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Abstract. In our contribution to the study of graph labelings with three
distance constraints we introduce a concept of elegant labelings: labelings
where labels appearing in a neighborhood of a vertex can be completed
into intervals such that these intervals are disjoint for adjacent vertices.
We justify introduction of this notion by showing that use of these la-
belings provides good estimates for the span of the label space, and also
provide a polynomial time algorithm to find an optimal elegant labeling
of a tree for distance constraints (p,1,1). In addition several computa-
tional complexity issues are discussed.

1 Introduction

In the past decades graph theoretic models of telecommunication networks be-
came natural and frequent subject both in theory and in practice. One of the
possible applications considers an allocation of frequencies to transmitters, such
that a possible interference is minimized. The notion of distance constrained
labeling reflects the fact that interference decreases with increasing distance
between transmitters, hence close frequencies should be used only on distant
transmitters.

For given integral parameters p; > --- > pg called distance constraints, an
L(p1,p2, - .., pr)-labeling of a graph G assigns integers to vertices of G such that
any pair of vertices that are at distance at most i < k get labels that differ
by at least p;. The span of a labeling is the difference between the lowest and
the highest labels used in the labeling. The graph invariant A(,, . ,.)(G) is the
minimum span among all L(py,p2, ..., pg)-labelings of G.

Clearly, L(1)-labelings are graph colorings, L(1, ..., 1)-labelings are colorings
of the k-th distance power of the underlying graph G. A considerable attention
was paid to the first “non-chromatic” collection of distance constraints, namely
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(p1,p2) = (2,1), suggested by Roberts and formally introduced by Griggs and
Yeh in 1992 [1]. A variety of results appeared, among others we shall mention a
nontrivial dynamic-programming algorithm for computing A3 1)(7") for trees by
Chang and Kuo [2] and a long lasting conjecture stating that for any graph G,
it holds that A(21)(G) < A(G)?, where A(G) stands for the maximum degree of

a vertex in G.

From the computational complexity point of view it is also interesting that
for an arbitrary constant c, the problem of testing whether A 1)(G) < c is
solvable in linear time when restricted to graphs of bounded treewidth, while
the computational complexity of determining A(3,1)(G) for the same class of
graphs remains open.

Other collections of distance constraints were also considered by several au-
thors. Labelings of meshes were considered in [3,4] while L(p1, 1,...)-labelings
of trees and interval graphs were studied in [5]. Further hardness results on
L(2,1,...,1)-labelings of restricted classes of graphs can be found in [6].

The computational complexity of finding A(,, ,,)(T') is not fully resolved yet
even for trees. For example, this problem becomes tractable when ps divides pq,
but the precoloring extension and the list-coloring versions of this problem are
both NP-complete otherwise [7]. On the other hand, as follows from works on
graph properties expressible in Monadic Second Order Logic [8, 9], if the span of
a possible labeling is bounded by constant c¢ the test whether A¢,, . ,.)(G) < ¢
can be performed in linear time for a graph of bounded treewidth (an explicite
algorithm is presented in [10]).

Distance constrained labelings can be generalized in several ways — one of the
possible directions is the use of different metrics on the label space. Such labelings
with constraints (2,1) were considered in [11] as special graph homomorphisms
that are required to be locally injective. In our study we follow this concept and
prove several of our results also for the cyclic metric on the label space.

In this paper we show that with an additional requirement on the labeling
— that label space of the neighborhood of each vertex can be completed into
an interval such that these intervals are disjoint for adjacent vertices — we
can obtain both good estimates on the graph invariants A, p, p,)(T) for trees,
but moreover an optimal so called elegant L(p,1,1)-labeling of a tree can be
computed in a polynomial time.

Besides the results on computational complexity we provide also a necessary
and a sufficient conditions for a tree to allow an elegant C(2,1,1)-labeling of
the minimal possible span. The main motivation of this study is our belief that
further exploration of properties of elegant and non-elegant labelings of trees
might bring a new insight and new methods to finally resolve the computational
complexity of the problem of determining A(p, ... ;) and in particular A(,, ,,) on
this class of graphs.

Our results on trees are finally accompanied with an NP-hardness proof of the
L(2,1,1)-labeling problem on general graphs, which is presented in the appendix.
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2 Preliminaries

All graphs considered in this paper are simple, i.e. without loops and multiple
edges. For a vertex u € Vi the set of all neighbors of u in G is denoted by N (u),
the size of N(u) is the degree deg(u) of the vertex w.

A connected graph without a cycle as a subgraph is called a tree, its vertices
of degree one are called leaves, the other are inner vertices. A star is a graph
isomorphic to the complete bipartite graph Kj ,, n > 1. The symbol w(G)
denotes the size of a maximum complete subgraph of G.

The graph distance dist(u,v) is the number of edges in a shortest path con-
necting vertices u and v. The k-th distance power G* of a graph G is the graph
on the same vertex set Vge = Vg where edges of G* connect distinct vertices
that are at distance at most k in G, i.e. Egr = {(u,v) : 1 < distg(u,v) < k}.

For integers 0 < a < b < t, we define discrete intervals (modt + 1) in the
following way: [a,b] = {a,a+1,...,b} and [b,a] = {b,b+1,...,¢,0,1,...a}.

The term [t]-labeling of G stands for a mapping Ve — [0, £].

For our purposes we use both linear and cyclic metric spaces in the definition
of distance constrained labelings.

Definition 1. Let p1 > ps > -+ > pr > 1 be a k-tuple of integral distance
constraints. A [t]-labeling f of G is said to be an L(p1,p2,...,pr)-labeling of
span t if |f(u) — f(v)| > p; whenever 1 < dist(u,v) <i < k.

A [t]-labeling f is called a C(p1,p2, .- ., pr)-labeling of span t if for any pair of
distinct vertices u,v at distance at most i < k, it holds that p; < |f(u) — f(v)| <
t+1-— Pi-

For both kinds of labelings we introduce an additional property of elegance:

Definition 2. A [t]-labeling f is called elegant if for every vertex u, there exists
an interval I,, (mod k + 1), such that f(N(u)) C I, and for every edge (u,v) €
EG . Iu ﬂ I’U - 0-

2 3 2 10

Fig. 1. An example of a tree T with c(2,2,1)(T) =7 < 10 = c(5 5 1)(T).

Observe that only triangle-free graphs may admit elegant labelings. On the
other hand, it is not hard to deduce that every tree allows an elegant labeling
for an arbitrary collection of distance constraints. An example of a C(2,2,1)-
labeling and of an elegant C'(2,2,1)-labeling of a tree T is depicted in Fig. 1.

The minimum ¢ for which a graph G allows an L(pi,ps, ..., pr)-labeling,
and C(p1,p2,...,pr)-labeling resp., of span t is denoted by Ay, ... p,)(G) and



4 Jif{ Fiala, Petr A. Golovach, and Jan Kratochvil

C(py,....pr) (G), Tesp. The corresponding parameters for elegant labelings are in-
dicated by asterisks (and are left to be +o0 if no elegant labeling exists). Note
that A\(1)(G) = ¢1)(G) = x(G) — 1, where x(G) denotes the chromatic number
of G

Observation 1 For any distance constraints (p1,...,pr) and any graph G, it
holds that
pk(w(Gk) - 1) S )‘(pl,...,pk)(G) S pl(X(Gk) - 1)7
)‘(Ply---ypk)(G) < C(pl,---,pk)(G) < Czply...,pk)(G)a
)\(pl,...,pk)(G) S )\zp1,--~,Pk)(G) S C?pl,...,pk)(G)'

Proof. The proof follows from the fact that every labeling with respect to the
cyclic metric is also a valid labeling for linear metric, and that elegant label-
ings are also valid labelings. Moreover vertices of every complete subgraph of
G* should get labels pairwise at least p; apart and a coloring of G* can be
transformed to an L, ., )-labeling by using labels that form an arithmetic
progression of difference p; as colors.

3 Tree labelings with 3 distance constraints

The concept of elegant labelings became useful in considering three distance
constraints. The reason is, that in this case it is enough to maintain separation
ps only between intervals associated to adjacent vertices instead of checking
every pair of vertices at distance three.

Observe first that all [¢]-colorings of a star K , (including labelings with at
least one constraint) are elegant (mod ¢+ 1), since only two intervals play a role
— the interval for the center I, = [f(c) + 1, f(c¢) — 1](modt + 1) and all other
intervals can be chosen as [f(c), f(c)].

3.1 An upper bound for elegant C(p1,p2,ps)-labelings

We present an upper bound on distance constrained labelings of a tree with
circular metric. It is well known that powers of trees are chordal graphs (see [12,
13]) and that x(T*) = w(T*). Observe that in contrary to the general upper
bound of Observation 1 for the parameter A(,, ;. p,)(G), the coefficient by the
main term w(73) becomes py instead of p; and hence it provides an essential
improvement when p, < p; and w(7®) is sufficiently large.

Theorem 2. For any p; > p2 > p3 > 1 and any tree T different from a star, it

holds that cf, . (T) < pow(T?) + p1 + max{p1 — pa,ps} — 3.

Proof. By induction on the number s of inner vertices of 7" we construct an
elegant labeling of T such that for each vertex w, f(N(u)) is an arithmetic
progression of length deg(u) and difference p,.
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When s = 2, let v and u’ be the two inner vertices of T' of degrees d,d' > 1.
We choose
t =w(T®)p2 + p1 + max{p1 — p2, ps} — 2p> — 1

and define a [t]-labeling f of the tree T explicitly as f(N(u)) = {0, p2, 2po, ...,
(d — 1)p2} where f(u') = (d — 1)p2 and the other labels are distributed on
leaves of N(u) arbitrarily. For r = (d — 1)p2 + p1 we similarly lay out labels
{r,r +p2,7 +2ps,...7 + (d — 1)p2} on N(u') such that f(u) =r.

To show that f is a valid C(p1,p=,ps)-labeling we denote first by v, v’ the
two vertices of the minimum and the maximum label, i.e. f(v) =0 and f(v') =
r+ (d' = 1)ps = w(T?)ps + p1 — 2po.

Since dist(v,v') = 3 we need w(T3)ps +p1 —2p> < t+1—p3, which is assured
by the choice of ¢. For the adjacent vertices v and u we need (d — 1)ps + p1 <
t + 1 — p1, which holds as well, because t > w(T3)ps + p1 — 2ps — 1+ p1 — pa >
W(T)ps +p1 —2p2 — 1 +p; — (d — )ps = (d — 1)p2 + 2p; — 1. The same
inequality can be analogously derived for the labels of v' and u. Observe, that
these conditions on u,u’,v and v' imply, that the distance constraints are valid
also for other pairs of vertices.

Now suppose that 7" has at least three inner vertices. Since inner vertices
induce a subtree of T' called the inner tree of T, it is possible to choose a pair
(u,v) of adjacent inner vertices such that v is a leaf in the inner tree and the
sum deg(u) + deg(v) is minimized. We remove all vertices adjacent to v with
exception of u and denote the resulting tree by 7”. By the choice of (u,v) we
have w((7")?) = w(T?) > deg(u) + deg(v).

By the induction hypothesis the tree T’ allows an elegant labeling f’ of
span t = w(T3)ps + p1 + max{p; — p2,p3} — 3. Now assume that the arithmetic
progression on f'(N(u)) is of form a,a + ps,...,a+ (deg(u) — 1)p2, (modt+1).
Then the vertices of N(v) should avoid interval I} = [a — p3 + 1,a + (deg(u) —
1)ps + p3 — 1] due to the constraint on distance three as well as the interval
L=[f'@) —p+1, ) +pi —1].

Since f'(v) is at distance at least p3 —1 from the boundary of I, and similarly
at least p; — 1 points apart from the boundary of I, we get that |I; N Iz| =
p3 + max{(deg(u) — 1)p2 + p3,p1} — 1 > p3 + max{pz + p3,p1} — 1.

Then I =[0,¢]\ ({1 U I5) is an interval of size

[I|=t+1—|L|—|L]|+|L1 NI
> deg(u)p2 + deg(v)p2 + p1 + max{p1 — p2,p3} — 3 —
— deg(u)p2 + p2 — p3 — 2p1 + 2 + max{p2 + p3, p1 }
= deg(v)p2 +p2 — 1
an hence can accommodate an arithmetic progression A of length deg(v) and
difference py, which contains f'(u) as one of its elements.

We extend the labeling f’ into a labeling f of T' by using elements of A\ f'(u)
as the labels of the leaf vertices adjacent to v in T'. This concludes the proof.

For a particular choice of (p1,p2,p3) = (2,1,1), we have obtained an almost
a tight bound:
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Corollary 1. Every tree T satisfies

w(T®)=1< A1,)(T) < A€2,1,1) (T) < w(T?),
and for any tree T' different from a star it holds

w(T?) =1 < ca,1)(T) < o1 1) (T) < w(T?).

Proof. If T is a star then it can be easily seen that X2 1.1(T) = w(T?) and it was
already mentioned that any of its labelings is elegant.

The bound ¢3 ; ;(T') < w(T®) when the tree T is different from a star follows
from Theorem 2. All other inequalities and bounds were shown in Observation 1.

3.2 An algorithm to compute cfp,l,l)(T)

The proof of Theorem 2 was constructive, hence it can be straightforwardly
converted into a polynomial-time algorithm which finds a C(p1, p2, p3)-labeling
within the claimed upper bound.

For the special choice of distance constraints ps,p3 = 1 the computation of
o) (T') and c?p,1,1) (T') can be resolved in a polynomial time. We describe here
an algorithm for deciding whether C?p,1,1) < k. The algorithm for linear metric
differs only in minor details. We use a dynamic programming approach, similarly
as it was used in the algorithm for computation of A 1)(T') (see [2,7]).

Let T be a tree and k be a positive integer. Our algorithm tests the existence
of an elegant C(p, 1, 1)-labelling of T' of span k. We may assume that &k < n +
2p — 4, where n is the number of vertices of T, since if £k > n + 2p — 4, such a
labeling always exists due to Theorem 2.

We first choose a leaf r as the root of T, which defines the parent-child
relation between every pair of adjacent vertices. For any edge (u,v) such that
u is a child of v, we denote by T, the subtree of T' rooted in v and containing
u and all descendants of u. For every such edge and for every pair of integers
i,j € [0,k] and an interval I (mod(k + 1)) such that j € I, we introduce a
boolean function ¢(u,v,1,j, I), which is evaluated true if and only if T}, has an
elegant C(p, 1, 1)-labelling f where f(u) =i, f(v) = j and I, = I. This function
¢ can be calculated as follows:

1. Set an initial value ¢(u,v,1,j,I) = false for all edges (u,v), integers i,j €
{0,1,...,k} and intervals I (j € I).

2. If u is a leaf adjacent to v then we set ¢(u,v,i,j,I) = true for all integers
i,7 €[0,k] : p<|i—j| <k—pandintervals I such that j € I and i ¢ I.

3. Let us suppose that ¢ is already calculated for all edges of Ty, except (u,v).
Denote by v1,vs, ..., vy, children of u. For all pairs of integers i,j € [0, k] :
p<|i—j| < k—pand for all intervals I : j € I,i ¢ I we consider the set
system {My, Ms, ..., My}, where

My ={s:se€I\{j},3interval J: ¢(v¢,u,s,i,J) = true,i € J,INJ =0}
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We set ¢(u,v,i,7,1) = true if the set system {M;, Ms,..., My} allows a
system of distinct representatives, i.e. if there exists an injective function
r: [1,m] — [0, k] such that r(¢t) € M, for all ¢ € [1,m].

The correctness of calculation of the function ¢ follows by an easy inductive
argument. The only nontrivial point is that in the constructed entry f(v) differs
from f(x) for every child x of v, because f(v) = j € I, and f(z) € J, where
INnJ=0.

Now we evaluate the complexity of computation of this function. It is calcu-
lated for n —1 edges. Since each interval [ is defined by the pair of it’s endpoints,
the set of arguments has the cardinality O(nk?*). Computation of ¢ for leafs (see
step 2) demands O(1) operation for each argument. The recursive step (see item
3) takes time O(mk?) for constructing the sets M; and then O((m + k)*mk) for
the testing of the existence of the system of distinct representatives (we have
m sets of cardinality of no more than k). Since m < n and &k < n + 2p — 4,
this step demands O(nk) operations for a single collection of arguments. So
the total time of computation of ¢ is equal to O(n*k®) and this function can be
calculated for all sets of arguments polynomially.

To finish the description of the algorithm we have only to note that an elegant
C(p,1,1)-labelling of span k exists if and only if there are integers ¢,j € [0, k]
and a interval I (j € I), for which ¢(r,w,,j,I) = true where w is the only child
of the root r.

It suffices to test at most O(n) values of k, which provides the total O(n
time complexity. Observe that for linear metric the algorithm basically remains
the same, with the exception that also pairs i, such that |[i — j| > k — p are
allowed in steps 2) and 3).

Thus we proved following theorem:

10)

Theorem 3. For any tree T, X(, , 1)(T) and c{, | 1)(T) can be computed in a
polynomial time.

For the computation of Af, ; 1)(T") (or cf; 1 1)(T')) it is necessary to run this

algorithm only once for k = w(7T'®) — 1. If the algorithm returns positive answer,
then A%, | ) (T) = w(T?) — 1, else Afy , 1) (T) = w(T?).

Finally note, that if we wanted to generalize the above algorithm to arbitrary
distance constraints (p1, p2, p3), it would require resolving of a system of distant
representatives in the step 3), which is an NP-hard problem in general [7], and
moreover it is exactly the same bottleneck of a possible polynomial algorithm
for computing A(py,ps) OD trees for a general pair of distance constraints p; >

p2 > 1[7].

3.3 Perfect labelings

In order to illustrate the above notions, we notice that for any tree we are able
to show that either ¢ 1)(T) = w(T?) — 1 and find such a labeling, called
perfect, or we find an elegant labeling of span w(T?), leaving the possibility that
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T may allow a perfect labeling but no such labeling can be elegant (we leave as
an open question whether a tree with this property exists). It would certainly
be interesting to characterize the trees that satisfy c11)(T) = cz‘271’1)(T) =
w(T?) —1.

We present a necessary condition that a tree must satisfy to allow a per-
fect elegant labeling. We first classify edges of the tree with respect to the fact
whether their neighborhood induces a maximum clique in T or not. Hence, an
edge (u,v) € Er will be called saturated if deg(u) + deg(v) = w(T?), and it will
be called unsaturated otherwise.

Theorem 4. If a tree allows a prefect elegant labeling, then every inner vertex
is incident with at least two unsaturated edges.

Proof. Assume for the contrary that an inner vertex v is incident with at most
one unsaturated edge. For any neighbor u incident with v along a saturated edge
it holds that deg(u) + deg(v) = w(T?3), hence for any perfect elegant labeling
follows I,, = [0, w(T?) — 1]\ I,,.

Since I, = [a, b] is an interval of length deg(v), each element of I, is used as
a label of some u € N(v). As v is incident with at most one unsaturated edge, at
least one of a or b is used as a label of a neighbor w connected to v via a saturated
edge. But then the label of w is one unit away from I,,, a contradiction.

If we interpret this condition in the construction of Theorem 2, we get:

Corollary 2. A tree allows a perfect elegant labeling if it can be rooted such that
each inner vertex has at least two children connected to it by unsaturated edges.

There exist trees with at least two unsaturated edges incident with each inner
vertex, but which allow no labeling of span w(7T®) — 1 (neither elegant nor not
elegant). An example of such a tree is depicted in Fig. 2

Fig. 2. A tree with c(s,1,1)(T) = w(T?) (saturated edges indicated in bold).

4 Computational complexity of the L(2,1,1)-labeling
problem

To complete the picture we shortly present a full computational complexity
characterization of the decision problem whether A3 1,1) < k for general graphs.



Elegant distance constrained labelings of trees 9

Theorem 5. The decision problem whether A2 11y < k is NP-complete for ev-
ery k > 5 and it is solvable in polynomial time for all k < 4.

Proof. We start with the second part of the theorem and prove that the labeling
problem is tractable for £ < 4. Only finitely many connected graphs allow a
A(2,1,1)-labeling of span at most 3. So, without loss of generality we may consider
only the case k = 4.

XS o D

Fig. 3. Some graphs of A\(1,1)(G) > 4.

It can be easily seen, that if G is a graph for which an L(2, 1, 1)-labelling of
span 4 exists, then it can not contain as a subgraph any of the graphs depicted
in Fig. 3. Clearly, the maximum degree of G is at most 3 and each connected
component of G is formed by a path or by a cycle, where some vertices are
equipped with an additional leaf, or two consecutive vertices may also be joined
by a path of length 2. It is not difficult to observe that such graphs have treewidth
bounded by 3, and hence the existence of an L(2, 1, 1)-labelling of span 4 can be
tested in linear time by dynamic programming (e.g., [10]).

For k > 5, we reduce the NOT-ALL-EQUAL p-SATISFIABILITY (NAE p-SAT)
problem. An instance of NAE p-SAT is a formula € in conjunctive normal form
with p positive literals in each clause (no negations). It is well known [14] that
for all p > 3, the decision problem whether such & allows a satisfying assignment
where each clause contains also a negatively valued literal is NP-complete.

For each variable z; we construct a gadget consisting of a chain of m; copies
of the graph depicted in Fig 4, where m; is the number of occurrences of z; and
p= [%], r= [”2;1] In the figure the symbol FE,, stands for an independent set
with n vertices, K, for a complete graph, and M,, for a matching on n edges.

It can be explored by a case analysis that any L(2,1,1) labeling of span k of
the constructed variable gadget satisfies:

— All vertices u; are labelled by the same label, either by 0 or by k.

— The vertices v; are given labels either from the set L = {0,2,4,..., k—4+ (k
mod 2)}, when u;’s are labeled by k, or otherwise from the set L' = {k—1,l €
L}.

We finalize the construction of the graph G such that for each clause C' of
the formula ¢ we insert an extra new vertex wc and for each variable z which
appears in the clause we link wo with one of the vertices v of the vertex gadgets
associated with z. (Each v-type vertex is adjacent to only one w¢).

The properties of the variable gadgets assure that G allows an L(2,1,1)-
labeling of span k if and only if ¢ has a required assignment. These labelings
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k odd

Fig. 4. Variable gadgets.

are related to assignments e.g. by letting z = true whenever the vertices u; of
the gadget for z are all labeled by k, and z = false if u; get O.

Clearly, as for any clause vertex w¢ it holds deg(we) > |L| = |L'|, these
labelings indicate only valid assignments, i.e., at least one of the adjoining gad-
gets represents positively valued variable and at least one stands for a negatively
valued one.

In the opposite direction, each assignment for ¢ can be converted into an
L(2,1,1)-labeling of G in a straightforward way.
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