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Abstract

Motivated by L(p, g¢)-labelings of graphs, we introduce a notion of
A-graphs: a A-graph G is a graph with two types of edges: 1-edges
and z-edges. For a parameter z € [0,1], a proper labeling of G is a
labeling of vertices of G by non-negative reals such that the labels of
the end-vertices of a 1-edge differ by at least 1 and the labels of the
end-vertices of an z-edge differ by at least z; Ag(x) is the smallest
real such that G has a proper labeling by labels from the interval
[0, Ac(2)]-

We study properties of the function Ag(z) for finite and infinite
A-graphs and establish the following results: if the function Ag(x) is
well-defined, then it is a piecewise linear function of z with finitely
many linear parts. Surprisingly, the set A(a, 8) of all functions Ag
with Ag(0) = a and A (1) = S is finite for any a < . We also prove
a tight upper bound on the number of segments for finite A-graphs G
with convex functions Ag(z).
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1 Introduction

Several graph theory models for radio frequency assignment were suggested
by Hale [14]. One of the most important models is L(p, q)-labeling of graphs,
which can be traced back to the paper by Griggs and Yeh [13]. An L(p, q)-
labeling of a graph G for 1 < ¢ < pis a labeling of the vertices by non-negative
integers such that the labels of adjacent vertices differ by at least p and the
labels of vertices at distance two differ by at least q. The least integer K
such that there is a proper labeling using integers between 0 and K is called
the span and is denoted by A, ,(G).

The case of L(2,1)-labelings attracted a special attention of researchers,
in particular with the connection to the conjecture of Griggs and Yeh [13]
that Ay 1(G) < A? for every graph G with maximum degree A. Bounds on
the span in terms of the maximum degree have been proved in a series of
papers [13, 5, 21], and the currently best upper bound is Ay ; (G) < AZ4+A—1.
The conjecture itself has been verified for several classes of graphs, including
graphs of maximum degree two, chordal graphs [25], see also [4, 20], and
hamiltonian cubic graphs [17, 18]. However, even the case of general cubic
graphs remains open. Because of practical motivation of the problem, L(p, q)-
labelings are also widely studied from the algorithmic point of view [1, 3, 7,
8, 19, 24].

In this paper, we study how the span A, ,(G) depends on the parameters
p and ¢. This is well-motivated from practical point of view since in applica-
tions, the parameters p and q are not fixed in advance but rather adjusted ad
hoc depending on to the level of interference experienced for their different
combinations. Our approach is similar to that of [22], but we focus on the
original notion of L(p, ¢)-labeling rather than its circular coloring version,
and we do not determine the behavior for some particular graphs, but we
rather prove general results. Also, we do not restrict our attention to finite
graphs. The inclusion of infinite graphs is motivated by applications, e.g.,
L(p, q)-labelings of infinite triangular, square and hexagonal planar lattices
naturally arise in practice, and have been addressed from the theoretical
point of view as well [16].

L(p, q)-labelings are closely related to channel assignment problems. Our
definition of channel assignment problem is slightly more general than usual:
both the weights of edges and the labels of vertices are real numbers rather
than just integers. A channel assignment problem is determined by a pair
(G, w) consisting of a (finite or infinite) graph G and a function w : E(G) —



R*. A labeling ¢ : V(G) — Rf of the vertices of G by non-negative reals
is proper if |c(v) — c¢(v")| > w(vv') for each edge vv' of G. The span of a
labeling ¢ is the supremum of the labels used by ¢ and the span \,(G) of
a channel assignment problem (G, w) is the infimum of the spans of proper
labelings for (G,w). An L(p, q)-labeling of a graph G' can be viewed as the
channel assignment problem for the square of G (the second distance power):
the edges of G have weights p, and the edges of G? not belonging to G have
weights ¢. The reader is also welcome to see the survey [23] on the channel
assignment problem.

The alternative view of L(p, q)-labelings presented above is a starting
point for our work. A A-graph G is a graph with two types of edges: 1-edges
and z-edges. For a parameter x € [0, 1], one forms a channel assignment
problem on G by assigning the weight 1 to every 1-edge and the weight z
to every z-edge. The span of this channel assignment problem is denoted by
Ac(z); the function A\g(z) is called the A-function of G. For a graph H, let
Gy be the A-graph on the same set of vertices as H such that the vertices
adjacent in H are joined by l-edges in Gy, and the vertices at distance two
in H are joined by x-edges in Gg. Clearly, the following holds:

. (z) _ Analf),
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Therefore, the A-function of Gy can be viewed as normalized one-dimensional
function describing the behavior of the two-parameter function A, ,(H). Note
also that Ag(0) = x(GW) — 1 and A\g(1) = x(G) — 1, where GV is the
spanning subgraph of GG formed by the 1-edges. This approach reflects the
practical application of radio frequency assignment: the 1-edges represent
the pairs of close transmitters where huge interference occurs, and the x-
edges correspond to more distant transmitters where smaller interference may
appear. The value of the parameter x is then proportional to the interference
experienced, and is adjusted according to its level. To get acquainted with
the principal concepts of this paper, the reader may consult the Appendix,
where we provide the complete list of A-graphs with four vertices together
with their A-functions, as well as examples of other interesting A-graphs.

A similar approach to the study of the span of L(p,q)-labeling was de-
veloped independently of us (and before us) by Griggs and Jin [10, 11, 12].
They presented their results, e.g., during the STAM Conference on Discrete
Mathematics in Nashville, TN, in June 2004. In particular, they proved
(using a different terminology) that if H is a (finite or infinite) graph with
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bounded maximum degree, then A\g, is a piecewise linear function of z for
x € [0,00) with finitely many linear parts. Moreover, the coefficients of the
linear functions forming A, are bounded by a constant that depends solely
on the maximum degree of H. The former statement can be derived from
our Theorem 4 (see Corollary 5). Our Theorem 12 yields that there are only
finitely many different A-functions for A-graphs of the form Gy where H is
a graph of bounded maximum degree. Hence, Theorem 12 also implies that
the coefficients of linear functions forming Ag,, are bounded by a constant
depending only on the maximum degree of H.

Our method is different from that in [10]: the arguments in [10] are
based on the structure of optimum labelings for a graph H obeying the
given distance constraints, whereas we use a close correspondence between
orientations of graphs and their labelings, developed in Section 2. Still, some
of our results, e.g., Lemma 3, have their counterparts in the work [10]. Since
we prove our results in a more general setting, we decided, for the sake of
completeness, to include full arguments even in such cases.

1.1  Owur results

We study general A\-graphs without restricting our attention to those equal to
Gy for some H. In Section 3, we show that the function Ag(x) is a piecewise
linear function with finitely many linear parts, under the assumption that it
is well-defined for some x > 0. The proof of this statement is quite straight-
forward if GG is finite, but it becomes more complex for infinite A-graphs.
In Section 4, we study A-functions with prescribed values for x = 0,1. Let
A(a, B) be the set of all A\-functions Ag(x) of finite and infinite A\-graphs G
with A\g(0) = « and Ag(1) = . One could expect that the set A(a, 3) is
infinite for a < 3, but the opposite is true: in fact, the set A(«, ) is finite for

(2aﬂ2+ag+ﬂ2+2)2

any integers o < 3. In Theorem 12, we present the bound 22
on the size of the set A, 3). At the end of the paper, we focus on finite \-
graphs whose A-function is convex, and prove an asymptotically tight upper
bound on the number of the linear parts of the A-functions in terms of the
order of a A-graph: if G is a finite A-graph of order n and the function \g(z)
is convex, then \g(z) consists of at most O(n??3) linear parts.



2 Gallai-Roy Theorem

We establish an analogue of the Gallai-Roy Theorem for channel assignment
problems with (finite and) infinite underlying graphs. The Gallai-Roy the-
orem in its original form relates colorings and lengths of paths in acyclic
orientations of a graph. Our proof follows the lines of a similar theorem for
channel assignment problems with finite graphs by McDiarmid [24], but we
include the proof for the sake of completeness.

First, we introduce some additional definitions necessary for stating and
proving the theorem. An orientation of a graph is finitary if there is a con-
stant K > 0 such that every oriented walk has length at most K. The weight
of a path is the sum of the weights of the edges on the path. The channel as-
signment problem (G, w) is said to be finitary if the image set of the function
w is finite. If (G, w) is finitary, then there exists a proper labeling ¢ whose
span is equal to the span of (G, w), and the span of the optimum labeling ¢
is equal to the maximum label used by ¢ (these claims will be established in
the proof of Theorem 1).

We now state and prove the announced analogue of the Gallai-Roy The-
orem:

Theorem 1. Let (G, w) be a finitary channel assignment problem. The span
of (G,w) is finite if and only if G has a finitary orientation. In this case,
the span of (G, w) is equal to the minimum of the mazimum weight of a path
in a finitary orientation of G, where the minimum is taken over all finitary
orientations of G.

Proof. Consider a finitary orientation of G' and let wy be the maximum weight
of a path in the orientation. Label a vertex v of G with the maximum weight
of an oriented path which ends at v. Clearly, the span of this labeling does
not exceed wy. Moreover, the labeling is proper: consider two vertices v and
v’ joined by an edge of G. Assume that the edge between v and ¢’ is oriented
from v to v'. Since each path leading to the vertex v can be prolonged to
v', the label of v is greater than the label of v and they differ by at least
w(vv'). Since there is a finite number of edge weights (recall that both the
channel assignment problem and the orientation are finitary), we conclude
that the span of (G, w) is at most the minimum of the maximum weight of
a path taken over all finitary orientations of G.

On the other hand, if ¢ is a proper labeling of (G, w), then there is a
finitary orientation of G such that the maximum weight of a path in the



orientation is at most the span of (G, w). Consider the following orientation:
an edge between two vertices v and v’ is oriented from v to v if ¢(v) < ¢(v'),
otherwise it is oriented from v’ to v. Since the labels of the vertices on an
oriented path increase on each edge at least by its weight, the maximum
weight of the path in the orientation is bounded by the maximum label

assigned to a vertex of G. The statement of the theorem now readily follows.
[]

The next corollary of Theorem 1 on the A-functions of finite A-graphs
immediately follows:

Corollary 2. If G is a finite A-graph of order n, then for each x € [0,1], there
exist non-negative integers a and b with a+b < n—1 such that Ag(z) = a+b-z.

Proof. Consider the channel assignment problem (G',w') where G’ is the
underlying graph of G, the weight w'(e) of a 1-edge e is one and the weight
w'(e) of an z-edge e is x. Since the channel assignment problem (G',w') is
finitary, its span is equal to the maximum weight of a finite path of a finitary
orientation of G'. Therefore, A\¢(z) = a+ b- z for some non-negative integers
a+b<n-—1. ]

3 Piecewise linearity

In this section, we show that the function Ag(x) of every A-graph is a piece-
wise linear function of x. As the first step, we show that the function Ag(x)
is a linear function of z on some neighborhood of 0:

Lemma 3. Let G be a (finite or infinite) A-graph. If the function Ag(x) is
finite for some x > 0, then the function Ag(z) is a linear function of x on
the interval [0, €] for some € > 0.

Proof. Since A\g(z) is finite for some x > 0, there is a finitary orientation Dy
of G. In particular, the chromatic number x(G™) is finite (recall that G is
the spanning subgraph of G whose edges are exactly the 1-edges of G), and
Aa(0) = x(GW) — 1.

Next, we construct a finitary orientation of GG that does not contain any
oriented path with more than A;(0) 1-edges. Let ¢ be any proper coloring of
GW with x(GW) colors 0, . .., Ag(0). Consider the orientation D of G such
that an edge vv' of G is



e oriented from v to v/, if ¢(v) < ¢(v'),
e oriented from v’ to v, if c(v) > ¢(v'), and
e oriented as in the orientation 150, otherwise.

Since on each oriented path, the colors of the vertices form a non-decreasing
sequence that strictly increases on each 1-edge, there is no oriented path
with more than Ag(0) 1-edges. It remains to show that the orientation D is
finitary. Let k£ be the maximum length of a path in Dy. As we have observed,
the colors assigned by c¢ to the vertices of an oriented path of D form a non-
decreasing sequence. A subpath formed by the vertices of the same color is
also an oriented path in ﬁo. Hence, its length is at most k. We conclude that
each oriented path in D has length at most x(GM)(k+1). In particular, the
orientation D is finitary.
Choose D to be a finitary orientation of G such that:

1. D does not contain any oriented path with more than Ac(0) 1-edges,
and

2. the maximum length of an oriented path with exactly A\;(0) 1-edges is
minimal.

Since the orientation of G constructed in the previous paragraph has the first
property, the orientation D exists and is well-defined.

Let kp be the maximum length of a path in l_j, and let k, be the maximum
number of z-edges on a path of D that has Ag(0) l-edges. We show the
following;:

Aa(z) = Ag(0) + kyz for every z € [0, €],

where & = -

Assume, for contradiction, that there is x € (0,¢] such that Ag(x) <
Ac(0) + kzz. Note that this inequality implies that A\g(z) < Ag(0) + 1 since
k. < kp. By Theorem 1, G has a finitary orientation D’ that does not contain
any oriented path with more than Ag(0) 1-edges, and in addition, at least

one of the following holds:
e D’ has no oriented path with A (0) 1-edges, or

e any oriented path of D’ with Ac(0) 1-edges has less than k, z-edges.



The former is impossible because every finitary orientation of G, and there-
fore of G, has a path with Ag(0) edges by Theorem 1. The latter contradicts
the choice of the orientation D. We infer that A (z) > Ag(0) + kyz for all
z € [0,¢€].

It remains to establish the opposite inequality, i.e., A\g(z) < Ag(0) + k,x
for z € [0,¢]. Consider an oriented path P in D. If P contains Ag(0) 1-edges,
then it contains at most k, x-edges, and consequently its weight is at most
A¢(0) + kzxz. On the other hand, if P contains less than A;(0) 1-edges,
then its weight is at most Ag(0) — 1 + kpx < Ag(0). We conclude that the
maximum weight of an oriented path in D is at most Ag(0) + kyz. Therefore,
Ac(z) < Ag(0) + kyz by Theorem 1. O

We are ready to establish the main result of this section. Note that
the statement of Theorem 4 for finite A-graphs can be easily derived from
Corollary 2.

Theorem 4. Let G be a (finite or infinite) A\-graph. If the function Ag(x) is
finite for some x > 0, then the function Ag(x) is a piecewise linear function
of x on the interval [0, 1] with finitely many linear parts.

Proof. Since the function A\g(x) is finite for some z > 0, G has a finitary
orientation and the function Ag(z) is finite for all z € [0, 1] by Theorem 1.
Let € > 0 be a real such that the function Ag(z) is linear for z € [0,&]. Such
¢ exists by Lemma 3. We may assume that ¢ < 1/4. Moreover, if A\g(1) = 0,
then \q is identically equal to 0 and the theorem holds. Therefore, we only
need to consider the case A\g(1) > 1. Let K = |\g(1)/e]. By the previous
assumptions, K > 4. Consider the set D of finitary orientations D of G
such that the maximum length of an oriented path in D is at most K. Note
that the set D is non-empty since G has a finitary orientation with maximum
path length Ag(1) by Theorem 1 applied to the graph G with all edge weights
equal to one.

For an orientation D € D, let F(D) be the set of all the functions a + bz
such that D contains an oriented path with a 1-edges and b z-edges. Since
the maximum length of an oriented path of D is at most K , the sum a + b
is bounded by K. Therefore, the set F (l_j) is finite for every orientation
D € D. Let fz(z) = max ;. r 5 f(2). Since the set F(D) is finite, the
function f5(z) is the maximum of a finite number of linear functions. In
particular, the function f5(z) is piecewise linear and has finitely many linear



parts. Let us define:

fo(z) == min f5(z) = min max f(z).
DeD DeD feF(D)

Since there are at most (K;ﬂ) < K? functions a + bx with 0 < a,b and

a+b < K, there are at most 25 distinct sets F(D), and the minimum in
the definition of fy(x) is always attained. Moreover, the function fy(z) is the
minimum of at most 25” distinct piecewise linear functions, and thus fo(x)
is also a piecewise linear function. In the rest of this proof, we show that
Aa(z) = folx) for all x € [, 1].

Fix z € [¢,1]. Let D be an orientation of G such that fz(z) = fo(z).
In the orientation D, the maximum weight of an oriented path is fz(z) and
Aa(z) < fo(x) by Theorem 1. Assume for the sake of contradiction that
Aa(z) < fo(z) for some z € [¢,1]. By Theorem 1, there exists a finitary
orientation D of G with the maximum weight of an oriented path equal to
A¢(z). If D contains a path with more than K edges, then the weight of
this path is at least (K + 1)z > ’\GT(”:E > Ag(1). This is impossible, because
A (z) < Ag(1). Therefore, the length of each oriented path in D is at most
K and D € D. Since the maximum weight of an oriented path in D is f5(2),
we have fo(z) < fz(z) = A¢(z) < fo(z) — contradiction.

We have shown that A\g(x) = fo(x) for all z € [¢,1]. Since the function
A¢(z) is piecewise linear on both the intervals [0,e] and [g,1] and it has
finitely many linear parts on each of the two intervals, it is a piecewise linear
function with finitely many linear parts on the whole interval [0, 1]. []

Let us now show how Theorem 4 implies the results of Griggs and Jin on
A-functions of A-graphs of the form Gg:

Corollary 5. Let H be a (finite or infinite) graph with a bounded mazimum
degree, and let Ly(zx) := %Ap,q(H) for x = q/p. The function Ly(z) is a
piecewise linear function for x € [0,00) with finitely many linear parts.

Proof. For x € [0, 1], the statement follows from Theorem 4 applied to the
graph Gy whose definition can be found in Section 1. Next, consider the
graph G’ obtained from Gy by replacing 1-edges by z-edges and z-edges
by 1l-edges. Observe that {g(z) = x - Ae(1/z). Again, Theorem 4 yields
that \g(2') is a piecewise linear function with finitely many linear parts for
x' € [0,1]. Hence, £g(z) is a piecewise linear function with finitely many
linear parts for z € [1,00), too. ]



Note that if H has bounded maximum degree, then G 5 has bounded max-
imum degree as well, and in particular, Gz has bounded chromatic number.
Our results from Section 4, namely Theorem 12, imply that for every finite
bound K there is a finite set Ly of piecewise linear functions defined on
[0, 00), with finitely many linear parts, such that for any (finite or infinite)
graph H with maximum degree at most K we have {y € L.

Another immediate corollary of Theorem 4 is the following:

Corollary 6. If G is a finite A-graph of order n, then there exist an integer
k, 1 <k < n? real numbers zg,..., x5, 0 =09 < 31 < --- < a1 = 1, and
non-negative integers ay, . .., ar and by, ..., by with a; +b; < n —1, such that
Aa(z) = a; +bx for every x € [x;_1,x;]. Moreover, x; = & for some integers
Ci,di, with 0 S C; S dz S n—1.

Proof. Since the function Ag () is piecewise linear by Theorem 4, there exist
real numbers zg, ..., T, 0 =29 < 1 < --+ < 7, = 1, such that the function
A¢(z) is linear on each interval [z;,_1,2;],7 = 1,..., k, for some integer k. By
Corollary 2, the coefficients of these linear functions are non-negative integers
whose sum does not exceed n — 1.

Furthermore, each of the reals x1,...,2;_1 can be expressed as a fraction
with both the numerator and denominator between 1 and n — 1: clearly,
x; is the (unique) solution of the equation a; + b;z; = a;41 + b1 1x. Hence,

ai—aiy1 __ |aiy1—a;l
bit1—b; — [biy1—by
positive). Since there are at most (n —1)? fractions with both the numerator
and denominator between 1 and n—1, the bound on the number £ follows. [

(the latter equality follows from the fact that z; is

xT; =

Let us remark that the bound on the number of linear parts in Corol-
lary 6 can be improved to 37%2 +0(n?) using the results on the Farey fractions
discussed in Section 5. However, we think that the order of the bound from
Corollary 6 can be asymptotically improved and conjecture the following:

Conjecture 7. If G is a finite A\-graph of order n, then the function Ag(x)
consists of at most n linear parts.

4 A-functions with boundary constraints

As the first step towards the proof of Theorem 12, we establish two bounds
on the growth of a A-function:
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Lemma 8. Let G be a (finite or infinite) \-graph whose A-function is finite,
and let Ag(z) = a + bz for all x € [0,v] and some v > 0. The following
inequality holds:

Aa(z) > a+ bz

for all x € [0,1/b], if b > 0, and for all x € [0, 1], otherwise.

Proof. If b = 0, the lemma holds trivially, because Ag(xz) > Ag(0) for all
x € [0,1]. In the rest of the proof, we consider the case b > 0. Assume for
the sake of contradiction that there exists xq € [0,1/b] such that Ag(xg) <
a+bzy < a+1. Note that zy > v because Ag(x) is equal to a+bz for x € [0, ).
By Theorem 1, there exists an orientation D of G with the following property:
for every oriented path P in D it holds that a'+b'zy < Aa (o) < a+bxg, where
a’ and b’ are the numbers of 1-edges and z-edges of P. Since a+bzy < a+1,
we have o' < a. Therefore, o’ + b’y < a + by for each such path P. We infer
from Theorem 1 that Ag(vy) < a + by. This contradicts the assumptions of
the lemma. ]

Lemma 9. Let G be a (finite or infinite) \-graph whose \-function is finite.
The following inequality holds:

Ag(z) <a+ (a+1)5z
where o = A\g(0) and = Ag(1).

Proof. Fix vertex colorings ¢(!) and ¢ of the graphs G and G with colors
0,...,a and 0,...,3. Let D be the following orientation of G: an edge
e = uv of G with ¢ (u) < ¢V (v) is oriented from u to v. An edge e = uv
with ¢V (u) = ¢V (v) is oriented from u to v if c(u) < c(v), and from v to u,
otherwise.

We now bound the maximum weight of a path in D. Consider an oriented
path P in D. The function ¢V is non-decreasing along the path P. Since
the value of ¢V increases on each 1-edge of P, the path P contains at most
a 1-edges. There are also at most a+ 1 subpaths of P formed by the vertices
with the same color assigned by ¢V). On each such subpath, the function c is
strictly increasing, and consequently such a subpath can consist of at most
z-edges. We conclude that each oriented path in D contains at most o 1-edges
and at most (a+ 1)8 z-edges. By Theorem 1, A\g(z) < a+ (a+1)fz. O

A key essence of the proof that the set A, ) is finite is the following
lower bound on the length of the initial linear part of a A-function in terms
of A\g(0) and Ag(1):
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Lemma 10. Let G be a (finite or infinite) A\-graph whose A-function is finite.
The length of the initial linear part of A\g(z) is at least

1
2080+ a+ [ +1

where a = A¢(0) and = Aa(1).

Proof. Let a and b be the non-negative integers such that A\¢(z) = a + bz
for all z € [0,~] for some v > 0. Note that ¢ = a. By Lemma 9, we have
0<b < (a+1)8. Weshow that A\a(z) = a + bz for all z € [0, 5rzrar577)-
The inequality Ag(x) > a + bz follows from Lemma 8. In the remaining, we
focus on establishing the opposite inequality Ag(z) < a + bz.

By Theorem 1 applied to the channel assignment problem derived from
G for £ = min{1/(b+1),~}, there exists a finitary orientation D of G with

the following properties:
1. D contains no oriented path with a + 1 or more 1-edges, and
2. each oriented path of D with a 1-edges contains at most b z-edges.

Let a,, v € V(G), be the maximum number of 1-edges on an oriented path
of D which ends at v, and let b, be the maximum number of z-edges on
an oriented path with a, 1-edges which ends at v. In addition, let cg be a
coloring of G with colors 0, ..., 5. Forz € [0 we define a labeling
c of G as follows:

o(v) = a, + b,z if b, <0,
| awFa(B+ 1)+ (cs(v) + b+ 1)z otherwise.

1
) 2a,3+a+,8+1]’

We now prove that ¢ is a proper labeling of G for every z € [0, m]

As the first step towards this goal, we show that if b, > b, then the label
c¢(v) is at most a, + 1 — z (note that b, > b implies a, < a):

c(v) =ay, +a,(B+ Dz + (cs(v) +b+ 1)z
<o+ (a—1)B+)z+ B+ (a+1)f+ 1)z
=a,+2af+a+pf+l)r—s<a,+1-2z (1)

Next, we show that the labeling is proper on each edge of G. Consider an
edge uv, oriented from u to v in D. We distinguish two major cases according
to the type of the edge uv:

12



e uv is an z-edge.
Clearly, a, < a,, and if a, = a,, then b, < b,. We verify that |c(u) —
c(v)| > z by considering the following four subcases:

— y < Gy
By (1), ¢(u) < ay, +1 —z. Since a, + 1 < a, < ¢(v), we have
c(v) — c(u) > x as desired.

— a, =a, and b, < b, <b
The inequality c¢(v) — ¢(u) > x follows from the definition of c.

— a, =a, and b, < b < b,
We have c¢(v) — c(u) > (cg(v) + b+ 1)z — byx > x.

— a, = a, and b < b, < b,
By the definition of ¢, we have |c(v) —c(u)| = |cg(v) —cg(u)|z > x.

e yv is a l-edge.
Clearly, a, < a,. If a, = a, — 1, then b, < b,. We establish that
lc(u) — ¢(v)| > 1 by considering the next four subcases:

— Gy < ay — 2
Observe that ¢(u) < a, + 1 and a, < ¢(v). Since a, < a, — 2, we
can immediately conclude that ¢(v) — c¢(u) > 1.

—a,=0a,—1land b, <b, <D
The definition of ¢ immediately yields that c(v) — c¢(u) > 1.

—a, =0a, —1and b, < b < b,
By the definition of ¢, we have c¢(v) — c¢(u) > 1+ (cs(v) +b+ 1)z —
b,z > 1.

—a,=0a,—1land b < b, < b,
We again inspect the definition of ¢: ¢(v) —c(u) > 1+ (8+ 1)z +
[(ca(v) +b+1) — (cs(u) + b+ 1)z > 1.

We have shown that ¢ is a proper labeling of G. Note that the maximum
label assigned by ¢ does not exceed a + bzx. The inequality A\g(z) < a + bz

for z € [0, 355745577) readily follows. O

Before we prove Theorem 12, we observe the following proposition. Its
statement can be verified by inspection of the proof of Theorem 4.
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Proposition 11. Let G be a (finite or infinite) A\-graph whose A-function is
finite. Furthermore, let F be the set of all linear functions ax+b with integral
non-negative coefficients a and b such that a + b < /v, where 8 = Ag(1)
and 7y is a real such that \g(x) is linear on the interval [0,~]. There erist
sets Fi, ..., Fr € F such that the following equality holds for oll x € [v,1]:

Ag(r) = min max f(z) .

Finally, we are ready to prove the main result of this section:

Theorem 12. Let a < 3 be any two non-negative integers. The following
estimate on the size of A(a, B) holds:

(2082 +ap+B%+2)?
2 2

[Aa, B) <2
In particular, the set A(a, B) is finite.

Proof. Let fo € A(a, ), i.e., there exists a A\-graph G with Ag(z) = fo(x)
and fy(0) = a and fy(1) = 5. By Lemma 10, the function f; is a linear
function of x on the interval [0, ] where v = m In particular, the
values of fy on the interval [0,~] are uniquely determined by the value of

fo(7) (recall that fo(0) = «).

As in Proposition 11, let F be the set of all linear functions ax + b with
integral non-negative coefficients a and b such that a +b < /7. Let us
estimate the cardinality of the set F:

L B/7+2)° (2082 +af + 2 +2)?

Fl=D (+1) <5 = 5 ()

By Proposition 11, there exist subsets Fi,...,Fr C F such that fy(z) =
min;—;, ., maxser, f(x) for all x € [, 1]. Once the sets F,..., F are fixed,
the value fy(7y) is uniquely determined and thus the function f; is uniquely

determined by Fi, ..., F; on the entire interval [0, 1]. Since F contains 2%/
subsets, there are 22”1 ¢hoices of the subsets Fi,...,Fr. The statement of
the theorem now follows from the estimate (2). O
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5 Convex )\-functions

In this section, we focus on A-graphs with convex A-functions. First, we show
a simple upper bound on the number of linear parts of convex A-functions of
finite A\-graphs:

Theorem 13. Let G be a finite A-graph of order n. If the function Ag(x) is
convez, then it consists of at most 3n?/3 4+ 1 linear parts.

Proof. Let k be the number of linear parts of Ag(x) and let the reals xy, . . . , x
and the integers ai,...,a; and by,...,b; be as in Corollary 6. Since the
function Ag(z) is convex, a; > a; and b; < b; for every 1 <i < j < k.

Let o; = a; —a;47 > 0and B; = b1 —b; >0fori=1,....,k—1. In
particular, a; = a; + a3 + ... +ap_; and by = by + 81 + ...+ Br_1. Note
that ©; = «;/f; for all i = 1,...,k — 1. Let I4 be the set of the indices
i =1,...,k — 1 such that o; > n'/?, and let Iz be the set of the indices
i=1,...,k—1such that 3; > n'/3. Since a; < n by Corollary 6, |I4] < n?/3,
Similarly, [I5| < n?/3.

Let I ={1,...,k}\ ({aUIp). Each number z; = «;/; is a fraction with
both the numerator and denominator between 1 and n'/3. Since there are
at most n?/3 such distinct fractions, we infer that |I| < n?*3. Consequently,
k < |I|+ |14 +|I5| < 3n?3. The statement of the theorem now follows. []

In the rest of this section, we construct A-graphs whose convex A-functions
have Q(n?/®) linear parts. The first step towards our construction is the next
proposition. We leave its straightforward proof to the reader.

Proposition 14. Let G be the A-graph which is the disjoint union of a clique
of order ki with 1-edges and a clique of order k, with x-edges. If k, > ky, then
the function Ag(x) consists of two linear parts meeting at the point ky/k,.

The second tool is the next lemma on joins of A-graphs:

Lemma 15. Let G and G4 be two disjoint \-graphs, and let G = G ® G,

be the A-graph obtained from G and Gy by adding 1-edges vivy between any
pair of vertices v € V(G1) and vy € V(G2). The following holds:

Ag(.il?) = )\G1 (ZIT) + )\G2 (ZL‘) +1.

15



Proof. Fix the number z € [0,1]. By Theorem 1, G; and G5 have finitary
orientations D; and Ds Wlth the maximum weights of an oriented path equal
to Ag, (#) and Ag, (z). Let D be the orientation of G obtained from D; and
132 by orienting all the edges between G; and G4 from G to G5. Clearly,
the maximum weight of an oriented path in D is g, (#) 4+ Ag, (x) + 1. By
Theorem 1, Ag(z) < Ag,(z) + Ag,(x) + 1. In the next paragraph, we finish
the proof of the lemma by establishing the opposite inequality.

Assume for contradiction that A\g(z ) < Mg, (z) + Mg, () + 1. By The-
orem 1, G has a finitary orientation D with the maximum weight of an
oriented path strictly less than Ag, () + Ag,(z) + 1. On the other hand, the
orientation D restricted to (G, contains an oriented path P, with weight at
least ¢, (2), and D restricted to Gy contains a path P, with weight at least
A, (x). Let G’ be the subgraph of G induced by the vertices of P, and P, and
let p = |[V(G")|. Note that the orientation D is acyclic and any two vertices
of G' are connected by an oriented path, which implies that there is a unique
way to order the vertices of G' into a sequence S = (v, v, v, ..., v,) which
is topologically sorted with respect to 5, ie., if D contains an edge oriented
from v; to vj, then 4 < j. The uniqueness of S implies that for each i < p
the vertices v; and v;;, are connected by an oriented edge v;v; 1. Therefore,
G' contains an oriented Hamilton path P = v,vs---v,. Furthermore, every
x-edge of P is also an edge of P, or P, and thus the weight of P is at least
Aa, () + Ag,(z) + 1. This contradicts our assumption that the weight of
every oriented path in D is strictly smaller than \g, (z) + Ag,(z) +1. O

Finally, we recall some results on the Farey fractions. The Farey sequence
is formed by sets F;, of rationals, where F;, is the set of all irreducible fractions
a/b with 0 < a < b < n, eg, F, = {0,1/4,1/3,1/2,2/3,3/4,1} (note
that 1/2 = 2/4). The Farey fractions appear, e.g., in [2, 6, 15]. For our
considerations, the following result [9, 26, 27| on the Farey fractions is of

interest: F 5
lim [Ful _ 3 (3)

nsoo n2 72

We can now construct a A-graph whose A-function consists of Q(n??)
linear parts:

Theorem 16. For every positive integer n, there is a A-graph G of order n

whose \-function consists of é/;/?, n?/3 — o(n?3) ~ 0.42n/3 linear parts.
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Proof. Fix a positive integer k. We construct a graph G of order at most
2k|Fy| whose A-function consists of |Fi| — 1 linear parts. The statement of
the theorem will then follow from the limit (3).

Let Fy be the set of the Farey fractions from Fj strictly between 0 and
1. For each fraction § € Fy, consider the graph G,;, from Proposition 14
with k; = a and k, = b. Note that there are |F;| — 2 choices of a and b (we
exclude the fractions 0 and 1). The A-function of G/, consists of two linear
parts meeting at the point 3.

Let G be the A-graph obtained from vertex-disjoint copies of Gu, § € Fy,
by adding 1-edges between all pairs of vertices from distinct copies, i.e.,
G = @%GF]: G- By Lemma 15, the A-function of G is equal to the following:

Ao(@) = |FE[ =1+ 3 Mg, (@),

5 €F

Therefore, the function Ag(x) consists of |Fy| — 1 linear parts.

It remains to estimate the order of the A-graph G. The order of every
graph G, is at most 2k. Hence, the order of G' does not exceed 2k|Fj| as
claimed in the beginning. [

We remark that the multiplicative factors both in Theorems 13 and 16
can be improved by a finer analysis of the estimates used in the proofs. We
decided not to do so in order to keep our arguments simple.
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Appendix

All A-graphs on four vertices

First, we list all non-isomorphic A-graphs on four vertices together with their
A-functions. The A-graphs corresponding to the depicted A-function can be
found under the graph of the function. The 1-edges are depicted as solid
segments, while the z-edges are represented by dashed segments.
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Other selected A-graphs

We also list some other small A\-graphs with interesting A-functions: the first
one is an example of a A-graph with a concave A-function, the second one
is an example of a A-graph whose A-function is neither convex nor concave
(note that it even contains two different constant parts), and the third one is
an example of a A-graph such that two different linear parts of its A-function
correspond to the same linear function.
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