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Abstract

A separoid is a symmetric relation† ⊂
(
2S

2

)
defined on disjoint pairs of subsets of a

given setS such that it is closed as a filter in the canonical partial order induced by the in-
clusion (i.e.,A † B � A′ † B′ ⇐⇒ A ⊆ A′ andB ⊆ B′). We introduce the notion of
homomorphismas maps which preserve the so-called “minimal Radon partitions” and show
that separoids, endowed with these maps, admits an embedding from the category of all finite
graphs. This proves that separoids constitute acountable universal partial order. Furthermore,
by embedding also all hypergraphs (all set systems) into such a category, we prove a “stronger”
universality property.

We further study some structural aspects of the category of separoids. We completely solve
thedensityproblem for (all) separoids as well as for separoids of points. We also generalise
the classic Radon’s theorem in a categorical setting as well as Hedetniemi’s product conjecture
(which can be proved for oriented matroids).

Key words: Graphs; Separoids; Homomorphisms; Universality; Density; Radon’s theorem;
Oriented Matroids; Hedetniemi’s conjecture.

1 Preliminaries

In order to be self-contained, we start with some basic definitions and examples.
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1.1 The objects

A separoid[1, 3, 8, 9, 10, 14, 15, 16, 17] is a (finite) setS endowed with a symmetric relation
† ⊂

(
2S

2

)
defined on its family of subsets with the following properties: ifA,B ⊆ S then

• A †B =⇒ A ∩B = ∅,
•• A †B and B ⊂ B′ ⊆ S \ A =⇒ A †B′.

A related pairA † B is called aRadon partition(and we often say “A is not separated fromB”).
Each part,A andB, is known as a(Radon) componentand their unionA∪B is called thesupport
of the partition. Theorder of the separoid is the cardinal|S|, and itssizethe cardinal| † |, the
number of Radon partitions. Due to the second condition, if the separoid is finite, thenminimal
Radon partitions determines the separoid. The separoid is sometimes denotes as the pair(S, †).

A pair of disjoint setsα, β ⊆ S that are not a Radon partition, are said to beseparatedand
denotedα | β. The separation relation is a symmetric,quasi-antireflexiveandideal relation; that
is, it satisfies forα, β ⊆ S:

◦ α | α =⇒ α = ∅,
◦◦ α | β and β′ ⊂ β =⇒ α | β′.

The separoid is sometimes denoted as the pair(S, |).

Clearly† and| determine each other; they are related by the following equivalence

A †B ⇐⇒ A 6 | B and A ∩B = φ.

We say that the separoidS is acyclic if ∅ | S.

Examples:

1. Consider a (non-empty) subsetX ⊆ IEd of thed-dimensional Euclidean space and define the
following relation

A †B ⇐⇒ 〈A〉 ∩ 〈B〉 6= φ and A ∩B = φ,

where〈A〉 denotes de convex hull of A. The pairP = (X, †) is a separoid and will be called a
point separoid. Indeed, the notion of separoid arises as an abstraction of the well-known Radon’s
lemma [13]:if the setX ⊂ IEd consists of at leastd+2 points, then there exist two disjoint subsets
of it that are not separated (i.e., their convex hulls do intersect). The class of all point separoids is
denoted byP.

2. Generalising the previous example, consider a familyF of convex sets inIEd —instead of
points— and define the separoidS(F ) as above; that is, two subsets of the familyA,B ⊆ F
are separatedA | B if there exists a hyperplane that leaves all members ofA on one side of it
and those ofB on the other. Clearly,S(F ) = (F, |) is a separoid. Indeed, all separoids can be
represented in this way; i.e., given a separoidsS, there exists a family of convex setsF such that
S is isomorphic toS(F ); furthermore, if the separoid is acyclic, then it can be represented in the
(|S| − 1)-dimensional space (see [16, 17]). The class of all separoids is denoted byS.
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3. Consider a (simple) graphG = (V,E) and define two elementsu, v ∈ V of the vertex set to
be a minimal Radon partitionu † v if and only if the pair is an edgeuv ∈ E. ThenS(G) = (V, †)
is also a separoid. In fact, as we shall see on Theorem 5, this correspondence is an embedding
of the category of graphs into the category of separoids, when both classes are endowed with
homomorphisms. The class of all graphs is denoted byG.

4. Consider an oriented matroidM = (E,C) defined in terms of its circuitsC ⊂ {−, 0,+}E,
in the usual way (see [2]). Define the following relation† ⊂

(
2E

2

)
on the subsets ofE: A † B is a

minimal Radon partition if and only if there exist a circuitX ∈ C such that

A = X+ := {e ∈ E : Xe = +} and B = X− := {e ∈ E : Xe = −}.

Clearly S(M) = (E, †) is a separoid. Furthermore, the separoid is acyclic if and only if the
oriented matroid is acyclic. The class of all oriented matroids is denoted byM.

5. All acyclic separoids of order 3 come from one of the eight families of convex bodies depicted
in Figure 1. Those labelleda, b, eandh are point separoids.

Figure 1. The acyclic separoids of order 3.

Example 1 suggest the following definitions. Thedimensiond(S) of a separoid is the minimum
numberd such that every subset withd + 2 elements is the support of a Radon partition. Equiva-
lently, the dimension of a separoid is the maximumd such that there exists a subsetσ with d + 1
elements such that every subset of it is separated from its relative complement:

α ⊂ σ =⇒ α | (σ \ α). (?)

A separoidσ with property(?) is called asimploidbecause it can be represented with the vertex
set of a simplex (Figure 1.a represents the simploid of dimension 2). We say that a separoidS is
in general positionif no subset withd(S) + 1 elements is the support of a Radon partition; i.e., if
every subset withd(S) + 1 elements induces a simploid.

We say that a separoid is aRadon separoidif every minimal Radon partitions is unique in its
support; that is, ifA †B andC †D are minimal, then

A ∪B = C ∪D =⇒ {A,B} = {C,D}.
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The class of Radon separoids is denoted byR.

We say that the separoidS is a Steinitz separoidif it satisfies the Steinitz exchange axiom;
namely, ifA †B is a Radon partition whose support consists ofd(S) + 2 elements, then

∀x 6∈ A ∪B ∃y ∈ A ∪B : (A \ y) † (B \ y ∪ x).

The class of Steinitz separoids is denoted byZ.

Figure 2. Some classes of separoids.

An oriented matroidis a Radon separoid whose minimal Radon partitions satisfies the week
elimination axiom: ifAi † Bi, for i = 1, 2, are minimal Radon partitions for which there exists an
x ∈ B1 ∩ A2, then there exists a minimal Radon partitionC †D such that

⋂
Ai ⊆ C,

⋂
Bi ⊆ D

andx 6∈ C ∪D. As observed by Las Vergnas [7], oriented matroids are Steinitz separoids; that is,
M⊂ R∩Z (see Figure 2).

Finally, we say that a separoid is agraph(recall Example 3), if for every minimal Radon parti-
tionA † B we have that|A||B| = 1; that is, the minimal Radon partitions are pairs of singletons.
Observe thatG ⊂ R.

1.2 The homomorphisms

Since it is enough to know minimal Radon partitions to reconstruct a finite separoid, we can con-
centrate on the study of them. In particular —when defining an operation (see below)— it is
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enough to define some partitions and generate the separoid as the minimal symmetric filter con-
taining the given set as Radon partitions. That is, we can define a separoidS by defining a set of
generators of the symmetric filter(S, †,�), whereA †B � C †D if A ⊆ C andB ⊆ D.

Let S andT be two separoids. A mapping fromS to T is called ahomomorphismif the image
of minimal Radon partitions are minimal Radon partitions. That is, a homomorphism is a mapping
ϕ : S → T that satisfy for allA,B ⊆ S,

A †B minimal =⇒ ϕ(A) † ϕ(B) minimal

(as usual, we putϕ(A) = {ϕ(x);x ∈ A}).

Two separoids areisomorphicS ≈ T if there is a bijective homomorphism between them
whose inverse function is also a homomorphism. IfS ⊂ T is a subset of a separoid, theinduced
separoidT [S] is the restriction toS. An embeddingS ↪→ T is an injective homomorphism that is
an isomorphism between the domain and the induced separoid of its image.

From now on, we will denote byS −→ T the fact that there exists an homomorphism from
the separoidS to the separoidT , and byS 6−→ T the other case. Also, ifS ''

Tgg then we write
S ∼ T . This last defines an equivalence relation and, in its equivalence classes, a partially ordered
class called thehomomorphisms order(see [4]):

S ≤ T ⇐⇒ S −→ T.

The homomorphisms order is in fact a lattice. This is useful as separoids generalise several
structures (e.g. oriented matroids) where the categorical notions are hard to define (see [6]). It is a
pleasing fact that the category of separoids homomorphisms has products× and sums+ and they
play the role of the meet (infimum) and the joint (supremum), respectively.

Given two separoidsP andT , their product is the separoid defined on the Cartesian product
P × T , with projectionsπ andτ respectively, generated by the set{

A †B ∈
(

2P×T

2

)
: π(A) † π(B) andτ(A) † τ(B) are minimal

}
.

Given two separoidsP andT , their sumis the separoid defined on the disjoint unionP ∪ T
generated by the set{

A †B ∈
(

2P+T

2

)
: A †B is minimal inP or in T

}
.

Example 6. Consider the point separoid depicted in Figure 1.b and denote its elements byP =
{−, 0,+}, where{0} † {−+}. The productP 2 = P ×P is a separoid of order9 and dimension6.
P 2 is also the sumS + T of two separoid:S, of order5 and dimension3, with the two minimal
Radon partitions{00}†{−−,++} and{00}†{−+,+−}; andT , of order4 and dimension2, with
the unique Radon partition{0−, 0+} † {−0,+0}. P 2 = S + T is depicted in Figure 3. Observe
thatP 2 is not a point separoid (nor an oriented matroid).
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Figure 3. An example whereP ∈ P butP 2 6∈ P.

It is easy to see that these constructions have the expected categorical properties:

Lemma 1

1. S −→ P × T ⇐⇒ S −→ P and S −→ T,

2. P + T −→ S ⇐⇒ P −→ S and T −→ S. •

1.3 A comment on Radon’s lemma

One can be tempted to study maps which preserveall Radon partitions —not only the minimal
ones. We call such mapsstrong morphisms. In the category of separoids endowed with strong
morphisms, Radon’s lemma can be formulated as follows (cf. Lemma 6):

Theorem 1 (Radon 1921)S is a point separoid of order|S| = d(S) + 2 if and only if

S 6−→ K1 and S −→ K2 + σ,

whereσ is a simploid. Furthermore, in such a case,σ = ∅ if and only ifS is in general position.

Proof. A separoidS is a point separoid of orderd(S) + 2 if and only if it is determined by a
unique minimal Radon partitionA † B. PutC = S \ (A ∪ B) and letC = {c0, . . . , cd}. Now, let
K2 = {a, b}, wherea † b, andσd = {c′0, . . . , c′d}. Clearly the functionϕ:S → K2 + σd, where

ϕ(s) =


a if s ∈ A,
b if s ∈ B,
c′i if s = ci,

is a strong morphism of separoids. Conversely, ifS −→ K2 + σ, then the preimage ofK2 de-
termines a unique minimal Radon partitions ofS. Furthermore, if this is the case,S is in general
position if and only ifA ∪B = S. •

6



However the category of separoids’ strong morphisms seems to be less rich than that of homo-
morphisms and too restrictive to our purposes. In particular, such a category does not have a nice
product. For this, consider the separoidsP3 = {0, 1, 2} where0 † 12, andK2 = {a, b} wherea † b.
Let us denote byP3×K2 = {0a, 0b, 1a, 1b, 2a, 2b} the elements of the product and byπ andκ the
two projections. IfA †B implies thatπ(A) † π(B) andκ(A) † κ(B) then the natural candidates to
A andB areA = {0a},B = {1b, 2b}. However this would imply thatA †B ∪ {0b} but,

π(0a) ∩ π(0b, 1b, 2b) = {0} ∩ {0, 1, 2} = {0} 6= φ.

ThereforeP3 ×K2 should have size 0. In other words, while working with strong morphisms, the
product of these separoids is equivalent to the simpliod. This collapse seem to be occurring too
often to make the concept of strong morphism interesting.

1.4 Basic properties

In this section we review some very basic facts about the homomorphism order and some of its
invariants. In the sequel, we will denote byKk the (acyclic) complete separoid; i.e.,Kk is the
separoid which, for alli, j ∈ Kk we have thati † j —clearly,Kk is the complete graph, hence the
notation. Recall also that thed-dimensional simploidis the separoidS of order|S| = d + 1 and
size 0. Simploids play the roll ofindependent setsand are usually denoted byσ. A straight-forward
argument shows that

Lemma 2 The following statements are equivalent:

1. S is a simploid.

2. |S| = d(S) + 1.

3. S −→ K1.

4. ∀T 6= ∅ : S −→ T . •

In the study of homomorphisms, it is useful to have simple conditions which forbids them. The
following is similar to theNo-Homomorphismlemma (cf. [5]).

Lemma 3 LetT be a separoid in general position. IfS 6−→ K1 andS −→ T thend(S) ≥ d(T ).

Proof. For the contrary, suppose thatd(S) < d(T ) (and thend(S) + 2 ≤ d(T ) + 1). Since
S 6−→ K1, due to Lemma 2, the order ofS is at leastd(S) + 2. Then there exists a minimal Radon
partitionA†B such that|A∪B| ≤ d(S)+2. If ϕ:S → T is a function, then|ϕ(A∪B)| ≤ d(T )+1.
SinceT is in general position,T [ϕ(A ∪ B)] ∼ K1 andA is separated fromB. Thereforeϕ is not
an homomorphism. •

This result has to be contrasted with the No-Homomorphism lemma for graphs. There the
“general position” hypothesis is replaced by the “vertex transitive” one. However, as the vertices
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of the regular 3-cube shows, in this broader context these hypothesis cannot be interchanged —
observe that graphs, unless complete or completely disconnected, are not in general position.

The following result plays the roll of the well-known Erdős inequality|G| ≤ χ(G)α(G).

Lemma 4 If S −→ T then|S| < |T |(d(S) + 2).

Proof. If |S| ≥ |T |(d(S) + 2), by the pigeon-hole principle, in any functionϕ:S → T there most
bed(S) + 2 elements ofS mapping into the same element ofT and ‘colapsing’ a minimal Radon
partition. •

Observe that for graphs, this is an immediate consequence of Erdős inequality. For, suppose
there is a homomorphism of graphsG −→ H, and denote byα(G) = d(G) + 1 the independence
number ofG. Then

|G|
α(G) + 1

<
|G|
α(G)

≤ χ(G) ≤ χ(H) ≤ |H|.

In the study of any partial order, it is natural to ask how does itschains(induced linear orders)
andatichains(subsets of incomparable elements) looks like. We close this section describing the
antichains ofS —we will describe the chains in Section 3. As an immediate application of the
previous two lemmas, we have that

Theorem 2 The only maximal and finite antichains in the homomorphism order of separoids are
{K0} and{K1}. That is, given any other finite antichain

A = {S1, . . . , Sk : i 6= j =⇒ Si 6−→ Sj},

there exists a (point) separoidP 6∈ A such thatA ∪ {P} remains an antichain.

Proof. LetA = {S1, . . . , Sk} be a finite antichain. Letd be a number such that

d > max d(Si), (∗)

and letn be a number such that
n > (d+ 2) max |Si|. (∗∗)

Now, let P ⊂ IEd be ad-dimensional separoid ofn points in general position. Due to(∗) and
Lemma 3,Si 6−→ P ; and due to(∗∗) and Lemma 4,P 6−→ Si. Therefore,A ∪ {P} is an
antichain. •

2 On Universality

Let Aω be thecountable antichain; that is, the order type of a countable set of incomparable
elements. Theorem 2 shows thatAω can be represented byP. Let Cω be thecountable chain; i.e,
the usual order type of the natural numbers (sometimes simply denoted byω). It is easy to see that
Cω can also be represented byP (e.g., consider the chainK1 −→ K2 −→ · · ·). It is well known
(see e.g. [5]) that these two facts implies that any finite partial order can be represented by the class
P of all point separoids.
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Theorem 3 The homomorphisms order ofP is universal for finite orders. •

As suggested by Example 3, we can embed the classG of (finite) graphs into the classS of
separoids. Explicitly, let us define the functorΨ:G ↪→ S as follows: for each graphG = (V,E),
let Ψ(G) = (V, †) be the separoid wherei † j is a minimal Radon partition iffij ∈ E; and, for
each homomorphism of graphsϕ:G → H = (V ′, E ′), let Ψ(ϕ) = ϕ. It is easy to check thatΨ is
an embedding —and in the sequel we often identifyG with Ψ(G).

It is well known that the category of graphs endowed with homomorphisms isuniversal for
countable categories; i.e., every countable category can be embedded into the category of graphs.
This implies that

Theorem 4 S is universal for countable categories. •

Analogously, the quasi-order(G,≤), where we putG ≤ H wheneverG −→ H, is auniversal.
As an immediate consequence of this fact, we have that

Theorem 5 The homomorphisms order ofS is universal for countable orders. •

Now, let us denote byC× the closure inS of the classC under products, sums and induced
substructures. For example, it is well-known thatG = K× (see [5]), whereK denotes the class
of complete graphs (see also Theorem 9 and Example 7). Analogous to Theorem 4 we have the
following

Theorem 6 P× is universal for countable categories.

Proof. SinceP contains all complete graphs, thus the classP× contains all graphs. •

The category of separoids contains other rich (and natural) categories. We present here another
example: the categoryH of hypergraphs(set systems). Recall that a hypergraphH = (V,E) is
a setV endowed with a family of subsetsE ⊆ 2V , called edges, and that a homomorphism of
hypergraphsH −→ H ′, whereH ′ = (V ′, E ′), is any mapϕ:V → V ′ which sends edges to edges.

Theorem 7 There exists a functoral embeddingΦ:H ↪→ S from the category of hypergraphs into
that of separoids. Therefore,S is a universal partially ordered class; that is, given a partially
ordered set(X ,≤), there exists a monotone embeddingι:X ↪→ S:

x ≤ y ⇐⇒ ι(x) −→ ι(y).

Proof. Let Φ:H ↪→ S be the function which assigns to each hypergraphH = (V,E) (simple
and without isolated points) the separoidS = (V ∪ E, †), whose minimal Radon partitions are
defined by:U † e minimal in S if U ⊆ V , e ∈ E andU = e. The functionΦ is injective. Let
ϕ:V → V ′ be a homomorphism of hypergraphs (the image of edges are edges) that sends the
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hypergraphH = (V,E) to the hypergraphH ′ = (V ′, E ′). The mappingϕ induces a function on
the edges which will be denoted again byϕ:E → E ′ and therefore we have also a function

Φ(ϕ):V ∪ E → V ′ ∪ E ′.

To see that this functionΦ(ϕ) is a separoid homomorphismΦ(H) −→ Φ(H ′), observe that
each minimal Radon partitionU † e is mapped to a minimal Radon partitionϕ(U) † ϕ(e).

Conversely, letψ:V ∪ E → V ′ ∪ E ′ be a separoid homomorphismΦ(H) −→ Φ(H ′). First
observe thatψ(V ) ⊆ V ′; for, let v ∈ V be a vertex and letv ∈ U = e ∈ E be an edge that
contains it. SinceU † e thenψ(U) † ψ(e) and thereforeψ(v) ∈ ψ(U) ⊆ V ′. That is,ψ restricts in
a function fromϕ = ψ|V :V → V ′. Now, observe that such a restriction is an homomorphism; for,
let U = e ∈ E be an edge thenU † e and thereforeϕ(U) † ϕ(e). This implies thatϕ(e) ∈ E ′ and
thereforeϕ defines an homomorphism of hypergraphs. Thus we proved thatψ = Φ(ϕ). •

Remark. Theorem 4 (as Theorem 6) prove that the category of finite separoids and all their
homomorphisms is universal for countable categories. But there is a fine distinction here in the
infinite: Theorem 4 gives a full embedding of the category of graphs and for infinite sets the
universality ofG depends on set-theoretical axioms. On the other hand, Theorem 7 above, when
extended to infinite set systems (infinite hypergraphs), gives an absolute result: the categoryH∞
of all hypergraphs is universal and thus also the categoryS∞ of all separoids is universal —see
[12] for the background.

3 On Density

In this section we describe the chains of the homomorphisms order of separoids. We will show that
the homomorphisms order of separoids isdense; i.e., between any two separoids, there is another
one.

3.1 S is dense

Let us bring some of the categorical machinery developed in [11]. We will denote byS →=6→ T
the fact that, for every separoidP holds:

S −→ P ⇐⇒ P 6−→ T.

We say thatS →=6→ T is aduality pair (e.g.,K1 →=6→ K0 is a duality pair). Also, we say that
S −→ T is agap if for all separoidsP ,

S −→ P −→ T =⇒ S ∼ P or P ∼ T

(e.g.,K0 −→ K1 is a gap).

A separoidS is connectedif it cannot be expressed as the sum of other two separoids; that is,

S −→ P + T =⇒ S −→ P or S −→ T.
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Lemma 5 LetS →=6→ T be a duality pair. Then

1. T is connected, and

2. S × T −→ T is a gap.

Proof. If T is not connected, thenT ≈ T0 + T1 andT 6−→ Ti. ThereforeTi −→ S and then
T −→ S which is a contradiction. Now, suppose thatT × S −→ P −→ T . If T 6−→ P then
P −→ S andP −→ T × S. ThereforeP ∼ T or P ∼ T × S which concludes the proof. •

Theorem 8 If P −→ Q is a gap, andQ is not connected, then there exists a gapS −→ T with T
connected. Furthermore,Q ∼ T + P andS ≈ T × P :

Q ∼ T + P

T

99sssssssssss
P

∀

eeKKKKKKKKKKK

S ≈ T × P

∃
eeKKKKKKKKKKK

99sssssssssss

Proof. Let Q = T1 + · · · + Tk, where eachTi is connected. ClearlyP −→ P + Ti −→ Q and
thenP ∼ P + Ti or P + Ti ∼ Q. SinceQ 6−→ P , there exists aT = Ti such thatT 6−→ P and
thereforeP + T 6−→ P andP + T ∼ Q. Finally, letR be such thatP × T −→ R −→ T . Since
P −→ P +R −→ T , thenP ∼ P +R or P +R ∼ T . Therefore, ifT 6−→ R, thenR −→ P and
R −→ T × P which concludes the proof. •

As usual, an order(X,≤) is said to bedenseif for all x, y ∈ X, if x < y then there exists a
z ∈ X such thatx < z < y; i.e., a dense order is an order without gaps. We now exhibit some
dense classes of separoids. First observe that, due to Theorem 8, when searching for a gap it is
enough to look pairs of objectsS −→ T for whichT is connected.

Theorem 9 P× is dense.

Proof. Let S −→ T 6−→ S, with T connected, and letn = |S| andn′ = |T |. Consider a point
separoidP in general position, with dimensiond(P ) > d(T ), and order|P | = (d(P ) + 2)nn′

.
Clearly,

S −→ S + (P × T ) −→ T

so, it is enough to prove that the opposite arrows does not exist.

SinceT is connected andT 6−→ S, every homomorphismT −→ S + (P × T ) most be
an homomorphismT −→ P × T which, followed by the projection, would lead an homomor-
phismT −→ P . However, sinceP is in general position andd(P ) > d(T ), due to the No-
Homomorphism Lemma 3, such an homomorphism does not exist.
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Now, every homomorphismS+(P ×T ) −→ S induces to an homomorphismϕ:P ×T −→ S.
For everyp ∈ P there is a functionϕp:T → S defined asϕp(t) = ϕ(p, t) —such functions does
not have to be homomorphisms. Since there are at most|ST | = nn′

different functions, there exists
a subsetP ′ ⊆ P of order|P ′| = d(P ) + 2 such that for everyp, p′ ∈ P ′ we have thatϕp = ϕp′.
LetA †B be a minimal Radon partition inP [P ′].

SinceT 6−→ S, there exists a minimal Radon partitionα † β in T such that

ϕp′(α) | ϕp′(β) (or ϕp′(α) ∩ ϕp′(β) 6= φ).

But ϕp′(α) = ϕ(p′ × α) = ϕ(A× α) andϕp′(β) = ϕ(B × β), therefore we have also that

ϕp′(α) † ϕp′(β),

an obvious contradiction. Hence the homomorphismϕ does not exists and we are done. •

Example 7. Notice thatP× 6= S. It is also easy to see thatR× = R. It is natural to ask if
there is a “nice” proper subclass which generates all separoids. Or even more concrete, a nice
proper subclass which generates all Radon separoids. However, it seems that such a nice subclass
may not exist. For, consider the separoid depicted in Figure 2 as an example of a separoid in the
classR ∩ Z \ M. Such a separoid is indeed aprime separoid; i.e., it cannot be expressed as a
product of other two separoids. It is part of an infinite family of prime separoids, each of the form:
S = {1, . . . , n} and

1 † 2, 12 † 3, 123 † 4, . . . , 1 · · · (n− 1) † n.

Observe that the previous family contains an element in each dimension. On the other extreme, we
have that the family of all separoids of 5 or more points in the plane inconvex position(i.e., where
each element is separated from its complement) are prime separoids. We do not know whether
there is a “good” characterisation of prime separoids.

Theorem 9 implies that

Corollary 10 LetC be any class of non-empty separoids. IfP ⊆ C thenC× is dense. •

In particular, the class of all non-empty separoids is dense.

At first glance it seems thatP is responsible for the density ofS; however we can find dense
subclasses of separoids which does not arise from point separoids (see the following Remark).

Theorem 11 S \K0 is dense.

Proof. Let S −→ T 6−→ S with T connected. LetP be the separoid of order|P | = 2|T ||S||T |
and Radon partitions as follows: for everyA,B ⊆ P

A †B ⇐⇒ |T | ≤ min{|A|, |B|} and A ∩B = φ.
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Clearly, d(P ) = 2|T | − 2 andP is in general position. We can now prove, analogously as in
Theorem 9, thatS < S + P × T < T . •

Remark. If P is the separoid described in the previous proof, thenP ∈ Z \ R. ThereforeP is
neither a point separoid nor an oriented matroid nor a graph.

Corollary 12

1. The only gap ofS isK0 −→ K1,

2. The only duality pair ofS isK1 →=6→ K0.

Proof. For the first, due to Theorem 8, there is a gap only if there is aconnectedgap. Therefore,
since there are no other connected gap (Theorem 11), there are no other gap at all.

For the second, due to Lemma 5, there is a duality pair only if there is a gap. Since there are no
other gaps, there are no other duality pairs. •

3.2 P is not dense

We now analyse in more detail the density ofP. We first describe theprincipal idealinP generated
byK2; i.e., we analyse the class

−→ K2 := {P ∈ P : P −→ K2}

(see Figure 4). For, let us denote byχi
j the separoid of orderi + j with a unique Radon partition

of the form{1, . . . , i} † {i+ 1, . . . , j}. In particular,χ1
1 ≈ K2 andχ1

2 is depicted in Figure 1.b.

It is easy to see that,P is a point separoid of order|P | = d(P ) + 2 if and only if P is defined
by a unique minimal Radon partition, sayA † B (see e.g. [10]); therefore,P is isomorphic to the
separoidχ|A||B| + σ, for some simploidσ.

Lemma 6 LetP be a point separoid.

P −→ K2 =⇒ P ≈
∑

(i,j)∈I

χi
j + σ,

for some simploidσ and some set of indicesI ⊂ IN2.

Proof. For, it is enough to prove that, ifP −→ K2 andP is connected, then|P | = d(P ) + 2.
So, let us suppose that|P | ≥ d(P ) + 3. Let us identifyK2 with the set{1, 2}, where1 † 2,
and letϕ:P → K2 be an homomorphism. LetA † B be a minimal Radon partition ofP , then
|A ∪ B| ≤ d(S) + 2. Furthermore, we may suppose that|A| is minimal over all minimal Radon
partitions. Letc 6∈ A ∪ B be another element. SinceP is a Steinitz separoid, there exists a
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d ∈ A ∪ B such that(A \ d) † (B \ d ∪ c); furthermore, by the minimality ofA, we may suppose
thatd ∈ B and thenA † (B \ d∪ c). Now, with out loose of generality, suppose thatϕ(A) = 1 and
ϕ(B \ d ∪ c) = 2; in particular,ϕ(c) = 2. But then, by the same Steinitz argument, there exists an
e ∈ A ∪ B such that(A \ e ∪ c) † (B \ e) which implies thatϕ(A \ e ∪ c) ∩ ϕ(B \ e) 6= ∅. This
contradicts the fact thatϕ is a homomorphism. •

Figure 4. The intervalK1 −→ K2 in P.

It follows immediately that,

Corollary 13 χi
j+1 + χi+1

j −→ χi
j is a gap inP.

Proof. Simply observe that ifi ≤ j and` ≤ m thenχ`
m −→ χi

j if and only if i ≤ ` andj ≤ m.
The result follows from Lemma 6. •

More generally, let us denote byb| · |c the number of minimal Radon partitions.

Theorem 14 LetZ be a Steinitz separoid in general position, andR a Radon separoid. Then

Z −→ R =⇒ b|Z|c ≤ b|R|c.

Proof. Let ϕ:Z → R be a homomorphism. Ifb|Z|c > b|R|c then there are two minimal Radon
partitions ofZ, sayAi † Bi, for i = 1, 2, mapping into the same minimal Radon partition ofR
α † β, sayϕ(Ai) = α andϕ(Bi) = β. With out loose of generality, we may suppose that there
exists anx ∈ A2 \ A1 (observe thatx 6∈ B1). SinceZ is in general position and it is Steinitz,
|A1 ∪B1| = d(Z) + 2 and there exists ay ∈ A1 ∪B1 such that(A1 \ y) † (B1 \ y ∪ x) is a minimal
Radon partition ofZ.

Suppose thaty ∈ B1. Thenϕ(A1 \ y) = ϕ(A1) = α andϕ(x) ∈ ϕ(B1 \ y ∪ x) ∩ α. These
contradict the fact thatϕ(A1 \ y) † ϕ(B1 \ y ∪ x) is a minimal Radon partition ofR.

So,y ∈ A1. Sinceϕ(A1 \ y) = α leads to same contradiction as before, we may suppose that
ϕ(A1 \ y) = α \ ϕ(y). Also,ϕ(B1 ∪ x) = β ∪ ϕ(x). From here it follows that

α \ ϕ(y) ∩ β ∪ ϕ(x) 6= ∅ or ϕ(x) = ϕ(y).

14



The first case contradicts thatϕ is a homomorphism; the second thatR is a Radon separoid. •

Remark. It is easy to see that ifP is a point separoid in general position thenb|P |c =
(

n
d+2

)
,

wheren = |P | andd = d(P ). SinceP ⊂ R ∩ Z, it follows immediately that ifP −→ Kk then(
n

d+2

)
≤

(
k
2

)
. Thus, the point separoids rarely maps into complete separoids.

This has to be contrasted with graphs which always maps into complete ones. Furthermore,
complete graphs are those graphsK with the property that, ifK −→ G then such a homomorphism
has to be an embedding. This motivates the following definition. We say that a separoidF is
epifinal if every homomorphismF −→ T is an embedding (e.g., the vertices of the pentagon form
an epifnal point separoid). It is easy to see that epifinal separoids are prime.

Let P u the point separoid obtained fromP by blowing the pointu ∈ P ; that is,P u is the
separoid defined inP \ {u} ∪ {u′, u′′} with minimal Radon partitions of the form (see Figure 5):{

A † (B \ {u} ∪ {u′, u′′}) if u ∈ B,
A †B if u 6∈ A ∪B.

For example, the vertices of then-octahedron —also known as then-crosspolytope, which is the
dual polytope of then-cube— can be obtained by blowing all points ofKn.

Figure 5. Blowing a vertex of the pentagon.

We have the following

Conjecture. If P is epifinal inP, then
∑

u∈P P
u −→ P is a gap inP.

4 On the chromatic number

It is clear from the remark after Theorem 14 that we cannot define the chromatic number of a
separoid in terms of the minimum complete graph where it can be mapped with a homomorphism.
However, we can generalise this important invariant as follows. We say that a colouringf :S →
{1, . . . , k} is a proper k-colouring if for every minimal Radon partitionA † B it follows that
f(A) ∩ f(B) = ∅. Thechromatic numberof a separoidχ(S) is the minimumk such that there
exists a properk-colouring ofS. A standard argument shows the following
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Lemma 7

1. S −→ T =⇒ χ(S) ≤ χ(T ),

2. χ(S) = min |T | : S −→ T ,

3. χ(S × T ) ≤ min{χ(S), χ(T )}. •

Hedetniemi conjectured that, in the class of graphs, the inequality in3 is in fact an equality.
This conjecture can be strength in terms of homomorphisms as follows:

S × T −→ P ⇐⇒ S −→ P or T −→ P

In this direction, we have the following

Theorem 15 LetR be a Radon separoid,M an oriented matroid, andG a graph. Then

R×M −→ G and M 6−→ G =⇒ R −→ G.

Proof. SinceM 6−→ G we may suppose that there exists a Radon partitionα † β in M . Let
ψ:M × S −→ G be an homomorphism. For eachs ∈ S, we can define the functionψs(m) = g
wheneverψ(m, s) = g. If A †B in S, thenψ(A× α) † ψ(B × β) in G and therefore

ψA(α) † ψB(β) ∈ G.

Now, observe the following; sinceG is a graph, then|ψA(α)| = |ψB(β)| = 1. SayψA(α) = v
andψB(β) = u, wherev † u ∈ G. Now, sinceM is an oriented matroid, thenψA ≡ v andψB ≡ u
are constant functions.

Let ϕAB:S[A ∪B] → G be defined as

ϕAB(s) =
{
v s ∈ A
u s ∈ B .

ThenϕAB is a homomorphism. SinceR is a Radon separoid, we can extend this homomorphism
to obtain a homomorphismϕ:S −→ G such thatϕ|A∪B = ϕAB and we are done. •
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