
 1

Propagating Deletions in Tabular Constraints

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Institute for Theoretical Computer Science

Malostranské nám. 2/25, Prague, Czech Republic
bartak@ktiml.mff.cuni.cz

Abstract. In the paper we propose a new filtering algorithm for extensionally
defined binary constraints – so called tabular constraints. The algorithm
combines a compact representation of the constraint domain with the principles
of AC-3.1 and AC-2001 algorithms. We concentrate on the practical issues like
covering large real-life constraints and integration to existing constraint solvers.
The experimental results show an interesting speed-up over the existing
implementations of extensionally-defined constraints.

Introduction

Constraint propagation is intensively studied by researchers because of its importance
for reducing the search space when solving hard combinatorial problems. Among the
constraint propagation techniques, arc consistency (AC) is probably the most studied
technique and many arc consistency algorithms have already been proposed. Despite
the existence of AC algorithms with optimal worst-case time complexity, namely AC-
4 and its improvements AC-6 and AC-7, a simple AC-3 is frequently used in existing
constraints solvers like ILOG Solver, CHIP, ECLiPSe, or SICStus Prolog as a basic
constraint propagation schema. The reason is a good practical efficiency of AC-3 and
an easier integration of various filtering algorithms for individual constraints
including non-binary constraints into the AC-3 schema.

Recently, two new versions of AC-3 algorithm, AC-3.1 [10] and AC-2001 [4],
have been independently proposed to achieve the optimal worst-case time complexity
without complex data structures typical for AC-4, AC-6, and AC-7. These algorithms
are still fine grained so they need to keep additional information about individual
values. However, this information is not communicated between the constraints so the
proposed techniques can be more easily integrated into existing constraint solvers
based on the AC-3 schema.

We are not aware that the above-mentioned integration of AC-3.1 or AC-2001 to
existing constraint solvers has already been done so our paper is probably the first
description of such integration. Moreover, we do not cover just the implementation of
the existing algorithm; the paper describes a new filtering algorithm for compactly
represented constraints. In particular, we are trying to overcome the main difficulty of

* Supported by the Czech Science Foundation under the contract No. 201/04/1102.

 2

AC-3.1 and AC-2001 which is still their memory consumption. Note also that while
AC-3.1/AC-2001 keeps information about supports for individual values, our
algorithm keeps the same information in the description of the constraint domain.
Because the constraint domain can be seen as a symmetrical representation of value
supports, we can see our algorithm as an extension of the AC-3.1 and AC-2001
algorithms towards AC-7 [3].

The theoretical research, as described above, usually sees the constraint in a
general way, that is, the constraint is an arbitrary relation between the variables. In
practice, it means an ad-hoc representation of the constraint domains which is
memory and time expensive. Currently, there exist two techniques how to overcome
the above difficulties of the ad-hoc representations: the first technique converts the
extensional representation into an intentional one, the second technique compacts the
extensional representation.

The paper [7] is a recent representative of the first technique. The propagation
rules are automatically generated and expressed as indexicals [6] which has the
advantage of good memory efficiency if the semantics of the constraint is “clear”. The
disadvantage is a non-trivial pre-processing step which cannot be often done during
runtime due to implementation issues. Moreover, the decomposition of the original
constraint cannot exploit the advantages of optimal AC-3.1 and AC-2001 algorithms.

The paper [2] represents the second technique of a compact extensional
representation of ad-hoc constraints using a set of rectangles. The presented approach
is efficient when the (binary) constraint domain can be decomposed into a small
number of rectangles. However, the filtering algorithms presented in [2] are less
efficient when only few values are pruned from domains. We further extend the work
[2] by proposing a new filtering algorithm that propagates value deletions rather than
computing value supports from scratch.

To summarize our contribution, we present a new view of optimal AC-3.1 and
AC-2001 algorithms based on a compact representation of the constraint domain.
Thus, it is not necessary to work with individual value pairs and the filtering of
constraint domains decomposable into a relatively small number of rectangles can be
even more efficient.

The paper is organized as follows. We first introduce some notions describing the
extensionally defined constraints and propagators for these constraints. Then we
present a compact representation of the extensionally defined constraint domain that
is adapted from [2]. The new contribution is in Section 3 where a new filtering
algorithm for such domains is introduced and its soundness and completeness is
proved. Finally, we present the experimental evaluation of the proposed algorithm
showing that the new algorithm is significantly more efficient than the former
approach from [2].

Preliminaries

We survey here the terminology introduced in [2] to describe formally the constraints
and their consistency. Constraint is a relation restricting possible combinations of
values for the constraint variables. Constraint domain is a set of tuples satisfying the

 3

constraint. If C denotes the constraint and Xs is an ordered set of the variables
constrained by C then C(Xs) denotes the constraint domain. For example, if C is a
constraint X+Y=2 over non-negative integers, then C({X,Y}) = {(0,2),(1,1),2,0)} is
its constraint domain. We say that the constraint domain has a rectangular structure if
C(Xs) = ×X∈Xs C(Xs)↓X, where C(Xs)↓X is a projection of the constraint domain to
the variable X. Notice that the (binary) constraint domain has a rectangular structure
if the domain forms a rectangle with possible vertical and horizontal strips of removed
value pairs, hence the name rectangular structure.

Fig. 1. A constraint domain (shadow rectangles), its projection to the variable Y
(C({X,Y})↓Y), and a reduced constraint domain

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the
variable X – a set of values. We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced
domain of the constraint (Figure 1). Note, that the reduced domain consists only of
the tuples (v1,…,vn) such that ∀i vi∈D(Xi). We say that a constraint is consistent if
every value of any variable constrained by C is a part of some tuple satisfying the
constraint. Actually, the constraint is consistent in respect to the current domains of
the constrained variables if the projections of the reduced domain to these variables
are equal to the current domains of respective variables. Thus, it is possible to make
the constraint consistent by projecting the reduced constraint domain to the
constrained variables:

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y.

The algorithms attempting to make the constraint consistent by narrowing variables’
domains are called propagators. The propagator is complete if it makes the constraint
consistent, that is, all locally incompatible values are removed. The propagator is
sound if it does not remove any value, that is, a part of a tuple satisfying the constraint
and consisting of values from the current variables’ domains. The propagator is
idempotent if it reaches a fix point, that is, the next application of the propagator to
the narrowed domains does not narrow them more.

When domain of any constraint variable is changed, the propagator is invoked by
the constraint solver to make the constraint consistent or to check that the constraint is
still consistent. By using this technique, derived from AC-3, it is possible to achieve a
local consistency of the network of constraints (called generalized arc consistency). If
the domains of the constraint variables become singleton then it is not necessary to

C
(X

,Y
)↓

Y

X

Y

D(Y)

D(X)

Reduced
constraint domain

 4

call the propagator again. However, the propagator may be deactivated even sooner
which improves the practical time efficiency of the solvers [2]. Assume that the
domain of X is {1,2,3} and the domain of Y is {5,6,7}. Then a sound propagator for
the constraint X<Y deduces no domain narrowing. This is because every combination
of values from the variables’ domains satisfies the constraints – the constraint is
entailed. We say that the constraint is entailed if the constraint is satisfied for any
combination of values from variables’ domains. Visibly, the constraint is entailed if
and only if the reduced constraint domain has a rectangular structure.

Compact Constraint Domains

When users specify a binary constraint domain, they usually use a table of compatible
pairs. Typically, for a value of one variable called a leading variable, they specify a
range of compatible values of the other variable called a dependent variable. Range is
a finite set of disjoint intervals, for example {[1,5], [8,15], [30,∞]}. Such a table can
be formally described as a set T={(xi,dyi) | i=1,…,n}, where xi are pair-wise different
values of the leading variable and dyi is a range of values of the dependent variable
that are compatible with the value xi. Paper [2] proposes a compact representation of
the table T based on the observation that the ranges dyi are often identical in real-life
problems. Formally, the compacted set is defined as follows:

CT = {(dxi,dyi) | dxi = { x | (x,dyi)∈T } & dxi ≠ ∅ }.

We call dxi the x-component of (dxi,dyi) in CT and, similarly, dyi is the y-component.
Note that it is easy to obtain CT from T by collecting all elements of T with the
identical y-component into a single element of CT. Figure 2 shows an example of
such a compacted form.

Fig. 2. Representation of the constraint domain using a set of non-overlapping areas with a
rectangular structure

The set CT has some interesting features that can be exploited by the filtering
algorithm. First, each element of CT describes an area with a rectangular structure.
Hence we call the elements of CT rectangles. Second, the projections of these
rectangles to the leading variable are pair-wise disjoint. Thus, we can see the original
constraint as a disjunction of entailed constraints where the domains of these
constraints are defined by the elements of CT.

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 1

2 1

3

2

 5

Filtering Algorithm

The filtering algorithm proposed in [2] is basically a constructive disjunction of
constraints with domains defined by the elements of CT. This algorithm, called GR
(General Relation), computes the reduced constraint domain and its projection to both
constrained variables. After any change of the variable domain, the algorithm does the
above computation from scratch so it corresponds roughly to the REVISE procedure
of AC-3. The main inefficiency behind this approach is that a lot work is done even if
a small amount of values has been pruned. The paper [4] proposes a new approach,
called AC-2000, based on idea of checking support just for the values that lost a
support (a value compatible with a given value has been removed). We call this
technique propagation of deletions. By using an additional data structure, it is
possible to effectively check whether the value lost a support which leads to the
worst-case time optimal algorithm called AC-2001. The same idea is independently
presented in [10] under the name AC-3.1.

 Based on the above observations we propose a new filtering algorithm for
compactly represented extensional constraint domains. The algorithm is called GRA
(General Relation Advanced). The algorithm propagates deletions by exploring only
the values that lost some support. Instead of attaching a special data structure to each
value, like AC-2001 and AC-3.1 do, we use the representation of the reduced
constraint domain. Thus, in a single data structure we keep the supports for both
constrained variables so we can exploit the symmetry of the constraint in a similar
sense like AC-7 [3] (if a supports b then b supports a).

The propagator is proposed in such a way that it can be easily integrated into
existing constraint solvers, in particular we designed the algorithm for the clpfd
library [5] of SICStus Prolog. We use a global data structure called a state [6] to pass
information between the subsequent calls of the propagator. In particular, we keep the
reduced constraint domain and the domains of both variables from the last call of the
propagator in the state data structure of the propagator.

The algorithm is formally described in Figure 3 and Figure 4 illustrates its run.
Before the propagator is invoked for the first time, the projections of the constraint
domain CT to both variables are computed in the procedure INIT. These projections
are assumed to be the initial domains of the constrained variables that are stored in the
propagator’s state. Then the propagator, realised in the function FILTER, is called
explicitly to propagate the actual domains of the variables. We also expect the
propagator to be called any time, when domain of any involved variable is changed.
First, the propagator computes which values have been removed from the domain of
the dependent variable – a set DiffY (line 2). Then, it checks which rectangles in CT
are affected by this deletion (3-9). Actually, the values y∈DiffY are removed from the
y-components of the rectangles in CT (6). If the y-component of any rectangle
becomes empty by this removal (7) then the x-component is removed from the
domain of the leading variable X via DelX (10) and the rectangle is no longer
assumed to be an element of CT. This can be done because the x-components of the
rectangles are disjoint so the values in the x-component of the removed rectangle lost
their only support. A similar process is done for the leading variable (11-18).
However, because the y-components of the rectangles are not necessarily disjoint and
the values collected in DelY may still have another support in X, we cannot remove

 6

the values in DelY immediately. This additional support is looked for in the last loop
(19-21). The values for which the support is not found can be safely deleted (22).
Notice also that the propagator computes the reduced domain of the constraint so this
domain can be used in the subsequent calls. Actually, the structure CT keeps the
updated information about the supports.

Last but not least, the propagator is able to check the constraint entailment. If there
is exactly one rectangle in CT or the domain of Y is singleton (23) then the constraint
is entailed. However, this entailment detector is not complete because CT may consist
of more rectangles with identical y-components (see Figure 4). It is possible to extend
the propagator to detect entailment completely (all rectangles in CT have identical y-
components) but our experiments showed that it does not improve time efficiency.

The above filtering algorithm can be further optimized during implementation. For
example, the loop at lines 3-9 is processed only when DiffY≠∅. Similarly, the loop at
lines 12-18 is processed only when DiffX≠∅. Finally, the loop at lines 19-21 can be
safely exited when DelY becomes empty.

Theorem 1. The proposed filtering algorithm is sound, complete, and idempotent.

Proof: The proof is based on the observation that the propagator keeps the reduced
constrained domain. If the propagator removes a value a from dom(X) then this value
has no support in Y because the only rectangle containing pairs (a,b) for some b has
been removed (7). Note that there is at most one such rectangle in CT for the value a
because the x-components of the rectangles are disjoint. Similarly if b is deleted from
dom(Y) then it lost a support in one rectangle that was deleted from the reduced
constraint domain (16) and no support in another rectangle has been found (19-21).
Hence, the propagator is sound.

The INIT procedure computes the projection of CT to both variables so at the
beginning only locally consistent values are in the domains. Assume (for
contradiction) that after finishing the propagator, there is an inconsistent value a in
dom(X). Thus, there is no support of a in Y so there is no rectangle in CT containing
a pair (a,b) for some b. Because originally the value a was locally consistent, the
rectangle containing (a,b) must have been removed from CT during filtering.
However, if the rectangle was removed then all values of its x-component have been
removed as well (7). Similarly, if locally inconsistent value b remains in dom(Y) then
there is no rectangle containing a pair (a,b) for some a in CT. The original rectangle
containing (a,b) has been removed (16) and because there is no another rectangle in
CT containing b in its y-coordinate (19-21), b has been removed as well (22). Hence,
the propagator is complete.

If the repeated call to the algorithm narrows the domains then the newly removed
values must be locally inconsistent due to soundness of the propagator. However,
because the propagator is complete, all such values have already been removed.
Hence the repeated call cannot narrow the domains and the propagator is idempotent.

 7

procedure INIT(X,Y, CT)
 DomX ← ∅
 DomY ← ∅
 for each (DX,DY) in CT do // union the projections of all rectangles to X and Y
 DomX ← DomX ∪ DX
 DomY ← DomY ∪ DY
 end for
 dom(X) ← dom(X) ∩ DomX // dom(X) is the actual domain of the variable X
 dom(Y) ← dom(Y) ∩ DomY // dom(Y) is the actual domain of the variable Y
 call FILTER(X, Y, (DomX, DomY, CT))
end INIT

procedure FILTER(X,Y, State)
1 (OldDomX, OldDomY, CT) ← State
2 DiffY ← OldDomY – dom(Y) // values deleted from Y since the last call to FILTER

3 DelX ← ∅
4 TmpCT ← ∅
5 for each (DX,DY) in CT do
6 RY ← DY – DiffY
7 if RY==∅ then DelX ← DelX ∪ DX // values of X that lost support in Y
8 else TmpCT ← TmpCT ∪ {(DX,RY)}
9 end for
10 NewDomX ← dom(X) – DelX
11 DiffX ← OldDomX – dom(X) – DelX // values deleted from X
12 DelY ← ∅
13 NewCT ← ∅
14 for each (DX,DY) in TmpCT do
15 RX ← DX – DiffX
16 if RX==∅ then DelY ← DelY ∪ DY // values of Y that lost support in X
17 else NewCT ← NewCT ∪ {(RX,DY)}
18 end for
19 for each (DX,DY) in NewCT do // try to find another support for DelY
20 DelY ← DelY – DY
21 end for
22 NewDomY ← dom(Y) – DelY
23 Entailed ← (|NewCT|==1 ∨ |NewDomY|==1)
24 State ← (NewDomX, NewDomY, NewCT)
25 dom(X) ← NewDomX
26 dom(Y) ← NewDomY
end FILTER

Fig. 3. Filtering algorithm GRA for propagating deletions

 dom(X) dom(Y) CT
after INIT [2,9] [2,6] { ({2,8,9},{2,5,6}), ({3,4,7},[2,6]), ({5,6},{3,4})}
deletion [2,6] [5,6]
line 10 [2,4] [5,6] {({2,8,9},{5,6}), ({3,4,7},{5,6})}
line 22 [2,4] [5,6] {({2},{5,6}), ({3,4},{5,6})}

Fig. 4. Example of propagation for the constraint from Figure 2. Initial domains for X and Y
are built from the CT (after INIT) and then some values are deleted from X and Y which
evokes the propagator (deletion).

 8

Experiments And Discussion

We compare our algorithm with the original GR propagator with entailment detector
from [2] and with the built-in relation and case constraints in SICStus Prolog.
The GR propagator and our new filtering algorithm GRA are implemented in Prolog
and they both use an identical representation of the constraint domain – the set CT.
The relation constraint is implemented by means of a more general case
constraint which is implemented in C. We use the original table T to describe the
domain for the relation constraint and the table CT to describe the domain for the
case constraint. Note that both these constraints achieve the same so called domain
consistency as our filtering algorithm and the GR propagator. Unfortunately, the
filtering algorithms behind the case and relation constraints are not published so
we can do just an empirical comparison. The experiments run in SICStus Prolog
3.11.2 under Windows XP Professional on 1.7 GHz Mobile Pentium-M 4 with 768
MB RAM. The runtime is measured in milliseconds via the statistics predicate
with the walltime parameter [9].

Random problems

Random Binary Constraint Satisfaction Problems represent probably the most
frequently used benchmark set in the area of constraint satisfaction. Each problem
instance is characterized by a tuple 〈n,m,p1,p2〉, where n is a number of variables, m is
a uniform domain size, p1 is a measure of the density of the constraint graph, and p2 is
a measure of the tightness of the constraints. We use a so called model B [8] of
Random CSP where p1n(n-1)/2 pairs of variables are randomly and uniformly selected
and binary constraints are posted between them. For each constraint, p1m2 randomly
and uniformly selected pairs of values are picked as incompatible. We measured the
time to make the problem consistent or to detect inconsistency. We used a set of
RCSPs 〈10, 100, 36/45, p2〉 with a variable tightness. Fifty problems for each instance
were generated and mean values of runtime are presented in Figure 5.

The area with the tightness 0 – 0.94 represents under-constrained problems. The
propagator for each constraint is called only once there so the runtime corresponds
roughly to initialization of internal data structures for the propagators. The built-in
relation and case constraints require much more time for initialization than the
GR and GRA propagators because they are checking extensively the input. The peak
on right shows the narrow phase transition area where the hard problems settle. The
propagators are invoked repeatedly there (about 700 calls for GRA in the peak) so the
incremental behavior of the propagators is tested there. The GR propagator loses in
this area because it does a lot of non-necessary work during propagation (like AC-3).
The runtime for GRA increases as well but even in the peak, it is still comparable
(usually faster) to the built-in constraints. This is a slightly surprising result due to the
fact that the GRA propagator is implemented in Prolog while the built-in constraints
use optimized C code. Moreover, due to the random nature of the problem, the
constraint domains cannot be compacted so the main advantage of GR and GRA
propagators, namely using the compacted tables, is not reflected there.

 9

0

100

200

300

400

500

600

700

800

0 0,2 0,4 0,6 0,8 1

tightness

ru
nt

im
e

(m
ill

is
ec

on
ds

)

Fig. 5. The runtime (in milliseconds) as a function of tightness in RCSP 〈10, 100, 36/45, p2〉:

-relation, -case, ∆-GR, -GRA.

Structured problems

As mentioned in the previous section, Random CSP is probably not an appropriate
test suite to evaluate algorithms where the structure of the constraint domain plays an
important role (we included these experiments for the sake of completeness). To test
the algorithms on structured domains we adapted the set of abstract benchmarks
proposed in [2]. The basic idea of these benchmarks is to apply domain pruning into a
single randomly generated “tabular” constraint until the domain of one of the
constrained variables becomes singleton. The variables alternate in pruning to
suppress the leading or dependent role of the variable.

The constraint domain is generated as follows. For each value of the leading
variable an interval of compatible values of the dependent variables is generated (a so
called compatible interval). The length of this interval is identical for all the values
and it is one of the parameters of the benchmark. Thus, only the position of the
compatible interval is introduced randomly. As Figure 6 shows, the size of the
representation depends nicely on the length of the compatible interval. The other
parameter of the benchmark is the size of the domain of the variables. We use the
domain size 1000 because we study the propagators for large domains. A hundred
problems for different lengths of the compatible interval were generated and mean
values are presented below.

0

100

200

300

400

500

600

700

800

900

0,9 0,92 0,94 0,96 0,98 1

 10

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

length of compatible interval

si
ze

 o
f t

ab
le

Fig. 6. Size of the constraint domain representation as a function of the length of the
compatible interval used by the problem generator: -relation, -case, GR, GRA.

The experiments in [2] also showed that the efficiency of the propagator depends on
the style of domain pruning and on the number of values deleted in a single pruning
step. We present the comparison for two pruning styles, namely domain splitting and
arbitrary deletions where the number of deleted values is chosen randomly.

Domain splitting
The domain splitting propagation style prunes the variable domain by splitting it into
two parts and pruning one of them. This pruning style is used by some search
procedures to decompose the search space. In scheduling, a similar approach is called
shaving (a part of the domain is deleted at the domain borders). In our experiments,
we randomly generate a cutting point in between the current lower and upper bound
of the domain and then we randomly prune the part above or below the cutting point.
Figure 7 shows the results.

The GRA propagator is again the winner followed by the GR propagator. The
reason is that the internal data structures for both these propagators exploit the
specific structure of the constraint domain. Moreover, domain splitting is very
“friendly” to the rectangular representation of the constraint domain. Surprisingly, the
relation and case constraints swap their positions in this test (in comparison to
RCSP). The reason for the surprise is that the case constraint uses a compact
description of the input constraint domain similar to GR/GRA propagators.
Nevertheless, the experiment showed that a more compact representation of the
constraint domain pays off. Note finally, that the “bad” results for the built-in
constraints are due to the time spent in the initialization phase (longer for case than
for relation which explains the worse overall time for case).

The GRA propagator was proposed to remove non-necessary work done by the
GR propagator when a small number of values is deleted so we also performed
experiments where the size of the shaved area is given relatively to the size of the
actual domain (in particular, 5%, 10%, 20%, 40%). The GR propagator was the worst
among the tested algorithms for 5%, 10%, 20%, and it became comparable to the
relation constraint for 40%. The case was always slower than relation due

 11

to longer initialization phase as mentioned above. The GRA propagator was
comparable to the built-in constraints for 5% and 10% and it became the fastest since
20%. This confirms our expectation that GRA behaves better than GR when a small
number of values is pruned. However, it also shows that GRA behaves well even
when large portion of values is removed.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

length of compatible interval

ru
nt

im
e

(in
 m

ill
is

ec
on

ds
)

Fig. 7. The runtime (in milliseconds) as a function of the interval length for domain splitting:

-relation, -case, ∆-GR, -GRA.

Arbitrary deletions
Probably the most typical pruning style in (random) problems is removing the values
from all over the domain. To model such a situation, we randomly select a random
number of values from the variable domain and we prune all these values together.
Note also that random deletions disrupt the rectangular structure because deleting a
value may split some rectangles in the reduced constraint domain. Consequently, the
proposed compact representation of the constraint domain becomes less compact.
Figure 8 shows the comparison of the propagators.

The GR propagator loses due to above mentioned feature of random deletions
which is reflected in the presented results. The hypothesis mentioned in [2] is that the
GR propagator is not designed for pruning individual values but for pruning large
intervals of values. One of the motivations of our research was to confirm this
hypothesis by redesigning the GR propagator to handle better deletions of individual
values. The results confirmed this hypothesis – the GRA propagator is faster than the
GR propagator and it is also faster than the built-in constraints.

Again, we performed the experiments with a controlled number of randomly
deleted values (a given percent of variable domain is pruned, in particular 5%, 10%,
20%, 40%). In all these experiments the order of the propagators (from the fastest)

 12

was GRA, relation, case, and GR. The GR and GRA behaved better when more
values were pruned. In particular, the GR propagator was much slower for 5%, 10%,
and 20% than the other propagators but it became comparable to them for 40%. The
GR beat the case constraint in the overall result (for the compatible interval bellow
500) because a large number of values might be pruned together in some pruning
steps. This experiment also showed that taking care about the deleted values rather
than looking for supports of the values in domains pays-off even if large portions of
the domain are pruned.

40

60

80

100

120

140

160

0 200 400 600 800 1000

length of compatible interval

ru
nt

im
e

(in
 m

ill
is

ec
on

ds
)

Fig. 8. The runtime (in milliseconds) as a function of the interval length for arbitrary deletions:

-relation, -case, ∆-GR, -GRA.

Real-life problems

The original reason for developing the GR propagator was lack of support for infinite
domains in the relation constraint in the earlier versions of SICStus Prolog. Even
if infinite domains are supported by the relation constraint now, there is still one
more reason for using the GR-like propagators – their customization for a specific
structure of the table describing the constraint domain. We have developed the GR
propagator to be used in the scheduling system Visopt ShopFloor [1] so we will now
present the empirical comparison of the studied propagators using several real-life
scheduling problems solved by the Visopt ShopFloor system. The tabular constrains
are used there primarily to specify the user-defined relations between the activity type
and its parameters like duration, time windows, next allowed activities etc.

First, we will present the numerical characteristic of five real-life problems used as
a benchmark set [2]. These problems vary in the size and the structure of the factories
– the actual data are confidential so it is not possible to publish them. Table 1

 13

describes the size of the problems as a number of different constraint domains
(tables), a number of tabular constraints using these domains, and an average size of
the constraint domain representation. The size of the representation is measured as an
average number of rectangles per table for GR/GRA propagators and as an average
length of the lists describing the domains in the relation and case constraints.

Table 1. The size of the test problems and constraint representations.

constraints representation size per table problem
no.

tables
total per table GR,GRA relation case

1 401 16977 42 1.13 20.76 2.13
2 49 1921 39 3.08 39.57 4.08
3 158 5734 36 2.32 44.82 3.32
4 244 82804 339 1.20 3.60 2.20
5 112 7624 68 1.04 3.65 2.04

Notice two main features of the test problems: a “large” number of constraints per
table (constraint domain) and a very compact representation for GR/GRA
propagators. Having more constraints with the identical domain has the advantage of
running the compacting algorithm just once per table so the initial compact
representation can be re-used. Very compact representation implies that the constraint
domain is close to the rectangular structure (problems 1, 4, and 5) so the constraints
can be entailed earlier after a small number of propagation steps.

We summarized the number of how many times the GR and GRA propagators
were called in Table 2 (it is not possible to obtain this information for the built-in
constraints case and relation). Notice that the average number of calls per
constraint is very small. This confirms our expectation that the constraints are entailed
soon. In the experiments 2 and 3 the number of calls to the GRA propagator is slightly
larger than for GR because the entailment detector is not complete in GRA. However,
complete entailment detector adds overhead leading to worse runtime so we prefer to
use the simple but incomplete entailment detector for the GRA propagator.

Table 2. The number of calls to the propagators.

GR GRA problem
no. total per constraint total per constraint
1 18 515 1.09 18 515 1.09
2 3 371 1.75 3 406 1.77
3 16 593 2.89 19 282 3.36
4 82 830 1.00 82 830 1.00
5 8 014 1.05 8 014 1.05

Finally, Table 3 compares the runtimes of the algorithms. The average time of five
runs for each problem is indicated in the table. Like in [2], we compare a total runtime
to solve the problem including propagation in all constraints as well as search. Thus,
the actual time spent by executing the code of propagators is just a fraction of the
presented time. Still, only the compared propagators are responsible for the difference
in the runtime so the relative time difference between the propagators is higher than it
might seem from Table 3. We decided to present the results in this form because it
shows better what speed-up/slow-down one may expect in a complex system.

 14

Table 3. The running time (in seconds) of the propagators. The numbers in brackets show time
relative to the GR propagator (in percent).

problem
no.

GR GRA relation case

1 68.398 70.042 (102%) 75.485 (110%) 73.273 (107%)
2 3.511 3.413 (97%) 4.036 (115%) 3.919 (112%)
3 41.395 39.787 (96%) - 43,308 (105%)
4 92.118 93.192 (101%) 101.386 (110%) 99,705 (108%)
5 19.644 19.560 (99%) 22.573 (115%) 22,220 (113%)

The experiments showed that both GR and GRA propagators are faster than the built-
in case and relation constraints in all the problems. Moreover, the problem 3
cannot be solved using the relation constraint due to exceeding the memory limit
of SICStus Prolog. The experiments with random problems raised very high
expectations from using the new GRA propagator. The GRA propagator was slightly
faster than GR in three real-life tests but slower in two other tests. The relative time
difference between the GR and GRA comparators is quite small so there is no clear
winner.

Summary of results

The presented results show that the newly proposed GRA propagator is significantly
better than the GR propagator in all the random problems. As expected, the speed-up
is higher when a smaller number of values is deleted in a single step but there is a
significant speed-up even in an average case. Unfortunately, in the tested real-life
problems, neither GRA nor GR outperformed clearly the other. The new filtering
algorithm outperformed the built-in relation and case constraints in all the
experiments. This is a quite good result if we take in account that the built-in
constraints are implemented in a low-level C while our filtering algorithm is
implemented in Prolog with no low-level optimisation. However, note that the bad
performance of the built-in constraints is due to long initialization, the incremental
calls to these constraints were usually faster than the calls to GR and GRA.

Conclusions

The paper presented a new filtering algorithm for compactly represented
extensionally defined binary constraints. The algorithm is based on propagating
deletions which makes the incremental calls to the propagator more efficient than the
existing GR propagator. Also the compact representation of the constraint domain
makes the algorithm useful for very large domains, which differentiates the proposed
approach from existing AC-3.1 and AC-2001 algorithms. Moreover, the algorithm
can be naturally extended to n-ary constraints. Last but not least, rather than
implementing the algorithm as a separate system, we developed the algorithm in such
a way that it can be easily integrated into existing constraint solvers.

 15

References

1. Barták, R.: Visopt ShopFloor: On the edge of planning and scheduling. In Van Hentenryck
P. (ed.): Proceedings of the 8th International Conference on Principles and Practice of
Constraint Programming, LNCS 2470, Springer Verlag, 587-602, (2002).

2. R. Barták and R. Mecl. Implementing Propagators for Tabular Constraints. In Recent
Advances in Constraints. LNAI 3010, Springer-Verlag, 44-65, (2004).

3. Ch. Bessière, E.C. Freuder, and J.-Ch. Régin. Using constraint metaknowledge to reduce
arc consistency computation. Artificial Intelligence, 107, 125-148, (1999).

4. Ch. Bessière and J.-Ch. Régin. Refining the Basic Constraint Propagation Algorithm. In
Proceedings of IJCAI-01, 309-315, (2001).

5. M. Carlsson, G. Ottosson, B. Carlsson. An Open-Ended Finite Domain Constraint Solver.
In Proceedings Programming Languages: Implementations, Logics, and Programs, (1997).

6. M. Carlsson and Ch. Schulte. Finite-Domain Constraint Programming Systems. Tutorial at
CP 2002, (2002).
ftp://ftp.sics.se/pub/isl/papers/FD Systems.pdf

7. K.C.K. Cheng, J.H.M. Lee, and P.J. Stuckey. Box constraint collections for adhoc
constraints. In F. Rossi (ed.): Proceedings of the 9th International Conference on Principles
and Practice of Constraint Programming, LNCS 2833, Springer-Verlag, (2003).

8. Ewan MacIntyre, Patrick Prosser, Barbara Smith, and Toby Walsh. Random Constraint
Satisfaction: theory meets practice. In Michael Maher and Jean-Francois Puget (eds.):
Principles and Practice of Constraint Programming - CP98. Springer-Verlag LNCS 1520,
325-339, 1998.

9. SICStus Prolog 3.11.2 User's Manual, SICS, (2004).
10. Y. Zhang and R. Yap. Making AC-3 an Optimal Algorithm. In Proceedings of IJCAI-01,

316-321, (2001).

