Tverberg-type theorems for separoids
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Abstract

Let S be a d-dimensional separoid of (k—1)(d+1)+1 convex sets
in some ‘large-dimensional’ Euclidean space IEY. We prove a theorem
that can be interpreted as follows: if the separoid S can be mapped
with a monomorphism to a d-dimensional separoid of points P in
general position, then there exists a k-colouring ¢: S — K} such that,
for each pair of colours i, j € Ky, the convex hulls of their preimages
do intersect —they are not separated. Here, by a monomorphism we
mean an injective function such that the preimage of separated sets
are separated. In a sense, this result is ‘dual’ to the Hadwiger-type



theorems proved by Goodman & Pollack (1988) and Arocha, Bracho,
Montejano, Olivereros & Strausz (2002).

We also introduce ¥(k, d), the minimum number n such that all d-
dimensional separoids of order at least n can be k-coloured as before.
By means of examples and explicit colourings, we show that for all

k>2andd >0,
k
(k—1)(d+1)+1< 9k, d) < <2>(d+1)+1.

Furthermore, by means of a probabilistic argument, we show that for
each d there exists a constant C' = C(d) such that for all k, ¥(k,d) <
Cklogk.

Key Words: Abstract Convexity; Hadwiger’s theorem; Tverberg’s
theorem; Graphs; Separoids; Order Types; Oriented Matroids; Pseu-
doachromatic number.

1 Introduction and statement of results

As suggested by Danzer, Griinbaum & Klee (1963) [4], the relationship be-
tween Helly’s, Radon’s and Carathéodory’s theorems “could be best under-
stood by formulating various axiomatic settings for the theory of convex-
ity”. The first attempt to give such an axiomatic setting was made by
Levi (1951) [11], who uses Helly’s theorem (1923) [10] as a starting point.
More recently, the concept of a separoid was introduced [1, 3, 12, 13, 16,
17, 18] as a new attempt in this direction that is instead based on Radon’s

theorem (1921) [14].

A separoid is a (finite) set S endowed with a symmetric relation T C (225 )
defined on its family of subsets, which satisfies the following properties for

all A,BCS:

o AtB = ANB=10
oo AtBand BC B (CS\A) = A{B

A pair A { B is called a Radon partition. Each part (A and B) is called
a component and the union A U B is the support of the partition. The
(combinatorial) dimension of S, denoted by d(S), is the minimum d such
that every subset of S with at least d + 2 elements is the support of a Radon



partition. By the second condition, the minimal Radon partitions determines
the separoid. A pair of disjoint subsets «a,( C S that are not a Radon
partition are said to be separated, and denoted by a | # (cf. [1]).

Now, given a family of convex sets F = {C},...,C,} in some Euclidean
space IE?, a separoid S(F) on {1,...,n} can be defined by the following
relation: for all a, 3 C S(F),

alf = ({Ciica})n({C;:jep}) =0,

where () denotes the convex hull. Analogously, the Radon partitions are
defined by

AtB < ANB=0 and ({Ci:ie A})N{{C;:je B}) 0.

Conversely, as proved by Arocha et al. [1], every (abstract) separoid can be
represented in such a way by a family of convex sets in some Euclidean space.
Therefore each separoid S has a minimum dimension where it can be repre-
sented called the geometric dimension of S, denoted by gd(.S). Furthermore,
as proved by Strausz [18], if the separoid S is acyclic (i.e., if () | S), then
gd(S) < |S] — 1 (see also [17]).

The following theorem is an easy corollary of Tverberg’s theorem [19] (see
also [5] and the references therein).

Theorem 1 Let S be a separoid of order |S| = (k —1)(d + 1) + 1, where
d = gd(S). Then there exists a k-colouring <: S — K} such that every pair
of colour classes are not separated; i.e., the preimage of every pair of colours
i,j € Ky, are a Radon partition s1(i) 1 s1(5).

Indeed, a stronger conclusion can be reached. Represent the separoid S with
convex sets in IB?, where d = gd(S). If we choose a point in each convex
set and apply Tverberg’s theorem to this set of points, then we can find a
k-colouring of S such that there is a point that is in the convex hull of every
chromatic class. °

Following [16], if the conclusion of Theorem 1 holds, we will say that
there exists a chromomorphism onto the complete separoid Ky of order k (cf.
Figure 1). If such a chromomorphism exists for a given .S, we write S — Kj;
otherwise we write S —/~ Kj. In this note we are interested in purely
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combinatorial conditions that guarantee the existence of chromomorphisms
onto complete separoids.

a b
Figure 1. Two representations of K5 in IE%.

As shown by Figure 2, in Theorem 1 the geometric dimension cannot be
replaced by the combinatorial dimension without adding a new ingredient
—observe that d(S) < gd(.S). Thus, while replacing gd(S) by d(S), we may
add a Hadwiger-type hypothesis that allows us to prove the following

Theorem 2 Let S be a d-dimensional separoid of order |S| = (k —1)(d +
1) + 1. Suppose that in addition, there exists a monomorphism u:S — P
into a d-dimensional separoid of points in general position. Then S — K.

Figure 2. A 1-dimensional separoid S of 5 convex sets in IE* such that S —/— K.

Arocha et al. [1] proved a Hadwiger-type theorem that, supposing the
existence of a monomorphism ‘from the left’ v: P — S, concludes the exis-
tence of a wvirtual (-transversal. That is, there are “as many” hyperplanes
transversal to the family as there are hyperplanes through an ¢-flat (e.g.,
while the family in Figure 1(b) has a O-transvesal, that of Figure 1(a) has
a virtual O-transversal). This result extends ideas from Goodman & Pollack
[7] who used the notion of order type to characterise the existence of hyper-
plane transversals. On the other hand, Theorem 2 supposes the existence of
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a monomorphism ‘to the right’, and concludes that there is a virtual Tverberg
partition (i.e., a partition with a virtual O-transversal). Thus these theorems
may be seen as ‘dual” —at least in the case ¢ = d(95).

However, the Hadwiger-type hypotheses are ‘geometric’ in nature; that
is, they restrict the convex sets that represent the separoid to be in some
‘special position’. (See [4] for the early work on such ‘special position’ hy-
potheses, and see [5, 8| for excelent updates on the subject.) The following
questions arise. How far can the hypothesis of Theorem 2 be weakened with-
out changing the conclusion? Is there a purely combinatorial Tverberg-type
theorem?

We now introduce the following new concept. The (k,d)-Tverberg num-
ber ¥(k,d), is the minimum number n € IN such that every d-dimensional
separoid of order at least n maps onto K} with a chromomorphism; that is,
Y(k,d) is minimal with the property

1] = W(k,d(S)) = § — K, .
Analogously, if S denotes a class of separoids, we denote by ¥s(k,d) the
(k,d)-Tverberg number restricted to the class S. Thus, Tverberg’s theorem

can be rewriten as

Ip(k,d) = (k—1)(d+1) + 1,

where P denotes the class of separoids of points. Analogously, using the
notion of pseudoconfiguration of points, Roudneff [15] proved that

Ini(k,2) = 3k — 2,

where M denotes the class of oriented matroids. In this direction, we prove
the following

Proposition 1 If G denotes the class of (simple) graphs —thought of as
separoids whose minimal Radon partitions are pairs of singletons— then

Ug(k,d) < (k—1)(d+ 1)+ 1.
(Observe the close relation between ¥g(k, d) and the so-called pseudoachro-
matic number [9]).

However, in general the (k,d)-Tverberg number is greater than that. In-
deed, we will prove that



Theorem 3 For all pairs of natural numbers k > 2 and d > 0 it follows that

(k=1)(d+1)+1<d(k,d) < <§)(d+1)+1.

Furthermore, by means of a probabilistic argument, we will prove that

Theorem 4 For each d > 0, the constant C = 297* is such that for all
k>d+2,
Yk, d) < Cklogk.

2 Definitions and Proof of Theorem 2

In order to be self-contained, we start with some basic notions and exam-
ples. Every (finite and acyclic) separoid S can be represented by a family
of (convex) polytopes in the (|S| — 1)-dimensional Euclidian space [17, 18].
The construction is as follows. Let S be identified with the set {1,...,n}.
For each element ¢ € S and each minimal Radon partition A f B such that
1 € A, consider the point

. 1 1 1
Pap =€+ 5 |mr ) &~ 77 ) €,
o =€t g | g e a2

a€A

where e; denotes the i-th vector of the canonical basis of IR". Then, each
element ¢ is represented by the convex hull of all such elements:

ir—>/Ci:<pf4fB:i€AandATB>.

Observe that the convex sets K; live in the affine hyperplane spanned by the
basis. It is simple to verify that this construction is correct and that the
implicit bound n — 1 is tight.

Thus there is a minimum dimension in which S can be represented, called
the geometric dimension of S and denoted by gd(S). Furthermore, if the
separoid can be represented by a family of points in some Euclidian space,
it is called a point separoid [3, 12] (also known as a linear oriented matroid
2] or as an order type [6]).



The order of the separoid S is the cardinal |S| and its size is the cardinal
|t] (i-e., the number of Radon partitions). The separoid of order d+1 and size
0 is called the d-dimensional simploid; that is, a separoid is a simploid if every
subset is separated from its complement. Simploids can be represented by the
vertex sets of simplices —hence the name. The (combinatorial) dimension
of a separoid S is the maximum dimension of its induced simploids and is

denoted by d(S5).

We say that the separoid is in general position if every set of d(S) + 1
elements induce a simploid. Thus, a d-dimensional separoid of convex sets
is in general position if (and only if) every d + 2 elements admit a d-flat
transversal but no d+ 1 elements do. Furthermore, d is the minimum number
with that property.

A separoid is called a Radon separoid if for each minimal Radon partition
is unique in its support; i.e., if At B, C't D are minimal then

AUB=CUD = {A,B}={C,D}).

Observe that if S is a point separoid, then d(S) = gd(S) and it is a Radon
separoid. Furthermore, a separoid S in general position is a point separoid
if and only if d(S) = gd(S) (see [3]).

The (acyclic) separoid K is complete if for all i, 5 € K we have that i { j;
i.e., if its size is as big as possible. We denote by K} the complete separoid
of order k. Observe that a separoid is complete if and only if its dimension
is zero.

Given two separoids S and P, a function ¢:S — P is a morphism if
the preimage of separations are separations (see [1, 17] for several important
examples of morphisms); that is, for all o, 5 C P,

alf = ¢ ()| ¢ (B).

If the function ¢ is injective (resp. surjective), the morphism is called a
monomorphism (resp. an epimorphism). An epimorphism is a chromomor-
phism if the preimage of minimal Radon partitions are Radon partitions.

The main example to have in mind while thinking about chromomor-
phisms is the following —it motivates the name of such morphisms. Consider
a family of convex sets S = {C},...,C,}. Given an (effective) k-colouring



¢:S —{l,...,k}, let D; = (¢*(4)) be the convex hull of the union of those
convex sets coloured i, for i = 1,... k. Let T'={Dy,..., Dy}. The induced
function, also denoted by ¢: S — T, is a chromomorphism between those
separoids.

Given a (simple and undirected) graph G = (V, E), a separoid S on V can
be defined with the relation, for ¢,5 € V'

¢ T 7 is minimal <= ij € F.

Indeed this definition induces a functoral embedding from the category of
graphs into that of separoids when both classes are endowed with homomor-
phisms (see [13]). Conversely, given a separoid S, we say that S is a graph
if, for A, BCS,

AT B is minimal = |A[|B| = 1.

Clearly K} is the complete graph of order £ —hence the notation. Observe
that a graph H is a minor of a connected graph G if and only if there exists
a chromomorphism G — H with all its fibers connected.

Proof of Proposition 1. Let G be a d-dimensional graph. We need to
prove that
G| >(k—-1)d+1)+1 = G — K.

For, denote by «(G) = d + 1 the independence number and by x(G) the
chromatic number. Using the well-known Erdds inequality, |G| < x(G)a(G),
we have that

(k= Da(G) +1 <|G] < x(G)a(G) +1,

which implies that & < x(G). Observe that any homomorphism —or proper
colouring if you will—
@: G — KX(G’)

is also a chromomorphism. Furthermore, for all n < m there is a chromomor-
phism K, — K,. Therefore, there is a chromomorphism : K, (g — K
and we have that ¢ = v o ¢ is the desired chromomorphism. °

Proof of Theorem 2. Let S be a d-dimensional separoid of order (k—1)(d+
1) + 1. Suppose there is a monomorphism u:S — P into a d-dimensional
point separoid in general position. Due to Tverberg’s theorem, there ex-
ists a chromomorphism 7: P — Kj. We now show that ¢ = 7o p is a
chromomorphism.



For, let ¢ t j be an edge of Kj. Since 7 is chromomorphism, we have
that 771(¢) t 771(j). Then there exist A C 77(i) and B C 77!(j) such
that A ¥ B is minimal. Since P is in general position, |[A U B| = d + 2.
Since p is injective, |~ (AU B)| = d 4+ 2 and there exist C't D such that
CUD = u (AU B). Therefore, since p is a monomorphism, u(C) 1 u(D).
Since P is a point separoid, it is a Radon separoid and we may suppose that
u(C) = A and p(D) = B. Finally, since C C ¢~ !(i) and D C ¢~ '(j), we have
that ¢71(i) t s7'(j), which concludes the proof. .

Figure 3 shows that the hypothesis of general position cannot be dropped
without adding a new ingredient. On the other hand, if we suppose —as
did Goodman & Pollack [7] and Arocha et al. [1]— that the monomorphism
comes ‘from the left’ yu: P — S, then such a hypothesis is not needed and the
argument is much simpler (see the proof of Lemma 1). Observe that Figure 3
also shows that the existence of a virtual line does not imply the existence
of the corresponding chromomorphism.
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Figure 3. A 1-dimensional separoid S of 5 convex sets in IE® such that S —/— K.

3 Proofs of Theorems 3 and 4

We start this section with a simple, but useful, structural result that allows
us to restrict our attention to Radon separoids in general position.



Lemma 1 Given a d-dimensional separoid S, there exists a d-dimensional
Radon separoid R in general position such that

R— K, = S — K.

For, let R be defined on the same set as S, and with the following set of
minimal Radon partitions: for each subset X € ( diQ), choose a single Radon
partiton At (X \ A) of S to be in R. Clearly R is a Radon separoid in
general position and d(R) = d(S). Furthermore, the identity map v: R — §

is a monomorphism.

Now, suppose that ¢: R — K} is a chromomorphism; that is, suppose
that for each edge i T j of K} it follows that ¢~1(i) 1 ¢7!(j). Since v is a
monomorphism, we have that vos™!(i)tros(j). Therefore, cor™': S — Kj
is a chromomorphism which concludes the proof. °

In the sequel, given a partition X1, ..., X} we say that it has type (| X4],. . .,
| X%|). In particular, given a Radon partitions A 1 B we denote its type as
the pair (|A],|B]).

Theorem 3 follows immediately from the following two lemmas.

Lemma 2 For all k > 2 and d > 0 there exists a d-dimensional separoid S
of order

|IS|=(k—-1)(d+1)+1
such that S —~ Kj.

For,let S ={0,1,...,(k—1)(d+1)} be endowed with the following minimal
Radon partitions: for each A € ( dJSrQ) let © (A \ ), where x € A is chosen
such that

0 if 0,1 € A,

. 1 if0Zg Aand 1 € A,
a#0 if0cAand1¢ A,
a if 0,1 ¢ A.

Since each minimal Radon partition has type (1,d + 1), if S — K}, then
the induced partition must have type (1,d + 1,...,d + 1). That isolated
element in the partition will be called the singleton.
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Now, suppose that S — K. and look at the partition induced by such
a colouring. The singleton cannot be 0 because 01 (A \ 0) only if 1 € A,
and 1 can only be in one part. The singleton cannot be 1 because 11 (A \ 1)
only if 0 ¢ A and 0 must be in some part. Thus suppose a ¢ {0,1} is the
singleton. But then, a | [1], where [1] denotes the chromatic class of 1; this
is a contradiction. °

Lemma 3 Let S be a d-dimensional separoid. Then

15| = (S)(d+1) . S K,

For, let H = Hj denote the graph resulting from deleting an edge to Kj;
that is, H is the set (of colours) {1,...,k} and for each pair ij € (’2“) except
for one, say 1k, there is an edge ¢ { j. Let

S=J sy

i7€(3)

be a partition of type (d + 2,d + 1,...,d + 1,d). Furthermore, suppose
that |S12| = d + 2 and [S1x| = d. Below we exhibit a chromomorphism
¢: S\ Sig — H. Then we extend it to a chromomorphism onto K} using
the remaining d elements of S.

Since |S12| = d+ 2, there is a Radon partition At B whose support is Sis.
Assign colours respectively (i.e., let ¢(A) = 1 and ¢(B) = 2).

Remark. We may suppose that A has the maximum size that a component
may have in S\ Si.

Choose any element of colour 1, say a € A. We now use a to extend the
colouring to the parts Sy; (with 1 < j # k) so that ¢ becomes onto the edges
incident to 1. That is, for each pair 15 € (g) \ 1k, the set Si; U a, which
consists of d+ 2 elements, defines a Radon partition A’ B’ (we may suppose
a € A'). Thus, we can assign colours by ¢(A’) = 1 and ¢(B’) = j.

Now, choose an element coloured 2, say b € ¢7(2), and use it to extend
all parts Sy;, with 2 < j (i.e., consider Sy; U b, take its Radon partition, and
assign colours). Then repeat for colour 3, colour 4, and so on. At the end of
such a process the colouring ¢ is the desired chromomorphism.
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In order to extend ¢ to a chromomorphism onto K, there is one possible
obstruction: if we choose two elements coloured 1, say a,b € ¢7*(1), and
consider the set S1U{a, b} of d+2 elements, then the defined Radon partition
A"t B is such that a € A" and b € B’ (analogously if both elements are
coloured k). Also, if we choose one element of each colour, say a € ¢7*(1)
and b € ¢'(k), and consider Sy, U{a,b}, then the respective Radon partition
A"t B’ contains both elements on the same component, say {a,b} C A’

However, by the Remark, we may suppose that [¢71(1) Us (k)| > d + 2.
Then there is a minimal Radon partition C't D whose support is contained
in the preimage of this “missing edge”. Furthermore, since ¢~ (1) | ¢~ *(k),
there exist a pair of elements a € ¢7*(1) and b € ¢ !(k) which appears on
the same side of that Radon partition, say {a,b} C C. Therefore, we can
apply the previous method, but starting with S1o = C'U D, to find another
chromomorphism ¢’: S\ S;5 — H such that ¢'(C') = 1. Then ¢’ can be
extended to a chromomorphism S — Kj. °

Given a separoid S of order 2'k, we will denote by Q the set of all k-
colourings of S such that each chromatic class consists of exactly 2¢ elements.
Analogously, given a Radon separoid T' of order 2!*1 in general position
we denote by (2 the set of all 2-partitions of 7" into two sets of order 2t
Furthermore, a pair (a, 3) € 2 is called a halving of T. We denote by pr the
probability that « | 3, for a randomly and uniformly choosen (a, 3) € Q.

The proof of Theorem 4 is mainly based on the following
Lemma 4 If T is a d-dimensional Radon separoid of order 281 in general
position, then
—d—1
pr < (d+2)/22 "
Before proving this lemma, we see how it is used.

Proof of Theorem 4. Let t = d+4+|loglog k| and let S be a d-dimensional
Radon separoid of order 2'k. Since 2! < 2%+4]og k it is enough to prove that

Let S = S1U---US, be a random partition of S. Let E;; C €2 be the
event that S; | S;. We claim that

Q\ U Eij #0.
ij€(5)
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It is clear that all events E; ; have the same probability. Now, we can obtain
Sy and S as follows. Randomly choose a set ' C S of order 2! and let
(S1,52) € © be a random halving of T. By Lemma 4, the probability that
Sy | Sy is at most (d + 2)/2% ", Therefore

Prob U E. ;| < Z Prob [E; ;] = (S)Prob [E1 2]

i7€(3) i7€(3)

kz 72t7d71 kQ 722+loglogk kQ 4
< ?(d+2)2 g;(d+2)2 :7(d+2)k < 1.
[
Proof of Lemma 4. We prove the lemma by induction on d. If d = —1 and

t > 0 then every element of T is not separated from the empty set. Thus
pr = 0. Now, let d > 0 and suppose the lemma is true for all ' < d. If t < d
we have that (d 4 2)/22 " > 1; thus let ¢ > d.

We can achieve a random halving of T" as follows: in the first step, halve
the set T into two equal parts 77 and T5; later, randomly halve each T;
(1 = 1,2) into two equal sets «; and ;. Let o« = a3 U g and 5 = (1 U fs.
The halving (o, ) € () is random (and uniform).

Let us define a (d — 1)-dimensional separoid on T} as follows (we will use
|| and I to denote the separations and Radon partitions on 77, respectively).

For each X € ( dﬁll) and each A C X, let

T(X,A)={zeTy:(AUux)t (X \ A}
Observe that for two different subsets A, A’ C X we have T'(X, A)NT (X, A")

= (). Furthermore, since for each element z € T5 there is a Radon partition
of the set X Uz, the sets T'(X, A), with A € 2%, are a partition of T5. Thus,
for some Ax C X we have that |T'(X, Ax)| > % = 2741 We define } as
the relation Ay I (X \ Ax), for all subsets X C T} of order d 4+ 1. Observe

that I defines a (d — 1)-dimensional Radon separoid in general position on
Ti.

Let E be the event that o | # and E; be the event that oy || £;. By
the induction hypothesis we have that Prob[E;] < (d + 1)/22" "7 =
(d+1)/22""".
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Take the halving (o, 3) in E \ Fj. Since o I 31, there exists X C T3 of
order d+ 1 such that (X Nay) 1 (X NG;). We may assume that Ay = X Na;.

We claim that T(X,Ax) Nay = (. For, suppose that there exists an
r €T (X, Ax)Nay. Since (AxUx) (X \Ax), AxUz Caand X\ Ax C 3,
we have that « T 3; this is a contradiction and the claim follows.

Now, let s = 207971 < |T(X, Ax)| and let E; = Q\ E,. In order for o | 3,
the set T'(X, Ax) has to be contained in 3. Thus the conditional probability

1S o
Prob [E N E|]

Prob [Fl}

2t—s

— Prob [E | El] S (2’5_2—18) S 2—5 _ 2_2t—d—1'
(51)

pr = Prob [E] < Prob [E4] + Prob [E \ E4]

Prob [E'\ E]
Prob [E1]

Therefore,

< Prob [Ey] + <(d+2)/2*"
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