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Abstract
A separoidis a symmetric relatiorf C (225) defined on disjoint pairs of subsets of a
given setS such that it is closed as a filter in the canonical partial order induced by the in-
clusion (ie., At B < A tB <= A C A’ andB C B’). We introduce the notion of
homomorphisnas maps which preserve the so-called “minimal Radon partitions” and show
that separoids, endowed with these maps, admits an embedding from the category of all finite
graphs. This proves that separoids constitudeuntable universal partial ordeiFurthermore,

by embedding also all hypergraphs (all set systems) into such a category, we prove a “stronger”
universality property.

We further study some structural aspects of the category of separoids. We completely solve
the densityproblem for (all) separoids as well as for separoids of points. We also generalise
the classic Radon’s theorem in a categorical setting as well as Hedetniemi’s product conjecture
(which can be proved for oriented matroids).

Key words: Graphs; Separoids; Homomorphisms; Universality; Density; Radon’s theorem;
Oriented Matroids; Hedetniemi’s conjecture.

1 Preliminaries

In order to be self-contained, we start with some basic definitions and examples.
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1.1 The objects

A separoid[1, 3, 8, 9, 10, 14, 15, 16, 17] is a (finite) s€tendowed with a symmetric relation
T C (2;) defined on its family of subsets with the following propertiesdifB C S then

e ATB = ANB-=1),
e¢e AtB and BC B CS\A = AtDB.

A related pairA T B is called aRadon partition(and we often sayA is not separated froms”).

Each partA and B, is known as §Radon) componerand their uniord U B is called thesupport
of the partition. Theorder of the separoid is the cardingd|, and itssizethe cardinal t |, the
number of Radon partitions. Due to the second condition, if the separoid is finitemtinénal
Radon partitions determines the separoid. The separoid is sometimes denotes ag the )pair

A pair of disjoint setsy, 3 C S that are not a Radon partition, are said tose@aratedand
denotedy | 5. The separation relation is a symmetgeiasi-antireflexiveandideal relation; that
is, it satisfies fory, 3 C S

o ala = a=0,
co «al|f and fCpf = al|f.

The separoid is sometimes denoted as the (g4iy.

Clearlyt and| determine each other; they are related by the following equivalence
ATB <= AfB and ANB=¢.

We say that the separoilis acyclicif () | S.

Examples:

1. Consider a (non-empty) subsgtC IE? of thed-dimensional Euclidean space and define the
following relation
ATB < (A)N(B)#¢ and ANB=¢,

where(A) denotes de convex hull of A. The pait = (X, ) is a separoid and will be called a
point separoid Indeed, the notion of separoid arises as an abstraction of the well-known Radon’s
lemma [13]:if the setX c IE? consists of at least+ 2 points, then there exist two disjoint subsets

of it that are not separated (i.e., their convex hulls do interseltte class of all point separoids is
denoted byP.

2. Generalising the previous example, consider a farfilgf convex sets ifE? —instead of
points— and define the separoiti /') as above; that is, two subsets of the familyB C F
are separated | B if there exists a hyperplane that leaves all memberd oh one side of it
and those ofB on the other. ClearlyS(F') = (F,|) is a separoid. Indeed, all separoids can be
represented in this way; i.e., given a separdigshere exists a family of convex sefssuch that
S is isomorphic taS(F); furthermore, if the separoid is acyclic, then it can be represented in the
(IS] — 1)-dimensional space (see [16, 17]). The class of all separoids is denofed by



3. Consider a (simple) grapi = (V, F) and define two elemenis v € V' of the vertex set to
be a minimal Radon patrtition t v if and only if the pair is an edgev € E. ThenS(G) = (V)
is also a separoid. In fact, as we shall see on Theorem 5, this correspondence is an embedding
of the category of graphs into the category of separoids, when both classes are endowed with
homomorphismsThe class of all graphs is denoted &y

4. Consider an oriented matroid = (£, C') defined in terms of its circuit€’ C {—,0, +}%,

in the usual way (see [2]). Define the following relatiprr (22E) on the subsets di: At Bis a
minimal Radon partition if and only if there exist a circuit e C such that

A=X"={eecE:X.,=+} and B=X ={ecE: X, =—}.

Clearly S(M) = (E,T) is a separoid. Furthermore, the separoid is acyclic if and only if the
oriented matroid is acyclic. The class of all oriented matroids is denoted! by

5. All acyclic separoids of order 3 come from one of the eight families of convex bodies depicted
in Figure 1. Those labellea b, e andh are point separoids.
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Figure 1. The acyclic separoids of order 3.

Example 1 suggest the following definitions. Tdienensionl(.S) of a separoid is the minimum
numberd such that every subset with+ 2 elements is the support of a Radon partition. Equiva-
lently, the dimension of a separoid is the maximdrsuch that there exists a subsetvith d + 1
elements such that every subset of it is separated from its relative complement:

aCo = al(c\a). ()

A separoido with property(x) is called asimploidbecause it can be represented with the vertex
set of a simplex (Figure &.represents the simploid of dimension 2). We say that a separ@d

in general positiorif no subset withd(S) + 1 elements is the support of a Radon patrtition; i.e., if
every subset withl(S) + 1 elements induces a simploid.

We say that a separoid isRadon separoidf every minimal Radon partitions is unique in its
support; that is, ifA + B andC' 1 D are minimal, then

AUB=CUD = {A, B} ={C,D}.
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The class of Radon separoids is denotedby

We say that the separoifl is a Steinitz separoidf it satisfies the Steinitz exchange axiom;
namely, ifA t B is a Radon partition whose support consistd (@) + 2 elements, then

Vei¢g AUB dye AUB:(A\y)t(B\yUxz).

The class of Steinitz separoids is denotedzhy

5. parc sids

Figure 2. Some classes of separoids.

An oriented matroidis a Radon separoid whose minimal Radon partitions satisfies the week
elimination axiom: ifA; 1 B;, fori = 1, 2, are minimal Radon partitions for which there exists an
x € By N Ay, then there exists a minimal Radon partition D such tha{ A; C C,(\B; € D
andz ¢ C'U D. As observed by Las Vergnas [7], oriented matroids are Steinitz separoids; that is,
M C RN Z (see Figure 2).

Finally, we say that a separoid igyaaph (recall Example 3), if for every minimal Radon parti-
tion A 1 B we have thatA||B| = 1; that is, the minimal Radon partitions are pairs of singletons.
Observe thag C R.

1.2 The homomorphisms

Since it is enough to know minimal Radon partitions to reconstruct a finite separoid, we can con-
centrate on the study of them. In particular —when defining an operation (see below)— it is
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enough to define some partitions and generate the separoid as the minimal symmetric filter con-
taining the given set as Radon partitions. That is, we can define a sepdoyidefining a set of
generators of the symmetric filtés, f, <), whereAt+ B<CtDif AC CandB C D.

Let S andT be two separoids. A mapping frosto 7" is called ahomomorphisnif the image
of minimal Radon partitions are minimal Radon partitions. That is, a homomorphism is a mapping
p: S — T that satisfy for allA, B C S,

AT Bminimal = ¢(A) { ¢(B) minimal

(as usual, we pup(A) = {p(z);z € A}).

Two separoids aresomorphicS =~ T if there is a bijective homomorphism between them
whose inverse function is also a homomorphismS I 7" is a subset of a separoid, threluced
separoidl’[S] is the restriction t&5. An embeddings — T is an injective homomorphism that is
an isomorphism between the domain and the induced separoid of its image.

From now on, we will denote by — 7T the fact that there exists an homomorphism from
the separoids to the separoid’, and byS —/ T the other case. Also, i T then we write
S ~ T. This last defines an equivalence relation and, in its equivalence classes, a partially ordered
class called theomomorphisms orddsee [4]):

S<T <— S —T.

The homomorphisms order is in fact a lattice. This is useful as separoids generalise several
structures (e.g. oriented matroids) where the categorical notions are hard to define (see [6]). Itis a
pleasing fact that the category of separoids homomorphisms has prodantssumst+ and they
play the role of the meet (infimum) and the joint (supremum), respectively.

Given two separoid® and 7', their productis the separoid defined on the Cartesian product
P x T, with projectionsr andr respectively, generated by the set

{A B e (QP;T) :m(A) tn(B)and7r(A) t 7(B) are minima} :

Given two separoid$” and T, their sumis the separoid defined on the disjoint unibru T’
generated by the set

2P+T
{ATBE ( 5 ) :ATBisminimaIinPorinT}.

Example 6. Consider the point separoid depicted in Figure dnd denote its elements By =
{—,0,+}, where{0} { {—+}. The product’? = P x P is a separoid of orderand dimensiors.
P? is also the sun$ + 7" of two separoid:S, of order5 and dimensiors, with the two minimal
Radon partition§00} { { ——, ++} and{00} { { —+, +—}; andT’, of order4 and dimensior, with
the unique Radon partitiof0—, 0+} 1 {—0,+0}. P> = S + T is depicted in Figure 3. Observe
that P? is not a point separoid (nor an oriented matroid).
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Figure 3. An example wher& ¢ P but P? ¢ P.

It is easy to see that these constructions have the expected categorical properties:

Lemma 1

1. S—PxT < S— P and S —T,

2. P+T—S§ <— P—S and T — S. °

1.3 A comment on Radon’s lemma

One can be tempted to study maps which presatv®adon partitions —not only the minimal
ones. We call such magstrong morphismsIn the category of separoids endowed with strong
morphisms, Radon’s lemma can be formulated as follows (cf. Lemma 6):

Theorem 1 (Radon 1921) is a point separoid of ordeiS| = d(.S) + 2 if and only if
S7L>K1 and S—>KQ+O',

whereos is a simploid. Furthermore, in such a case= () if and only if S is in general position.

Proof. A separoidS is a point separoid of ordet(S) + 2 if and only if it is determined by a
unique minimal Radon partitioA 1 B. PutC' = S\ (AU B) and letC' = {cy,...,cs}. Now, let
Ky = {a,b}, wherea 1 b, ando? = {c), ..., c,}. Clearly the functionp: S — K, + o, where

a IfseA,
p(s)=¢ b ifseB,
c, ifs=g¢,

is a strong morphism of separoids. Converselyy ifF— K, + o, then the preimage ok, de-
termines a unique minimal Radon partitionsSfFurthermore, if this is the cas8,is in general
position if and only ifAU B = S. °



However the category of separoids’ strong morphisms seems to be less rich than that of homo-
morphisms and too restrictive to our purposes. In particular, such a category does not have a nice
product. For this, consider the separoiis= {0, 1,2} where0 12, andK, = {a, b} wherea { b.

Let us denote by’ x K, = {0a, 0b, 1a, 1b, 2a, 20} the elements of the product and byand«x the
two projections. IfA { B implies thatr(A) t 7(B) andk(A) 1 x(B) then the natural candidates to
AandB areA = {0a}, B = {1b,2b}. However this would imply thatl 1 B U {0b} but,

7(0a) N (0D, 16, 2b) = {0} N {0, 1,2} = {0} # 6.

ThereforeP; x K5 should have size 0. In other words, while working with strong morphisms, the
product of these separoids is equivalent to the simpliod. This collapse seem to be occurring too
often to make the concept of strong morphism interesting.

1.4 Basic properties

In this section we review some very basic facts about the homomorphism order and some of its
invariants. In the sequel, we will denote By, the (acyclic) complete separoid; i.€; is the
separoid which, for all, j € K} we have that t j —clearly, K, is the complete graph, hence the
notation. Recall also that thedimensional simploids the separoid of order|S| = d + 1 and

size 0. Simploids play the roll ahdependent setnd are usually denoted by A straight-forward
argument shows that

Lemma 2 The following statements are equivalent:

1. Sis a simploid.

2. |S| =d(S) + 1.

3.5 — K.

4T #0:5 —T. o

In the study of homomorphisms, it is useful to have simple conditions which forbids them. The
following is similar to theNo-Homomorphisntemma (cf. [5]).

Lemma 3 Let7 be a separoid in general position. $f - K, and.S — T thend(S) > d(T)).

Proof. For the contrary, suppose thatS) < d(7") (and thend(S) + 2 < d(7') + 1). Since
S —~ K, due to Lemma 2, the order 6fis at leastl(S) + 2. Then there exists a minimal Radon
partition A B such thatAUB| < d(S)+2. If p: S — T'is afunction, themp(AUB)| < d(T)+1.
SinceT is in general position]’[p(A U B)] ~ K; and A is separated fron. Thereforeyp is not
an homomorphism. °

This result has to be contrasted with the No-Homomorphism lemma for graphs. There the
“general position” hypothesis is replaced by the “vertex transitive” one. However, as the vertices
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of the regular 3-cube shows, in this broader context these hypothesis cannot be interchanged —
observe that graphs, unless complete or completely disconnected, are not in general position.

The following result plays the roll of the well-known Eislinequality|G| < x(G)a(G).
Lemma4 If S — T then|S| < |T](d(S) + 2).

Proof. If |S| > |T'|(d(S) + 2), by the pigeon-hole principle, in any functign.S — 7" there most
bed(S) + 2 elements ofS mapping into the same elementBfand ‘colapsing’ a minimal Radon
partition. °

Observe that for graphs, this is an immediate consequence 6§ Erdquality. For, suppose
there is a homomorphism of grapis— H, and denote by(G) = d(G) + 1 the independence
number ofG. Then

Gl _ 16l _
a(G)+1  oG) —

X(G) < x(H) < [H|.

In the study of any partial order, it is natural to ask how doeshtEns(induced linear orders)
andatichains(subsets of incomparable elements) looks like. We close this section describing the
antichains ofS —we will describe the chains in Section 3. As an immediate application of the
previous two lemmas, we have that

Theorem 2 The only maximal and finite antichains in the homomorphism order of separoids are
{K,} and{K;}. Thatis, given any other finite antichain

A:{Sl,,Skz#] - Sl%S]},
there exists a (point) separoil ¢ A such that4 U { P} remains an antichain.

Proof. Let A = {S),. .., S;} be afinite antichain. Let be a number such that
d > maxd(S;), (%)

and letn be a number such that
n > (d+ 2)max |S;|. ()
Now, let P ¢ IE? be ad-dimensional separoid of points in general position. Due &) and

Lemma 3,5; -/~ P; and due to(xx) and Lemma 4P —/~ S;. Therefore, A U {P} is an
antichain. o

2 On Universality

Let A, be thecountable antichainthat is, the order type of a countable set of incomparable
elements. Theorem 2 shows thét can be represented Ii. LetC, be thecountable chaini.e,

the usual order type of the natural numbers (sometimes simply denoted kiys easy to see that

C. can also be represented By(e.g., consider the chaii;, — Ky — ---). Itis well known

(see e.g. [B]) that these two facts implies that any finite partial order can be represented by the class
‘P of all point separoids.



Theorem 3 The homomorphisms order Bfis universal for finite orders. °

As suggested by Example 3, we can embed the ¢fask(finite) graphs into the clasS of
separoids. Explicitly, let us define the functorg — S as follows: for each grap&y = (V, E),
let ¥(G) = (V, 1) be the separoid wherie} j is a minimal Radon partition iff; € F; and, for
each homomorphism of graphsG — H = (V' E’), let U(p) = . Itis easy to check thak is
an embedding —and in the sequel we often iderdifyith ¥ (G).

It is well known that the category of graphs endowed with homomorphisrasiigersal for
countable categories.e., every countable category can be embedded into the category of graphs.
This implies that

Theorem 4 S is universal for countable categories. °

Analogously, the quasi-ordég, <), where we putz < H whenevelG — H, is auniversal
As an immediate consequence of this fact, we have that

Theorem 5 The homomorphisms order 8fis universal for countable orders. °

Now, let us denote b¢* the closure inS of the classC under products, sums and induced
substructures. For example, it is well-known tigat= K> (see [5]), whereC denotes the class
of complete graphs (see also Theorem 9 and Example 7). Analogous to Theorem 4 we have the
following

Theorem 6 P* is universal for countable categories.

Proof. SinceP contains all complete graphs, thus the cl&$scontains all graphs. °

The category of separoids contains other rich (and natural) categories. We present here another
example: the categoryt of hypergraphgset systems). Recall that a hypergrdph= (V| E) is
a setl endowed with a family of subsets C 2", called edges, and that a homomorphism of
hypergraphd? — H’, whereH’' = (V'  E’), is any mapp: V' — V' which sends edges to edges.

Theorem 7 There exists a functoral embeddifgH — S from the category of hypergraphs into
that of separoids. Therefore is a universal partially ordered class; that is, given a partially
ordered set X', <), there exists a monotone embedding’ — S:

<y <= (r) — (y).

Proof. Let ®:H — S be the function which assigns to each hypergraph- (V, E) (simple

and without isolated points) the separdid= (V' U E, 1), whose minimal Radon partitions are
defined by:U e minimal in SifU C V,e € EandU = e. The function® is injective. Let

©:V — V' be a homomorphism of hypergraphs (the image of edges are edges) that sends the

9



hypergraphi = (V, E) to the hypergraptt{’ = (V’, E’). The mappingp induces a function on
the edges which will be denoted againpyF — E’ and therefore we have also a function

O(p):VUE - V'UFE'.

To see that this functio®(y) is a separoid homomorphisi(H) — ®(H'), observe that
each minimal Radon partitiofi { e is mapped to a minimal Radon partitignl/) 1 ¢(e).

Conversely, let): V U E — V' U E’ be a separoid homomorphist{ H) — ®(H'). First
observe thai)(V) C V’; for, letv € V be avertex and let € U = e € E be an edge that
contains it. Sincé/ 1 e theny(U) 1 ¢ (e) and therefore)(v) € ¥(U) C V'. That s, restricts in
a function fromp = ¢|,: V' — V'. Now, observe that such a restriction is an homomorphism; for,
let U = e € F be an edge thell { e and thereforeo(U) 1 ¢(e). This implies thatp(e) € E’ and
thereforep defines an homomorphism of hypergraphs. Thus we proveditha® (). .

Remark. Theorem 4 (as Theorem 6) prove that the category of finite separoids and all their

homomorphisms is universal for countable categories. But there is a fine distinction here in the
infinite: Theorem 4 gives a full embedding of the category of graphs and for infinite sets the

universality ofG depends on set-theoretical axioms. On the other hand, Theorem 7 above, when
extended to infinite set systems (infinite hypergraphs), gives an absolute result: the catggory

of all hypergraphs is universal and thus also the categqryof all separoids is universal —see

[12] for the background.

3 On Density

In this section we describe the chains of the homomorphisms order of separoids. We will show that
the homomorphisms order of separoidslénsei.e., between any two separoids, there is another
one.

3.1 Sisdense

Let us bring some of the categorical machinery developed in [11]. We will denate-by=+4 T
the fact that, for every separofé holds:

S— P < P-/A~T.

We say thatS —=- T'is aduality pair (e.g.,K; —=+ K, is a duality pair). Also, we say that
S — T'is agapif for all separoidsP,

S—P—T = S~P o P~T
(e.g.,Ky — K, isagap).
A separoidS is connectedf it cannot be expressed as the sum of other two separoids; that is,

S—P+T =—= S5 —P o S—T.
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Lemmab5 LetS —=+ T be a duality pair. Then

1. T is connected, and

2. SxT — Tisagap.

Proof. If T is not connected, thef ~ T, + 171 andT —~ T;. Thereforel; — S and then
T — S which is a contradiction. Now, suppose thatx S — P — T. If T' -/~ P then
P— SandP — T x S. ThereforeP ~ T or P ~ T x S which concludes the proof. °

Theorem 8 If P — (@ is a gap, and?) is not connected, then there exists a gap— 1T with T’
connected. Furthermoré€) ~ 7'+ P andS ~ T x P:

Q~T+P
Ny
T P
\ /
S~Tx P

Proof. LetQ = T + --- + T, where eacll; is connected. Clearllyp — P + T, — (@ and
thenP ~ P+ T,or P+ T, ~ Q. SinceQ) -/ P, there exists & = T; such thatl" -/~ P and
thereforeP + T —/~ P andP + T ~ Q. Finally, letR be such thaP x T' — R — T. Since
P— P+ R—T,thenP ~ P+ Ror P+ R~ T. Therefore, ifl’ -/~ R, thenR — P and
R — T x P which concludes the proof. °

As usual, an ordefX, <) is said to badensef for all z,y € X, if = < y then there exists a
z € X such thatr < z < y; i.e., a dense order is an order without gaps. We now exhibit some
dense classes of separoids. First observe that, due to Theorem 8, when searching for a gap it is
enough to look pairs of objects — T for whichT" is connected.

Theorem 9 P* is dense.

Proof. Let S — T —/~ S, with T" connected, and let = |S| andn’ = |T'|. Consider a point
separoidP in general position, with dimensiat(P) > d(T'), and ordefP| = (d(P) + 2)n".
Clearly,

S— S+ (PxT)—T

S0, it is enough to prove that the opposite arrows does not exist.

SinceT is connected and” —/~ S, every homomorphisii® — S + (P x T') most be
an homomorphismi™ — P x T which, followed by the projection, would lead an homomor-
phism7T — P. However, sinceP is in general position and(P) > d(7), due to the No-
Homomorphism Lemma 3, such an homomorphism does not exist.
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Now, every homomorphisifi + (P x T') — S induces to an homomorphism P x T" — S.
For everyp € P there is a functiorp,: " — S defined asp,(t) = ¢(p,t) —such functions does
not have to be homomorphisms. Since there are at [8é$t= n™ different functions, there exists
a subset”” C P of order|P’'| = d(P) + 2 such that for every, p’ € P’ we have that, = ¢, .
Let A ¥ B be a minimal Radon partition iR[P’].

SinceT -/~ S, there exists a minimal Radon patrtitian; 5 in T such that

e (a) [ op(B) (or wp(a) Ny (B) # ¢).
Buty, (o) = o(p' x a) = (A x a) andy, () = ¢(B x [3), therefore we have also that

op (@) Top(8),

an obvious contradiction. Hence the homomorphisdoes not exists and we are done. .

Example 7. Notice thatP* # S. Itis also easy to see th&* = R. It is natural to ask if

there is a “nice” proper subclass which generates all separoids. Or even more concrete, a nice
proper subclass which generates all Radon separoids. However, it seems that such a nice subclass
may not exist. For, consider the separoid depicted in Figure 2 as an example of a separoid in the
classR N Z \ M. Such a separoid is indeedpaime separoid; i.e., it cannot be expressed as a
product of other two separoids. It is part of an infinite family of prime separoids, each of the form:
S={1,...,n}and

112, 1213, 12314, ..., 1---(n—1)tn.

Observe that the previous family contains an element in each dimension. On the other extreme, we
have that the family of all separoids of 5 or more points in the plamenvex positioifi.e., where

each element is separated from its complement) are prime separoids. We do not know whether
there is a “good” characterisation of prime separoids.

Theorem 9 implies that
Corollary 10 LetC be any class of non-empty separoidsPIfZ C thenC* is dense. °

In particular, the class of all non-empty separoids is dense.

At first glance it seems th&® is responsible for the density &f, however we can find dense
subclasses of separoids which does not arise from point separoids (see the following Remark).

Theorem 11 S\ K, is dense.

Proof. LetS — T -/ S with T' connected. LeP be the separoid of ordeP| = 2|T||S|/"!
and Radon partitions as follows: for evety B C P

AtB < |T| <min{|A},|B|]} and ANDB =é.
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Clearly,d(P) = 2|T| — 2 and P is in general position. We can now prove, analogously as in
Theorem 9, that < S+ P x T < T. o

Remark. If P is the separoid described in the previous proof, tRea Z \ R. ThereforeP is
neither a point separoid nor an oriented matroid nor a graph.

Corollary 12

1. Theonlygapofis Ky — K,
2. The only duality pair o is K1 —=+4 K.

Proof. For the first, due to Theorem 8, there is a gap only if theredsranectecdyap. Therefore,
since there are no other connected gap (Theorem 11), there are no other gap at all.

For the second, due to Lemma 5, there is a duality pair only if there is a gap. Since there are no
other gaps, there are no other duality pairs. °

3.2 ‘Pisnotdense

We now analyse in more detail the densityfofWe first describe thprincipal idealin P generated
by K; i.e., we analyse the class

—>K2:{PEPP—>K2}

(see Figure 4). For, let us denote j@ythe separoid of order+ j with a unique Radon partition
ofthe form{1,...,i} t {i + 1,...,7}. In particular,x} ~ K, andy} is depicted in Figure b.

It is easy to see thaF, is a point separoid of ordeP| = d(P) + 2 if and only if P is defined
by a unique minimal Radon partition, salyt B (see e.g. [10]); therefore; is isomorphic to the
separoidX}jg'| + o, for some simploid.

Lemma 6 Let P be a point separoid.
P— Ky =— P~x Z X;+a,
(ij)el

for some simploid and some set of indicdsc IN?,

Proof. For, it is enough to prove that, # — K, and P is connected, thepP| = d(P) + 2.
So, let us suppose thaP| > d(P) + 3. Let us identify K, with the set{1,2}, wherel { 2,
and lety: P — K, be an homomorphism. Let 1 B be a minimal Radon partition aP, then
|AU B| < d(S) + 2. Furthermore, we may suppose that is minimal over all minimal Radon
partitions. Letc ¢ A U B be another element. Sinde is a Steinitz separoid, there exists a
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d € AU B suchthat{A\ d) T (B \ dU c); furthermore, by the minimality off, we may suppose
thatd € B and thenA { (B \ dU ¢). Now, with out loose of generality, suppose th&tl) = 1 and
©(B\ dUc) = 2; in particular,p(c) = 2. But then, by the same Steinitz argument, there exists an
e € AUBsuchthat A\ eUc) t (B e) which implies thato(A \ eUc) Np(B \ e) # 0. This

contradicts the fact that is a homomorphism. °
N ° o e
0y T @0
. 7 e ™\ 0 N
—3» EEHR -2
\ \ o
Q O

‘& > e
7 0550 o o
Figure 4. The intervalK; — K5 in P.

It follows immediately that,

Corollary 13 x',, + X" — x}isagapinP.

J
Proof. Simply observe that if < j and/ < m theny! — X§- ifand only if: < /andj < m.
The result follows from Lemma 6. °

More generally, let us denote bly- || the number of minimal Radon partitions.

Theorem 14 Let Z be a Steinitz separoid in general position, aRd Radon separoid. Then

7 — R = ||Z|] < |R|.

Proof. Let ¢: Z — R be a homomorphism. IfZ|| > ||R| then there are two minimal Radon
partitions of Z, say A; T B;, for i = 1,2, mapping into the same minimal Radon partitionfof
atp, sayp(A;) = aandp(B;) = (. With out loose of generality, we may suppose that there
exists anr € A, \ A; (observe that: ¢ B;). SinceZ is in general position and it is Steinitz,
|A; UB;| =d(Z)+2andthere existsae A; U B; such that 4, \ y) T (By \ yUx) isaminimal
Radon partition of7.

Suppose thay € B;. Thenp(A; \ y) = ¢(A;) = aandy(x) € (B, \ yUz) Na. These
contradict the fact thap(A; \ y) T ¢(B1 \ y U z) is a minimal Radon partition aR.

So,y € A;. Sincep(A; \ y) = « leads to same contradiction as before, we may suppose that
(A1 \y) =a\ ¢(y). Also,p(B; Uz) = fU ¢(x). From here it follows that

a\py)NBUp(@)#0 or ()= ¢(y).

14



The first case contradicts thatis a homomorphism; the second thiats a Radon separoid. e

Remark. It is easy to see that iP is a point separoid in general position thgR|| = (diQ),
wheren = |P| andd = d(P). SinceP C R N Z, it follows immediately that ifP — K, then

(,45) < (5). Thus, the point separoids rarely maps into complete separoids.

This has to be contrasted with graphs which always maps into complete ones. Furthermore,
complete graphs are those graphsvith the property that, it — G then such a homomorphism
has to be an embedding. This motivates the following definition. We say that a separeid
epifinalif every homomorphisn¥” — T is an embedding (e.g., the vertices of the pentagon form
an epifnal point separoid). It is easy to see that epifinal separoids are prime.

Let P* the point separoid obtained frof by blowing the pointu € P; that is, P" is the
separoid defined i \ {u} U {«, «”} with minimal Radon partitions of the form (see Figure 5):

{AT(B\{U}U{U’,u”}) if ue B,
At B ifug AU B.

For example, the vertices of theoctahedron —also known as thecrosspolytope, which is the
dual polytope of thei-cube— can be obtained by blowing all points/cf.

S

i

Figure 5. Blowing a vertex of the pentagon.

We have the following

Conjecture. If P is epifinal inP, then)_ _, P* — Pisagap inP.

4 On the chromatic number

It is clear from the remark after Theorem 14 that we cannot define the chromatic number of a
separoid in terms of the minimum complete graph where it can be mapped with a homomorphism.
However, we can generalise this important invariant as follows. We say that a colgushg-
{1,...,k} is aproper k-colouring if for every minimal Radon partitiotd { B it follows that

f(A) N f(B) = 0. Thechromatic numbepf a separoidy(.S) is the minimumk such that there
exists a propek-colouring ofS. A standard argument shows the following
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Lemma 7

1. S —T = x(S) < x(T),
2. x(S)=min|T|: S — T,
3. x(SxT) <min{x(S), x(T)}. o

Hedetniemi conjectured that, in the class of graphs, the inequalByisnn fact an equality.
This conjecture can be strength in terms of homomorphisms as follows:

SxT—P < S—P o T—P

In this direction, we have the following

Theorem 15 Let R be a Radon separoidy/ an oriented matroid, andr a graph. Then

RxM-—G and M-/+~G = R—G.

Proof. SinceM -/ G we may suppose that there exists a Radon partiign? in M. Let
¥: M x S — G be an homomorphism. For eaghe S, we can define the function,(m) = ¢
whenever)(m,s) = g. If At Bin S, theny(A x «) T (B x 3) in G and therefore

vala) T¥5(0) € G.

Now, observe the following; sinc@ is a graph, them4(a)| = |¢5(8)| = 1. Sayyva(a) = v
andyp(8) = u, wherev 1 u € G. Now, sinceM is an oriented matroid, then, = v andyg = u
are constant functions.

Let pap: S[A U B] — G be defined as

cA
QDAB(S):{Z ieB'

Theny 4 is @a homomorphism. Sinck is a Radon separoid, we can extend this homomorphism
to obtain a homomorphism: S — G such thatp| 4o = w45 and we are done. °
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