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Abstract. In the paper we propose a new filtering algorithm for extensionally 
defined binary constraints – so called tabular constraints. The algorithm 
combines a compact representation of the constraint domain with the principles 
of AC-3.1 and AC-2001 algorithms. We concentrate on the practical issues like 
covering large real-life constraints and integration to existing constraint solvers. 
The experimental results show an interesting speed-up over the existing 
implementations of extensionally-defined constraints. 

Introduction 

Constraint propagation is intensively studied by researchers because of its importance 
for reducing the search space when solving hard combinatorial problems. Among the 
constraint propagation techniques, arc consistency (AC) is probably the most studied 
technique and many arc consistency algorithms have already been proposed. Despite 
the existence of AC algorithms with optimal worst-case time complexity, namely AC-
4 and its improvements AC-6 and AC-7, a simple AC-3 is frequently used in existing 
constraints solvers like ILOG Solver, CHIP, ECLiPSe, or SICStus Prolog as a basic 
constraint propagation schema. The reason is a good practical efficiency of AC-3 and 
an easier integration of various filtering algorithms for individual constraints 
including non-binary constraints into the AC-3 schema. 

Recently, two new versions of AC-3 algorithm, AC-3.1 [10] and AC-2001 [4], 
have been independently proposed to achieve the optimal worst-case time complexity 
without complex data structures typical for AC-4, AC-6, and AC-7. These algorithms 
are still fine grained so they need to keep additional information about individual 
values. However, this information is not communicated between the constraints so the 
proposed techniques can be more easily integrated into existing constraint solvers 
based on the AC-3 schema. 

We are not aware that the above-mentioned integration of AC-3.1 or AC-2001 to 
existing constraint solvers has already been done so our paper is probably the first 
description of such integration. Moreover, we do not cover just the implementation of 
the existing algorithm; the paper describes a new filtering algorithm for compactly 
represented constraints. In particular, we are trying to overcome the main difficulty of 
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AC-3.1 and AC-2001 which is still their memory consumption. Note also that while 
AC-3.1/AC-2001 keeps information about supports for individual values, our 
algorithm keeps the same information in the description of the constraint domain. 
Because the constraint domain can be seen as a symmetrical representation of value 
supports, we can see our algorithm as an extension of the AC-3.1 and AC-2001 
algorithms towards AC-7 [3]. 

The theoretical research, as described above, usually sees the constraint in a 
general way, that is, the constraint is an arbitrary relation between the variables. In 
practice, it means an ad-hoc representation of the constraint domains which is 
memory and time expensive. Currently, there exist two techniques how to overcome 
the above difficulties of the ad-hoc representations: the first technique converts the 
extensional representation into an intentional one, the second technique compacts the 
extensional representation. 

The paper [7] is a recent representative of the first technique. The propagation 
rules are automatically generated and expressed as indexicals [6] which has the 
advantage of good memory efficiency if the semantics of the constraint is “clear”. The 
disadvantage is a non-trivial pre-processing step which cannot be often done during 
runtime due to implementation issues. Moreover, the decomposition of the original 
constraint cannot exploit the advantages of optimal AC-3.1 and AC-2001 algorithms. 

The paper [2] represents the second technique of a compact extensional 
representation of ad-hoc constraints using a set of rectangles. The presented approach 
is efficient when the (binary) constraint domain can be decomposed into a small 
number of rectangles. However, the filtering algorithms presented in [2] are less 
efficient when only few values are pruned from domains. We further extend the work 
[2] by proposing a new filtering algorithm that propagates value deletions rather than 
computing value supports from scratch. 

To summarize our contribution, we present a new view of optimal AC-3.1 and 
AC-2001 algorithms based on a compact representation of the constraint domain. 
Thus, it is not necessary to work with individual value pairs and the filtering of 
constraint domains decomposable into a relatively small number of rectangles can be 
even more efficient. 

The paper is organized as follows. We first introduce some notions describing the 
extensionally defined constraints and propagators for these constraints. Then we 
present a compact representation of the extensionally defined constraint domain that 
is adapted from [2]. The new contribution is in Section 3 where a new filtering 
algorithm for such domains is introduced and its soundness and completeness is 
proved. Finally, we present the experimental evaluation of the proposed algorithm 
showing that the new algorithm is significantly more efficient than the former 
approach from [2]. 

Preliminaries 

We survey here the terminology introduced in [2] to describe formally the constraints 
and their consistency. Constraint is a relation restricting possible combinations of 
values for the constraint variables. Constraint domain is a set of tuples satisfying the 
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constraint. If C denotes the constraint and Xs is an ordered set of the variables 
constrained by C then C(Xs) denotes the constraint domain. For example, if C is a 
constraint X+Y=2 over non-negative integers, then C({X,Y}) = {(0,2),(1,1),2,0)} is 
its constraint domain. We say that the constraint domain has a rectangular structure if 
C(Xs) = ×X∈Xs C(Xs)↓X, where C(Xs)↓X is a projection of the constraint domain to 
the variable X. Notice that the (binary) constraint domain has a rectangular structure 
if the domain forms a rectangle with possible vertical and horizontal strips of removed 
value pairs, hence the name rectangular structure. 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 1. A constraint domain (shadow rectangles), its projection to the variable Y 
(C({X,Y})↓Y), and a reduced constraint domain 

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the 
variable X – a set of values. We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced 
domain of the constraint (Figure 1). Note, that the reduced domain consists only of 
the tuples (v1,…,vn) such that ∀i vi∈D(Xi). We say that a constraint is consistent if 
every value of any variable constrained by C is a part of some tuple satisfying the 
constraint. Actually, the constraint is consistent in respect to the current domains of 
the constrained variables if the projections of the reduced domain to these variables 
are equal to the current domains of respective variables. Thus, it is possible to make 
the constraint consistent by projecting the reduced constraint domain to the 
constrained variables: 

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y. 

The algorithms attempting to make the constraint consistent by narrowing variables’ 
domains are called propagators. The propagator is complete if it makes the constraint 
consistent, that is, all locally incompatible values are removed. The propagator is 
sound if it does not remove any value, that is, a part of a tuple satisfying the constraint 
and consisting of values from the current variables’ domains. The propagator is 
idempotent if it reaches a fix point, that is, the next application of the propagator to 
the narrowed domains does not narrow them more. 

When domain of any constraint variable is changed, the propagator is invoked by 
the constraint solver to make the constraint consistent or to check that the constraint is 
still consistent. By using this technique, derived from AC-3, it is possible to achieve a 
local consistency of the network of constraints (called generalized arc consistency). If 
the domains of the constraint variables become singleton then it is not necessary to 
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call the propagator again. However, the propagator may be deactivated even sooner 
which improves the practical time efficiency of the solvers [2]. Assume that the 
domain of X is {1,2,3} and the domain of Y is {5,6,7}. Then a sound propagator for 
the constraint X<Y deduces no domain narrowing. This is because every combination 
of values from the variables’ domains satisfies the constraints – the constraint is 
entailed. We say that the constraint is entailed if the constraint is satisfied for any 
combination of values from variables’ domains. Visibly, the constraint is entailed if 
and only if the reduced constraint domain has a rectangular structure. 

Compact Constraint Domains 

When users specify a binary constraint domain, they usually use a table of compatible 
pairs. Typically, for a value of one variable called a leading variable, they specify a 
range of compatible values of the other variable called a dependent variable. Range is 
a finite set of disjoint intervals, for example {[1,5], [8,15], [30,∞]}. Such a table can 
be formally described as a set T={(xi,dyi) | i=1,…,n}, where xi are pair-wise different 
values of the leading variable and dyi is a range of values of the dependent variable 
that are compatible with the value xi. Paper [2] proposes a compact representation of 
the table T based on the observation that the ranges dyi are often identical in real-life 
problems. Formally, the compacted set is defined as follows: 

CT = {(dxi,dyi)  | dxi = { x | (x,dyi)∈T } & dxi ≠ ∅ }. 

We call dxi the x-component of (dxi,dyi) in CT and, similarly, dyi is the y-component. 
Note that it is easy to obtain CT from T by collecting all elements of T with the 
identical y-component into a single element of CT. Figure 2 shows an example of 
such a compacted form. 

 
 
 
 
 
 
 
 
 
 
Fig. 2. Representation of the constraint domain using a set of non-overlapping areas with a 
rectangular structure 

The set CT has some interesting features that can be exploited by the filtering 
algorithm. First, each element of CT describes an area with a rectangular structure. 
Hence we call the elements of CT rectangles. Second, the projections of these 
rectangles to the leading variable are pair-wise disjoint. Thus, we can see the original 
constraint as a disjunction of entailed constraints where the domains of these 
constraints are defined by the elements of CT.  
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Filtering Algorithm 

The filtering algorithm proposed in [2] is basically a constructive disjunction of 
constraints with domains defined by the elements of CT. This algorithm, called GR 
(General Relation), computes the reduced constraint domain and its projection to both 
constrained variables. After any change of the variable domain, the algorithm does the 
above computation from scratch so it corresponds roughly to the REVISE procedure 
of AC-3. The main inefficiency behind this approach is that a lot work is done even if 
a small amount of values has been pruned. The paper [4] proposes a new approach, 
called AC-2000, based on idea of checking support just for the values that lost a 
support (a value compatible with a given value has been removed). We call this 
technique propagation of deletions. By using an additional data structure, it is 
possible to effectively check whether the value lost a support which leads to the 
worst-case time optimal algorithm called AC-2001. The same idea is independently 
presented in [10] under the name AC-3.1. 

 Based on the above observations we propose a new filtering algorithm for 
compactly represented extensional constraint domains. The algorithm is called GRA 
(General Relation Advanced). The algorithm propagates deletions by exploring only 
the values that lost some support. Instead of attaching a special data structure to each 
value, like AC-2001 and AC-3.1 do, we use the representation of the reduced 
constraint domain. Thus, in a single data structure we keep the supports for both 
constrained variables so we can exploit the symmetry of the constraint in a similar 
sense like AC-7 [3] (if a supports b then b supports a). 

The propagator is proposed in such a way that it can be easily integrated into 
existing constraint solvers, in particular we designed the algorithm for the clpfd 
library [5] of SICStus Prolog. We use a global data structure called a state [6] to pass 
information between the subsequent calls of the propagator. In particular, we keep the 
reduced constraint domain and the domains of both variables from the last call of the 
propagator in the state data structure of the propagator. 

The algorithm is formally described in Figure 3 and Figure 4 illustrates its run. 
Before the propagator is invoked for the first time, the projections of the constraint 
domain CT to both variables are computed in the procedure INIT. These projections 
are assumed to be the initial domains of the constrained variables that are stored in the 
propagator’s state. Then the propagator, realised in the function FILTER, is called 
explicitly to propagate the actual domains of the variables. We also expect the 
propagator to be called any time, when domain of any involved variable is changed. 
First, the propagator computes which values have been removed from the domain of 
the dependent variable – a set DiffY (line 2). Then, it checks which rectangles in CT 
are affected by this deletion (3-9). Actually, the values y∈DiffY are removed from the 
y-components of the rectangles in CT (6). If the y-component of any rectangle 
becomes empty by this removal (7) then the x-component is removed from the 
domain of the leading variable X via DelX (10) and the rectangle is no longer 
assumed to be an element of CT. This can be done because the x-components of the 
rectangles are disjoint so the values in the x-component of the removed rectangle lost 
their only support. A similar process is done for the leading variable (11-18). 
However, because the y-components of the rectangles are not necessarily disjoint and 
the values collected in DelY may still have another support in X, we cannot remove 
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the values in DelY immediately. This additional support is looked for in the last loop 
(19-21). The values for which the support is not found can be safely deleted (22). 
Notice also that the propagator computes the reduced domain of the constraint so this 
domain can be used in the subsequent calls. Actually, the structure CT keeps the 
updated information about the supports. 

Last but not least, the propagator is able to check the constraint entailment. If there 
is exactly one rectangle in CT or the domain of Y is singleton (23) then the constraint 
is entailed. However, this entailment detector is not complete because CT may consist 
of more rectangles with identical y-components (see Figure 4). It is possible to extend 
the propagator to detect entailment completely (all rectangles in CT have identical y-
components) but our experiments showed that it does not improve time efficiency. 

The above filtering algorithm can be further optimized during implementation. For 
example, the loop at lines 3-9 is processed only when DiffY≠∅. Similarly, the loop at 
lines 12-18 is processed only when DiffX≠∅. Finally, the loop at lines 19-21 can be 
safely exited when DelY becomes empty. 

 
 

Theorem 1. The proposed filtering algorithm is sound, complete, and idempotent. 
 
Proof: The proof is based on the observation that the propagator keeps the reduced 
constrained domain. If the propagator removes a value a from dom(X) then this value 
has no support in Y because the only rectangle containing pairs (a,b) for some b has 
been removed (7). Note that there is at most one such rectangle in CT for the value a 
because the x-components of the rectangles are disjoint. Similarly if b is deleted from 
dom(Y) then it lost a support in one rectangle that was deleted from the reduced 
constraint domain (16) and no support in another rectangle has been found (19-21). 
Hence, the propagator is sound. 

The INIT procedure computes the projection of CT to both variables so at the 
beginning only locally consistent values are in the domains. Assume (for 
contradiction) that after finishing the propagator, there is an inconsistent value a in 
dom(X). Thus, there is no support of a in Y so there is no rectangle in CT containing 
a pair (a,b) for some b. Because originally the value a was locally consistent, the 
rectangle containing (a,b) must have been removed from CT during filtering. 
However, if the rectangle was removed then all values of its x-component have been 
removed as well (7). Similarly, if locally inconsistent value b remains in dom(Y) then 
there is no rectangle containing a pair (a,b) for some a in CT. The original rectangle 
containing (a,b) has been removed (16) and because there is no another rectangle in 
CT containing b in its y-coordinate (19-21), b has been removed as well (22). Hence, 
the propagator is complete. 

If the repeated call to the algorithm narrows the domains then the newly removed 
values must be locally inconsistent due to soundness of the propagator. However, 
because the propagator is complete, all such values have already been removed. 
Hence the repeated call cannot narrow the domains and the propagator is idempotent.  
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procedure INIT(X,Y, CT) 
 DomX ← ∅ 
 DomY ← ∅ 
 for each (DX,DY) in CT do // union the projections of all rectangles to X and Y 
  DomX ← DomX ∪ DX 
  DomY ← DomY ∪ DY 
 end for 
 dom(X) ← dom(X) ∩ DomX // dom(X) is the actual domain of the variable X 
 dom(Y) ← dom(Y) ∩ DomY // dom(Y) is the actual domain of the variable Y 
 call FILTER(X, Y, (DomX, DomY, CT)) 
end INIT 
 
procedure FILTER(X,Y, State) 
1 (OldDomX, OldDomY, CT) ← State 
2 DiffY ← OldDomY – dom(Y) // values deleted from Y since the last call to FILTER 

3 DelX ← ∅ 
4 TmpCT ← ∅ 
5 for each (DX,DY) in CT do 
6  RY ← DY – DiffY 
7  if RY==∅ then DelX ← DelX ∪ DX // values of X that lost support in Y 
8  else TmpCT ← TmpCT ∪ {(DX,RY)} 
9 end for 
10 NewDomX ← dom(X) – DelX 
11 DiffX ← OldDomX – dom(X) – DelX // values deleted from X 
12 DelY ← ∅ 
13 NewCT ← ∅ 
14 for each (DX,DY) in TmpCT do 
15  RX ← DX – DiffX 
16  if RX==∅ then DelY ← DelY ∪ DY // values of Y that lost support in X 
17  else NewCT ← NewCT ∪ {(RX,DY)} 
18 end for 
19 for each (DX,DY) in NewCT do  // try to find another support for DelY 
20  DelY ← DelY – DY 
21 end for 
22 NewDomY ← dom(Y) – DelY 
23 Entailed ← (|NewCT|==1 ∨ |NewDomY|==1) 
24 State ← (NewDomX, NewDomY, NewCT) 
25 dom(X) ← NewDomX 
26 dom(Y) ← NewDomY 
end FILTER 

Fig. 3.  Filtering algorithm GRA for propagating deletions 

 
 dom(X) dom(Y) CT 
after INIT [2,9] [2,6] { ({2,8,9},{2,5,6}), ({3,4,7},[2,6]), ({5,6},{3,4})} 
deletion [2,6] [5,6]  
line 10 [2,4] [5,6] {({2,8,9},{5,6}), ({3,4,7},{5,6})} 
line 22 [2,4] [5,6] {({2},{5,6}), ({3,4},{5,6})} 

Fig. 4.  Example of propagation for the constraint from Figure 2. Initial domains for X and Y 
are built from the CT (after INIT) and then some values are deleted from X and Y which 
evokes the propagator (deletion). 
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Experiments And Discussion 

We compare our algorithm with the original GR propagator with entailment detector 
from [2] and with the built-in relation and case constraints in SICStus Prolog. 
The GR propagator and our new filtering algorithm GRA are implemented in Prolog 
and they both use an identical representation of the constraint domain – the set CT. 
The relation constraint is implemented by means of a more general case 
constraint which is implemented in C. We use the original table T to describe the 
domain for the relation constraint and the table CT to describe the domain for the 
case constraint. Note that both these constraints achieve the same so called domain 
consistency as our filtering algorithm and the GR propagator. Unfortunately, the 
filtering algorithms behind the case and relation constraints are not published so 
we can do just an empirical comparison. The experiments run in SICStus Prolog 
3.11.2 under Windows XP Professional on 1.7 GHz Mobile Pentium-M 4 with 768 
MB RAM. The runtime is measured in milliseconds via the statistics predicate 
with the walltime parameter [9]. 

Random problems 

Random Binary Constraint Satisfaction Problems represent probably the most 
frequently used benchmark set in the area of constraint satisfaction. Each problem 
instance is characterized by a tuple 〈n,m,p1,p2〉, where n is a number of variables, m is 
a uniform domain size, p1 is a measure of the density of the constraint graph, and p2 is 
a measure of the tightness of the constraints. We use a so called model B [8] of 
Random CSP where p1n(n-1)/2 pairs of variables are randomly and uniformly selected 
and binary constraints are posted between them. For each constraint, p1m2 randomly 
and uniformly selected pairs of values are picked as incompatible. We measured the 
time to make the problem consistent or to detect inconsistency. We used a set of 
RCSPs 〈10, 100, 36/45, p2〉 with a variable tightness. Fifty problems for each instance 
were generated and mean values of runtime are presented in Figure 5. 

The area with the tightness 0 – 0.94 represents under-constrained problems. The 
propagator for each constraint is called only once there so the runtime corresponds 
roughly to initialization of internal data structures for the propagators. The built-in 
relation and case constraints require much more time for initialization than the 
GR and GRA propagators because they are checking extensively the input. The peak 
on right shows the narrow phase transition area where the hard problems settle. The 
propagators are invoked repeatedly there (about 700 calls for GRA in the peak) so the 
incremental behavior of the propagators is tested there. The GR propagator loses in 
this area because it does a lot of non-necessary work during propagation (like AC-3). 
The runtime for GRA increases as well but even in the peak, it is still comparable 
(usually faster) to the built-in constraints. This is a slightly surprising result due to the 
fact that the GRA propagator is implemented in Prolog while the built-in constraints 
use optimized C code. Moreover, due to the random nature of the problem, the 
constraint domains cannot be compacted so the main advantage of GR and GRA 
propagators, namely using the compacted tables, is not reflected there. 
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Fig. 5.  The runtime (in milliseconds) as a function of tightness in RCSP 〈10, 100, 36/45, p2〉: 

-relation, -case, ∆-GR, -GRA. 

Structured problems 

As mentioned in the previous section, Random CSP is probably not an appropriate 
test suite to evaluate algorithms where the structure of the constraint domain plays an 
important role (we included these experiments for the sake of completeness). To test 
the algorithms on structured domains we adapted the set of abstract benchmarks 
proposed in [2]. The basic idea of these benchmarks is to apply domain pruning into a 
single randomly generated “tabular” constraint until the domain of one of the 
constrained variables becomes singleton. The variables alternate in pruning to 
suppress the leading or dependent role of the variable. 

The constraint domain is generated as follows. For each value of the leading 
variable an interval of compatible values of the dependent variables is generated (a so 
called compatible interval). The length of this interval is identical for all the values 
and it is one of the parameters of the benchmark. Thus, only the position of the 
compatible interval is introduced randomly. As Figure 6 shows, the size of the 
representation depends nicely on the length of the compatible interval. The other 
parameter of the benchmark is the size of the domain of the variables. We use the 
domain size 1000 because we study the propagators for large domains. A hundred 
problems for different lengths of the compatible interval were generated and mean 
values are presented below. 
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Fig. 6.  Size of the constraint domain representation as a function of the length of the 
compatible interval used by the problem generator: -relation, -case, GR, GRA. 

The experiments in [2] also showed that the efficiency of the propagator depends on 
the style of domain pruning and on the number of values deleted in a single pruning 
step. We present the comparison for two pruning styles, namely domain splitting and 
arbitrary deletions where the number of deleted values is chosen randomly. 

Domain splitting 
The domain splitting propagation style prunes the variable domain by splitting it into 
two parts and pruning one of them. This pruning style is used by some search 
procedures to decompose the search space. In scheduling, a similar approach is called 
shaving (a part of the domain is deleted at the domain borders). In our experiments, 
we randomly generate a cutting point in between the current lower and upper bound 
of the domain and then we randomly prune the part above or below the cutting point. 
Figure 7 shows the results. 

The GRA propagator is again the winner followed by the GR propagator. The 
reason is that the internal data structures for both these propagators exploit the 
specific structure of the constraint domain. Moreover, domain splitting is very 
“friendly” to the rectangular representation of the constraint domain. Surprisingly, the 
relation and case constraints swap their positions in this test (in comparison to 
RCSP). The reason for the surprise is that the case constraint uses a compact 
description of the input constraint domain similar to GR/GRA propagators. 
Nevertheless, the experiment showed that a more compact representation of the 
constraint domain pays off. Note finally, that the “bad” results for the built-in 
constraints are due to the time spent in the initialization phase (longer for case than 
for relation which explains the worse overall time for case).  

The GRA propagator was proposed to remove non-necessary work done by the 
GR propagator when a small number of values is deleted so we also performed 
experiments where the size of the shaved area is given relatively to the size of the 
actual domain (in particular, 5%, 10%, 20%, 40%). The GR propagator was the worst 
among the tested algorithms for 5%, 10%, 20%, and it became comparable to the 
relation constraint for 40%. The case was always slower than relation due 
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to longer initialization phase as mentioned above. The GRA propagator was 
comparable to the built-in constraints for 5% and 10% and it became the fastest since 
20%. This confirms our expectation that GRA behaves better than GR when a small 
number of values is pruned. However, it also shows that GRA behaves well even 
when large portion of values is removed. 
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Fig. 7.  The runtime (in milliseconds) as a function of the interval length for domain splitting: 

-relation, -case, ∆-GR, -GRA. 

Arbitrary deletions 
Probably the most typical pruning style in (random) problems is removing the values 
from all over the domain. To model such a situation, we randomly select a random 
number of values from the variable domain and we prune all these values together. 
Note also that random deletions disrupt the rectangular structure because deleting a 
value may split some rectangles in the reduced constraint domain. Consequently, the 
proposed compact representation of the constraint domain becomes less compact. 
Figure 8 shows the comparison of the propagators. 

The GR propagator loses due to above mentioned feature of random deletions 
which is reflected in the presented results. The hypothesis mentioned in [2] is that the 
GR propagator is not designed for pruning individual values but for pruning large 
intervals of values. One of the motivations of our research was to confirm this 
hypothesis by redesigning the GR propagator to handle better deletions of individual 
values. The results confirmed this hypothesis – the GRA propagator is faster than the 
GR propagator and it is also faster than the built-in constraints. 

Again, we performed the experiments with a controlled number of randomly 
deleted values (a given percent of variable domain is pruned, in particular 5%, 10%, 
20%, 40%). In all these experiments the order of the propagators (from the fastest) 
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was GRA, relation, case, and GR. The GR and GRA behaved better when more 
values were pruned. In particular, the GR propagator was much slower for 5%, 10%, 
and 20% than the other propagators but it became comparable to them for 40%. The 
GR beat the case constraint in the overall result (for the compatible interval bellow 
500) because a large number of values might be pruned together in some pruning 
steps. This experiment also showed that taking care about the deleted values rather 
than looking for supports of the values in domains pays-off even if large portions of 
the domain are pruned. 
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Fig. 8.  The runtime (in milliseconds) as a function of the interval length for arbitrary deletions: 

-relation, -case, ∆-GR, -GRA. 

Real-life problems 

The original reason for developing the GR propagator was lack of support for infinite 
domains in the relation constraint in the earlier versions of SICStus Prolog. Even 
if infinite domains are supported by the relation constraint now, there is still one 
more reason for using the GR-like propagators – their customization for a specific 
structure of the table describing the constraint domain. We have developed the GR 
propagator to be used in the scheduling system Visopt ShopFloor [1] so we will now 
present the empirical comparison of the studied propagators using several real-life 
scheduling problems solved by the Visopt ShopFloor system. The tabular constrains 
are used there primarily to specify the user-defined relations between the activity type 
and its parameters like duration, time windows, next allowed activities etc. 

First, we will present the numerical characteristic of five real-life problems used as 
a benchmark set [2]. These problems vary in the size and the structure of the factories 
– the actual data are confidential so it is not possible to publish them. Table 1 
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describes the size of the problems as a number of different constraint domains 
(tables), a number of tabular constraints using these domains, and an average size of 
the constraint domain representation. The size of the representation is measured as an 
average number of rectangles per table for GR/GRA propagators and as an average 
length of the lists describing the domains in the relation and case constraints. 

Table 1. The size of the test problems and constraint representations. 

constraints representation size per table problem 
no. 

tables 
total per table GR,GRA relation case 

1 401 16977 42 1.13 20.76 2.13 
2 49 1921 39 3.08 39.57 4.08 
3 158 5734 36 2.32 44.82 3.32 
4 244 82804 339 1.20 3.60 2.20 
5 112 7624 68 1.04 3.65 2.04 

 
Notice two main features of the test problems: a “large” number of constraints per 
table (constraint domain) and a very compact representation for GR/GRA 
propagators. Having more constraints with the identical domain has the advantage of 
running the compacting algorithm just once per table so the initial compact 
representation can be re-used. Very compact representation implies that the constraint 
domain is close to the rectangular structure (problems 1, 4, and 5) so the constraints 
can be entailed earlier after a small number of propagation steps. 

We summarized the number of how many times the GR and GRA propagators 
were called in Table 2 (it is not possible to obtain this information for the built-in 
constraints case and relation). Notice that the average number of calls per 
constraint is very small. This confirms our expectation that the constraints are entailed 
soon. In the experiments 2 and 3 the number of calls to the GRA propagator is slightly 
larger than for GR because the entailment detector is not complete in GRA. However, 
complete entailment detector adds overhead leading to worse runtime so we prefer to 
use the simple but incomplete entailment detector for the GRA propagator. 

Table 2. The number of calls to the propagators. 

GR GRA problem 
no. total per constraint total per constraint 
1 18 515 1.09 18 515 1.09 
2 3 371 1.75 3 406 1.77 
3 16 593 2.89 19 282 3.36 
4 82 830 1.00 82 830 1.00 
5 8 014 1.05 8 014 1.05 

 
Finally, Table 3 compares the runtimes of the algorithms. The average time of five 
runs for each problem is indicated in the table. Like in [2], we compare a total runtime 
to solve the problem including propagation in all constraints as well as search. Thus, 
the actual time spent by executing the code of propagators is just a fraction of the 
presented time. Still, only the compared propagators are responsible for the difference 
in the runtime so the relative time difference between the propagators is higher than it 
might seem from Table 3. We decided to present the results in this form because it 
shows better what speed-up/slow-down one may expect in a complex system. 
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Table 3. The running time (in seconds) of the propagators. The numbers in brackets show time 
relative to the GR propagator (in percent). 

problem 
no. 

GR GRA relation case 

1 68.398 70.042 (102%) 75.485 (110%) 73.273 (107%) 
2 3.511 3.413 (97%) 4.036 (115%) 3.919 (112%) 
3 41.395 39.787 (96%) - 43,308 (105%) 
4 92.118 93.192 (101%) 101.386 (110%) 99,705 (108%) 
5 19.644 19.560 (99%) 22.573 (115%) 22,220 (113%) 

 
The experiments showed that both GR and GRA propagators are faster than the built-
in case and relation constraints in all the problems. Moreover, the problem 3 
cannot be solved using the relation constraint due to exceeding the memory limit 
of SICStus Prolog. The experiments with random problems raised very high 
expectations from using the new GRA propagator. The GRA propagator was slightly 
faster than GR in three real-life tests but slower in two other tests. The relative time 
difference between the GR and GRA comparators is quite small so there is no clear 
winner. 

Summary of results 

The presented results show that the newly proposed GRA propagator is significantly 
better than the GR propagator in all the random problems. As expected, the speed-up 
is higher when a smaller number of values is deleted in a single step but there is a 
significant speed-up even in an average case. Unfortunately, in the tested real-life 
problems, neither GRA nor GR outperformed clearly the other. The new filtering 
algorithm outperformed the built-in relation and case constraints in all the 
experiments. This is a quite good result if we take in account that the built-in 
constraints are implemented in a low-level C while our filtering algorithm is 
implemented in Prolog with no low-level optimisation. However, note that the bad 
performance of the built-in constraints is due to long initialization, the incremental 
calls to these constraints were usually faster than the calls to GR and GRA. 

Conclusions 

The paper presented a new filtering algorithm for compactly represented 
extensionally defined binary constraints. The algorithm is based on propagating 
deletions which makes the incremental calls to the propagator more efficient than the 
existing GR propagator. Also the compact representation of the constraint domain 
makes the algorithm useful for very large domains, which differentiates the proposed 
approach from existing AC-3.1 and AC-2001 algorithms. Moreover, the algorithm 
can be naturally extended to n-ary constraints. Last but not least, rather than 
implementing the algorithm as a separate system, we developed the algorithm in such 
a way that it can be easily integrated into existing constraint solvers. 
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