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Abstract

Let S be a d-dimensional separoid of (k− 1)(d+1)+1 convex sets
in some ‘large-dimensional’ Euclidean space IEN . We prove a theorem
that can be interpreted as follows: if the separoid S can be mapped
with a monomorphism to a d-dimensional separoid of points P in
general position, then there exists a k-colouring ς:S → Kk such that,
for each pair of colours i, j ∈ Kk, the convex hulls of their preimages
do intersect —they are not separated. Here, by a monomorphism we
mean an injective function such that the preimage of separated sets
are separated. In a sense, this result is ‘dual’ to the Hadwiger-type
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theorems proved by Goodman & Pollack (1988) and Arocha, Bracho,
Montejano, Olivereros & Strausz (2002).

We also introduce ϑ(k, d), the minimum number n such that all d-
dimensional separoids of order at least n can be k-coloured as before.
By means of examples and explicit colourings, we show that for all
k > 2 and d > 0,

(k − 1)(d + 1) + 1 < ϑ(k, d) <

(
k

2

)
(d + 1) + 1.

Furthermore, by means of a probabilistic argument, we show that for
each d there exists a constant C = C(d) such that for all k, ϑ(k, d) ≤
Ck log k.

Key Words: Abstract Convexity; Hadwiger’s theorem; Tverberg’s
theorem; Graphs; Separoids; Order Types; Oriented Matroids; Pseu-
doachromatic number.

1 Introduction and statement of results

As suggested by Danzer, Grünbaum & Klee (1963) [4], the relationship be-
tween Helly’s, Radon’s and Carathéodory’s theorems “could be best under-
stood by formulating various axiomatic settings for the theory of convex-
ity”. The first attempt to give such an axiomatic setting was made by
Levi (1951) [11], who uses Helly’s theorem (1923) [10] as a starting point.
More recently, the concept of a separoid was introduced [1, 3, 12, 13, 16,
17, 18] as a new attempt in this direction that is instead based on Radon’s
theorem (1921) [14].

A separoid is a (finite) set S endowed with a symmetric relation † ⊂
(
2S

2

)
defined on its family of subsets, which satisfies the following properties for
all A,B ⊆ S:

◦ A †B =⇒ A ∩B = ∅
◦◦ A †B and B ⊂ B′ (⊆ S \ A) =⇒ A †B′

A pair A † B is called a Radon partition. Each part (A and B) is called
a component and the union A ∪ B is the support of the partition. The
(combinatorial) dimension of S, denoted by d(S), is the minimum d such
that every subset of S with at least d+2 elements is the support of a Radon
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partition. By the second condition, the minimal Radon partitions determines
the separoid. A pair of disjoint subsets α, β ⊆ S that are not a Radon
partition are said to be separated , and denoted by α | β (cf. [1]).

Now, given a family of convex sets F = {C1, . . . , Cn} in some Euclidean
space IEd, a separoid S(F) on {1, . . . , n} can be defined by the following
relation: for all α, β ⊆ S(F),

α | β ⇐⇒ 〈{Ci : i ∈ α}〉 ∩ 〈{Cj : j ∈ β}〉 = ∅,

where 〈·〉 denotes the convex hull. Analogously, the Radon partitions are
defined by

A †B ⇐⇒ A ∩B = ∅ and 〈{Ci : i ∈ A}〉 ∩ 〈{Cj : j ∈ B}〉 6= ∅.

Conversely, as proved by Arocha et al. [1], every (abstract) separoid can be
represented in such a way by a family of convex sets in some Euclidean space.
Therefore each separoid S has a minimum dimension where it can be repre-
sented called the geometric dimension of S, denoted by gd(S). Furthermore,
as proved by Strausz [18], if the separoid S is acyclic (i.e., if ∅ | S), then
gd(S) ≤ |S| − 1 (see also [17]).

The following theorem is an easy corollary of Tverberg’s theorem [19] (see
also [5] and the references therein).

Theorem 1 Let S be a separoid of order |S| = (k − 1)(d + 1) + 1, where
d = gd(S). Then there exists a k-colouring ς:S → Kk such that every pair
of colour classes are not separated; i.e., the preimage of every pair of colours
i, j ∈ Kk, are a Radon partition ς−1(i) † ς−1(j).

Indeed, a stronger conclusion can be reached. Represent the separoid S with
convex sets in IEd, where d = gd(S). If we choose a point in each convex
set and apply Tverberg’s theorem to this set of points, then we can find a
k-colouring of S such that there is a point that is in the convex hull of every
chromatic class. •

Following [16], if the conclusion of Theorem 1 holds, we will say that
there exists a chromomorphism onto the complete separoid Kk of order k (cf.
Figure 1). If such a chromomorphism exists for a given S, we write S −→ Kk;
otherwise we write S 6−→ Kk. In this note we are interested in purely
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combinatorial conditions that guarantee the existence of chromomorphisms
onto complete separoids.

Figure 1. Two representations of K3 in IE2.

As shown by Figure 2, in Theorem 1 the geometric dimension cannot be
replaced by the combinatorial dimension without adding a new ingredient
—observe that d(S) ≤ gd(S). Thus, while replacing gd(S) by d(S), we may
add a Hadwiger-type hypothesis that allows us to prove the following

Theorem 2 Let S be a d-dimensional separoid of order |S| = (k − 1)(d +
1) + 1. Suppose that in addition, there exists a monomorphism µ:S → P
into a d-dimensional separoid of points in general position. Then S −→ Kk.

Figure 2. A 1-dimensional separoid S of 5 convex sets in IE2 such that S 6−→ K3.

Arocha et al. [1] proved a Hadwiger-type theorem that, supposing the
existence of a monomorphism ‘from the left’ ν:P → S, concludes the exis-
tence of a virtual `-transversal . That is, there are “as many” hyperplanes
transversal to the family as there are hyperplanes through an `-flat (e.g.,
while the family in Figure 1(b) has a 0-transvesal, that of Figure 1(a) has
a virtual 0-transversal). This result extends ideas from Goodman & Pollack
[7] who used the notion of order type to characterise the existence of hyper-
plane transversals. On the other hand, Theorem 2 supposes the existence of
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a monomorphism ‘to the right’, and concludes that there is a virtual Tverberg
partition (i.e., a partition with a virtual 0-transversal). Thus these theorems
may be seen as ‘dual’ —at least in the case ` = d(S).

However, the Hadwiger-type hypotheses are ‘geometric’ in nature; that
is, they restrict the convex sets that represent the separoid to be in some
‘special position’. (See [4] for the early work on such ‘special position’ hy-
potheses, and see [5, 8] for excelent updates on the subject.) The following
questions arise. How far can the hypothesis of Theorem 2 be weakened with-
out changing the conclusion? Is there a purely combinatorial Tverberg-type
theorem?

We now introduce the following new concept. The (k, d)-Tverberg num-
ber ϑ(k, d), is the minimum number n ∈ IN such that every d-dimensional
separoid of order at least n maps onto Kk with a chromomorphism; that is,
ϑ(k, d) is minimal with the property

|S| ≥ ϑ(k, d(S)) =⇒ S −→ Kk .

Analogously, if S denotes a class of separoids, we denote by ϑS(k, d) the
(k, d)-Tverberg number restricted to the class S. Thus, Tverberg’s theorem
can be rewriten as

ϑP(k, d) = (k − 1)(d+ 1) + 1,

where P denotes the class of separoids of points. Analogously, using the
notion of pseudoconfiguration of points, Roudneff [15] proved that

ϑM(k, 2) = 3k − 2,

where M denotes the class of oriented matroids. In this direction, we prove
the following

Proposition 1 If G denotes the class of (simple) graphs —thought of as
separoids whose minimal Radon partitions are pairs of singletons— then

ϑG(k, d) ≤ (k − 1)(d+ 1) + 1.

(Observe the close relation between ϑG(k, d) and the so-called pseudoachro-
matic number [9]).

However, in general the (k, d)-Tverberg number is greater than that. In-
deed, we will prove that
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Theorem 3 For all pairs of natural numbers k > 2 and d > 0 it follows that

(k − 1)(d+ 1) + 1 < ϑ(k, d) <

(
k

2

)
(d+ 1) + 1.

Furthermore, by means of a probabilistic argument, we will prove that

Theorem 4 For each d > 0, the constant C = 2d+4 is such that for all
k ≥ d+ 2,

ϑ(k, d) ≤ Ck log k.

2 Definitions and Proof of Theorem 2

In order to be self-contained, we start with some basic notions and exam-
ples. Every (finite and acyclic) separoid S can be represented by a family
of (convex) polytopes in the (|S| − 1)-dimensional Euclidian space [17, 18].
The construction is as follows. Let S be identified with the set {1, . . . , n}.
For each element i ∈ S and each minimal Radon partition A † B such that
i ∈ A, consider the point

ρi
A†B = ei +

1

2

[
1

|B|
∑
b∈B

eb −
1

|A|
∑
a∈A

ea

]
,

where ei denotes the i-th vector of the canonical basis of IRn. Then, each
element i is represented by the convex hull of all such elements:

i 7→ Ki =
〈
ρi

A†B : i ∈ A and A †B
〉
.

Observe that the convex sets Ki live in the affine hyperplane spanned by the
basis. It is simple to verify that this construction is correct and that the
implicit bound n− 1 is tight.

Thus there is a minimum dimension in which S can be represented, called
the geometric dimension of S and denoted by gd(S). Furthermore, if the
separoid can be represented by a family of points in some Euclidian space,
it is called a point separoid [3, 12] (also known as a linear oriented matroid
[2] or as an order type [6]).
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The order of the separoid S is the cardinal |S| and its size is the cardinal
|†| (i.e., the number of Radon partitions). The separoid of order d+1 and size
0 is called the d-dimensional simploid ; that is, a separoid is a simploid if every
subset is separated from its complement. Simploids can be represented by the
vertex sets of simplices —hence the name. The (combinatorial) dimension
of a separoid S is the maximum dimension of its induced simploids and is
denoted by d(S).

We say that the separoid is in general position if every set of d(S) + 1
elements induce a simploid. Thus, a d-dimensional separoid of convex sets
is in general position if (and only if) every d + 2 elements admit a d-flat
transversal but no d+1 elements do. Furthermore, d is the minimum number
with that property.

A separoid is called a Radon separoid if for each minimal Radon partition
is unique in its support; i.e., if A †B, C †D are minimal then

A ∪B = C ∪D =⇒ {A,B} = {C,D}.

Observe that if S is a point separoid, then d(S) = gd(S) and it is a Radon
separoid. Furthermore, a separoid S in general position is a point separoid
if and only if d(S) = gd(S) (see [3]).

The (acyclic) separoid K is complete if for all i, j ∈ K we have that i † j;
i.e., if its size is as big as possible. We denote by Kk the complete separoid
of order k. Observe that a separoid is complete if and only if its dimension
is zero.

Given two separoids S and P , a function ϕ:S → P is a morphism if
the preimage of separations are separations (see [1, 17] for several important
examples of morphisms); that is, for all α, β ⊆ P ,

α | β =⇒ ϕ−1(α) | ϕ−1(β).

If the function ϕ is injective (resp. surjective), the morphism is called a
monomorphism (resp. an epimorphism). An epimorphism is a chromomor-
phism if the preimage of minimal Radon partitions are Radon partitions.

The main example to have in mind while thinking about chromomor-
phisms is the following —it motivates the name of such morphisms. Consider
a family of convex sets S = {C1, . . . , Cn}. Given an (effective) k-colouring
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ς:S → {1, . . . , k}, let Di = 〈ς−1(i)〉 be the convex hull of the union of those
convex sets coloured i, for i = 1, . . . , k. Let T = {D1, . . . , Dk}. The induced
function, also denoted by ς:S −→ T , is a chromomorphism between those
separoids.

Given a (simple and undirected) graph G = (V,E), a separoid S on V can
be defined with the relation, for i, j ∈ V

i † j is minimal ⇐⇒ ij ∈ E.

Indeed this definition induces a functoral embedding from the category of
graphs into that of separoids when both classes are endowed with homomor-
phisms (see [13]). Conversely, given a separoid S, we say that S is a graph
if, for A,B ⊆ S,

A †B is minimal =⇒ |A||B| = 1.

Clearly Kk is the complete graph of order k —hence the notation. Observe
that a graph H is a minor of a connected graph G if and only if there exists
a chromomorphism G −→ H with all its fibers connected.

Proof of Proposition 1. Let G be a d-dimensional graph. We need to
prove that

|G| ≥ (k − 1)(d+ 1) + 1 =⇒ G −→ Kk.

For, denote by α(G) = d + 1 the independence number and by χ(G) the
chromatic number. Using the well-known Erdős inequality, |G| ≤ χ(G)α(G),
we have that

(k − 1)α(G) + 1 ≤ |G| < χ(G)α(G) + 1,

which implies that k ≤ χ(G). Observe that any homomorphism —or proper
colouring if you will—

ϕ:G→ Kχ(G)

is also a chromomorphism. Furthermore, for all n ≤ m there is a chromomor-
phism Km −→ Kn. Therefore, there is a chromomorphism ψ:Kχ(G) −→ Kk

and we have that ς = ψ ◦ ϕ is the desired chromomorphism. •

Proof of Theorem 2. Let S be a d-dimensional separoid of order (k−1)(d+
1) + 1. Suppose there is a monomorphism µ:S → P into a d-dimensional
point separoid in general position. Due to Tverberg’s theorem, there ex-
ists a chromomorphism τ :P −→ Kk. We now show that ς = τ ◦ µ is a
chromomorphism.
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For, let i † j be an edge of Kk. Since τ is chromomorphism, we have
that τ−1(i) † τ−1(j). Then there exist A ⊆ τ−1(i) and B ⊆ τ−1(j) such
that A † B is minimal. Since P is in general position, |A ∪ B| = d + 2.
Since µ is injective, |µ−1(A ∪ B)| = d + 2 and there exist C † D such that
C ∪D = µ−1(A ∪ B). Therefore, since µ is a monomorphism, µ(C) † µ(D).
Since P is a point separoid, it is a Radon separoid and we may suppose that
µ(C) = A and µ(D) = B. Finally, since C ⊆ ς−1(i) and D ⊆ ς−1(j), we have
that ς−1(i) † ς−1(j), which concludes the proof. •

Figure 3 shows that the hypothesis of general position cannot be dropped
without adding a new ingredient. On the other hand, if we suppose —as
did Goodman & Pollack [7] and Arocha et al. [1]— that the monomorphism
comes ‘from the left’ µ:P → S, then such a hypothesis is not needed and the
argument is much simpler (see the proof of Lemma 1). Observe that Figure 3
also shows that the existence of a virtual line does not imply the existence
of the corresponding chromomorphism.

Figure 3. A 1-dimensional separoid S of 5 convex sets in IE3 such that S 6−→ K3.

3 Proofs of Theorems 3 and 4

We start this section with a simple, but useful, structural result that allows
us to restrict our attention to Radon separoids in general position.
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Lemma 1 Given a d-dimensional separoid S, there exists a d-dimensional
Radon separoid R in general position such that

R −→ Kk =⇒ S −→ Kk.

For, let R be defined on the same set as S, and with the following set of
minimal Radon partitions: for each subset X ∈

(
S

d+2

)
, choose a single Radon

partiton A † (X \ A) of S to be in R. Clearly R is a Radon separoid in
general position and d(R) = d(S). Furthermore, the identity map ν:R→ S
is a monomorphism.

Now, suppose that ς:R −→ Kk is a chromomorphism; that is, suppose
that for each edge i † j of Kk it follows that ς−1(i) † ς−1(j). Since ν is a
monomorphism, we have that ν◦ς−1(i)†ν◦ς−1(j). Therefore, ς◦ν−1:S −→ Kk

is a chromomorphism which concludes the proof. •

In the sequel, given a partitionX1, . . . , Xk we say that it has type (|X1|, . . . ,
|Xk|). In particular, given a Radon partitions A † B we denote its type as
the pair (|A|, |B|).

Theorem 3 follows immediately from the following two lemmas.

Lemma 2 For all k > 2 and d > 0 there exists a d-dimensional separoid S
of order

|S| = (k − 1)(d+ 1) + 1

such that S 6−→ Kk.

For, let S = {0, 1, . . . , (k−1)(d+1)} be endowed with the following minimal
Radon partitions: for each A ∈

(
S

d+2

)
let x † (A \ x), where x ∈ A is chosen

such that

x =


0 if 0, 1 ∈ A,
1 if 0 6∈ A and 1 ∈ A,
a 6= 0 if 0 ∈ A and 1 6∈ A,
a if 0, 1 6∈ A.

Since each minimal Radon partition has type (1, d+ 1), if S −→ Kk then
the induced partition must have type (1, d + 1, . . . , d + 1). That isolated
element in the partition will be called the singleton.
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Now, suppose that S −→ Kk and look at the partition induced by such
a colouring. The singleton cannot be 0 because 0 † (A \ 0) only if 1 ∈ A,
and 1 can only be in one part. The singleton cannot be 1 because 1 † (A \ 1)
only if 0 6∈ A and 0 must be in some part. Thus suppose a 6∈ {0, 1} is the
singleton. But then, a | [[1]], where [[1]] denotes the chromatic class of 1; this
is a contradiction. •

Lemma 3 Let S be a d-dimensional separoid. Then

|S| =
(
k

2

)
(d+ 1) =⇒ S −→ Kk.

For, let H = Hk denote the graph resulting from deleting an edge to Kk;
that is, H is the set (of colours) {1, . . . , k} and for each pair ij ∈

(
k
2

)
except

for one, say 1k, there is an edge i † j. Let

S =
⋃

ij∈(k
2)

Sij

be a partition of type (d + 2, d + 1, . . . , d + 1, d). Furthermore, suppose
that |S12| = d + 2 and |S1k| = d. Below we exhibit a chromomorphism
ς:S \ S1k −→ H. Then we extend it to a chromomorphism onto Kk using
the remaining d elements of S.

Since |S12| = d+2, there is a Radon partition A †B whose support is S12.
Assign colours respectively (i.e., let ς(A) = 1 and ς(B) = 2).

Remark. We may suppose that A has the maximum size that a component
may have in S \ S1k.

Choose any element of colour 1, say a ∈ A. We now use a to extend the
colouring to the parts S1j (with 1 < j 6= k) so that ς becomes onto the edges
incident to 1. That is, for each pair 1j ∈

(
k
2

)
\ 1k, the set S1j ∪ a, which

consists of d+2 elements, defines a Radon partition A′ †B′ (we may suppose
a ∈ A′). Thus, we can assign colours by ς(A′) = 1 and ς(B′) = j.

Now, choose an element coloured 2, say b ∈ ς−1(2), and use it to extend
all parts S2j, with 2 < j (i.e., consider S2j ∪ b, take its Radon partition, and
assign colours). Then repeat for colour 3, colour 4, and so on. At the end of
such a process the colouring ς is the desired chromomorphism.
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In order to extend ς to a chromomorphism onto Kk, there is one possible
obstruction: if we choose two elements coloured 1, say a, b ∈ ς−1(1), and
consider the set S1k∪{a, b} of d+2 elements, then the defined Radon partition
A′ † B′ is such that a ∈ A′ and b ∈ B′ (analogously if both elements are
coloured k). Also, if we choose one element of each colour, say a ∈ ς−1(1)
and b ∈ ς−1(k), and consider S1k∪{a, b}, then the respective Radon partition
A′ †B′ contains both elements on the same component, say {a, b} ⊂ A′.

However, by the Remark, we may suppose that |ς−1(1) ∪ ς−1(k)| ≥ d+ 2.
Then there is a minimal Radon partition C †D whose support is contained
in the preimage of this “missing edge”. Furthermore, since ς−1(1) | ς−1(k),
there exist a pair of elements a ∈ ς−1(1) and b ∈ ς−1(k) which appears on
the same side of that Radon partition, say {a, b} ⊂ C. Therefore, we can
apply the previous method, but starting with S12 = C ∪D, to find another
chromomorphism ς ′:S \ S12 −→ H such that ς ′(C) = 1. Then ς ′ can be
extended to a chromomorphism S −→ Kk. •

Given a separoid S of order 2tk, we will denote by Ω the set of all k-
colourings of S such that each chromatic class consists of exactly 2t elements.
Analogously, given a Radon separoid T of order 2t+1 in general position
we denote by Ω̂ the set of all 2-partitions of T into two sets of order 2t.
Furthermore, a pair (α, β) ∈ Ω̂ is called a halving of T . We denote by pT the

probability that α | β, for a randomly and uniformly choosen (α, β) ∈ Ω̂.

The proof of Theorem 4 is mainly based on the following

Lemma 4 If T is a d-dimensional Radon separoid of order 2t+1 in general
position, then

pT ≤ (d+ 2)/22t−d−1

.

Before proving this lemma, we see how it is used.

Proof of Theorem 4. Let t = d+4+blog log kc and let S be a d-dimensional
Radon separoid of order 2tk. Since 2t ≤ 2d+4 log k it is enough to prove that
S −→ Kk.

Let S = S1 ∪ · · · ∪ Sk be a random partition of S. Let Ei,j ⊂ Ω be the
event that Si | Sj. We claim that

Ω \
⋃

ij∈(k
2)

Ei,j 6= ∅.
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It is clear that all events Ei,j have the same probability. Now, we can obtain
S1 and S2 as follows. Randomly choose a set T ⊂ S of order 2t+1 and let
(S1, S2) ∈ Ω̂ be a random halving of T. By Lemma 4, the probability that
S1 | S2 is at most (d+ 2)/22t−d−1

. Therefore

Prob

 ⋃
ij∈(k

2)

Ei,j

 ≤
∑

ij∈(k
2)

Prob [Ei,j] =

(
k

2

)
Prob [E1,2]

≤ k2

2
(d+ 2)2−2t−d−1 ≤ k2

2
(d+ 2)2−22+log log k

=
k2

2
(d+ 2)k−4 < 1.

•

Proof of Lemma 4. We prove the lemma by induction on d. If d = −1 and
t ≥ 0 then every element of T is not separated from the empty set. Thus
pT = 0. Now, let d ≥ 0 and suppose the lemma is true for all d′ < d. If t ≤ d
we have that (d+ 2)/22t−d−1

> 1; thus let t > d.

We can achieve a random halving of T as follows: in the first step, halve
the set T into two equal parts T1 and T2; later, randomly halve each Ti

(i = 1, 2) into two equal sets αi and βi. Let α = α1 ∪ α2 and β = β1 ∪ β2.

The halving (α, β) ∈ Ω̂ is random (and uniform).

Let us define a (d− 1)-dimensional separoid on T1 as follows (we will use
‖ and ‡ to denote the separations and Radon partitions on T1, respectively).
For each X ∈

(
T1

d+1

)
and each A ⊂ X, let

T (X,A) = {x ∈ T2 : (A ∪ x) † (X \ A)}.

Observe that for two different subsets A,A′ ⊂ X we have T (X,A)∩T (X,A′)
= ∅. Furthermore, since for each element x ∈ T2 there is a Radon partition
of the set X ∪ x, the sets T (X,A), with A ∈ 2X , are a partition of T2. Thus,

for some AX ⊂ X we have that |T (X,AX)| ≥ |T2|
|2X | = 2t−d−1. We define ‡ as

the relation AX ‡ (X \ AX), for all subsets X ⊂ T1 of order d + 1. Observe
that ‡ defines a (d − 1)-dimensional Radon separoid in general position on
T1.

Let E be the event that α | β and E1 be the event that α1 ‖ β1. By

the induction hypothesis we have that Prob [E1] ≤ (d + 1)/22(t−1)−(d−1)−1
=

(d+ 1)/22t−d−1
.
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Take the halving (α, β) in E \ E1. Since α1 ‡ β1, there exists X ⊂ T1 of
order d+1 such that (X ∩α1)‡ (X ∩β1). We may assume that AX = X ∩α1.

We claim that T (X,AX) ∩ α2 = ∅. For, suppose that there exists an
x ∈ T (X,AX)∩α2. Since (AX ∪x) † (X \AX), AX ∪x ⊂ α and X \AX ⊂ β,
we have that α † β; this is a contradiction and the claim follows.

Now, let s = 2t−d−1 ≤ |T (X,AX)| and let E1 = Ω \E1. In order for α | β,
the set T (X,AX) has to be contained in β2. Thus the conditional probability
is

Prob
[
E ∩ E1

]
Prob

[
E1

] = Prob
[
E | E1

]
≤

(
2t−s

2t−1−s

)(
2t

2t−1

) ≤ 2−s = 2−2t−d−1

.

Therefore,
pT = Prob [E] ≤ Prob [E1] + Prob [E \ E1]

≤ Prob [E1] +
Prob [E \ E1]

Prob
[
E1

] ≤ (d+ 2)/22t−d−1

.

•
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J. Nešetřil, eds.). KAM-DIMATIA Series 689, Charles University, 2004,
42–51.

15



[17] R. Strausz; On Radon’s theorem and representation of separoids. ITI-
Series 118, 2003, Charles University, Praha, Cz.

[18] R. Strausz; On Separoids. Ph. D. Thesis, Universidad Nacional
Autónoma de México, 2004.
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