¥, using the same argument as in theorem 2.

4 Conclusion

The computational complexity of training a single spiking neuron with pro-
grammable synaptic delays which is a model that covers certain aspects of
biological neurons has been analyzed. We have developed a synchronization
technique that generalizes the known non-learnability results for arbitrary
synaptic delays. In particular, we have proven that the spiking neurons with
arbitrary delays are not properly PAC-learnable and do not allow robust
learning unless RP = NP, which solves a previously open problem. In ad-
dition, we have shown that it is coNP-hard to decide whether a disjunction
of O(n) threshold gates, which is known to implement any spiking neuron,
can reversely be computed by a single spiking neuron. An open problem
remains for further research whether the spiking neurons are learnable with
membership and equivalence queries.

11

Acknowledgments

J.S.’s research is partially supported by grant GA CR No. 201/02/1456.
J.S.’s research is partially supported by project LNOOA056 of The Ministry
of Education of the Czech Republic.

References

Aizenstein, H., Hegediis, T., Hellerstein, L., & Pitt, L. (1998). Theo-
retic Hardness Results for Query Learning. Computational Complezity,
7(1), 19-53.

Amaldi, E. (1991). On the complexity of training perceptrons. In T. Koho-
nen, K. Mékisara, O. Simula, & J. Kangas (Eds.), Proceedings of the 1st
International Conference on Artificial Neural Networks (ICANN’91)
(pp. 55-60). North-Holland, Amsterdam: Elsevier Science Publisher.

Anthony, M., & Bartlett, P. L. (1999). Neural Network Learning: Theoret-
ical Foundations. Cambridge, UK: Cambridge University Press.

Balcazar, J. L., Diaz, J., & Gabarré, J. (1995). Structural Complezity I
(2nd ed.). Berlin: Springer-Verlag.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989).
Learnability and the Vapnik-Chervonenkis dimension. Journal of the
ACM, 36(4), 929-965.

Bohte, M., Kok, J. N., & La Poutré, H. (2000). Spike-prop: error-back-
propagation in multi-layer networks of spiking neurons. Proceedings of
the European Symposium on Artificial Neural Networks (ESANN’2000)
(pp. 419-425). Brussels: D-Facto Publications.

Cook, S. A. (1971). The complexity of theorem-proving procedures. Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing
(STOC’71) (pp. 151-158). New York: ACM Press.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning
architecture. In D. S. Touretzky (Ed.), Advances in Neural Information
Processing Systems (NIPS’89), 2 (pp. 524-532). San Mateo: Morgan
Kaufmann.

12

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability:
A Guide to the Theory of NP-Completeness. San Francisco: Freeman.

Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models: Single Neu-
rons, Populations, Plasticity. Cambridge, UK: Cambridge University
Press.

Hammer, P.L., Ibaraki, T., & Peled, U. N. (1981). Threshold numbers
and threshold completions. In: P. Hansen (Ed.), Studies on Graphs

and Discrete Programming, Annals of Discrete Mathematics, 11 Math-
ematics Studies, 59 (pp. 125-145). Amsterdam: North-Holland.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd
ed.). Upper Saddle River, NJ: Prentice-Hall.

Hegediis, T., & Megiddo, N. (1996). On the geometric separability of
Boolean functions. Discrete Applied Mathematics, 66 (3), 205-218.

Hoffgen, K.-U., Simon, H.-U., & Van Horn, K. S. (1995). Robust trainability
of single neurons. Journal of Computer and System Sciences, 50(1),
114-125.

Johnson, D. S.; & Preparata, F. P. (1978). The densest hemisphere problem.
Theoretical Computer Science, 6(1), 93—-107.

Judd, J. S. (1990). Neural Network Design and the Complezity of Learning.
Cambridge, MA: MIT Press.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E.
Miller, & J. W. Thatcher (Eds.), Complexity of Computer Computa-
tions (pp. 85-103). New York: Plenum Press.

Maass, W. (1997). Networks of spiking neurons: the third generation of
neural network models. Neural Networks, 10(9), 1659-1671.

Maass, W., & Bishop, C. M. (Eds.). (1999). Pulsed Neural Networks.
Cambridge, MA: MIT Press.

Maass, W., & Schmitt, M. (1999). On the complexity of learning for spiking
neurons with temporal coding. Information and Computation, 153 (1),
26-46.

13

Pitt, L., & Valiant, L. G. (1988). Computational limitations on learning
from examples. Journal of the ACM, 85(4), 965-984.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
65(6), 386—408.

Roychowdhury, V. P.; Siu, K.-Y., & Kailath, T. (1995). Classification of
linearly non-separable patterns by linear threshold elements. IEEFE
Transactions on Neural Networks, 6(2), 318-331.

Roychowdhury, V. P.; Siu, K.-Y., & Orlitsky, A. (Eds.). (1994). Theoretical
Advances in Neural Computation and Learning. Boston: Kluwer.

Schmitt, M. (1998). On computing Boolean functions by a spiking neuron.
Annals of Mathematics and Artificial Intelligence, 24 (1-4), 181-191.

Sima, J. (2002). Training a single sigmoidal neuron is hard. Neural Com-
putation, 14 (11), 2709-2728.

Sima, J. (2003). On the complexity of training a single perceptron with
programmable synaptic delays. Proceedings of the 14th International
Conference on Algorithmic Learning Theory (ALT’2008), LNAI 2842
(pp. 221-233). Berlin: Springer-Verlag.

Valiant, L. G. (1984). A theory of the learnable. Communications of the
ACM, 27(11), 11341142,

Vidyasagar, M. (1997). A Theory of Learning and Generalization. London:
Springer-Verlag.

14

