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Abstract

A A-graph G is a (finite or infinite) graph with & types of edges,
xr1-edges, ..., xi-edges. A labeling ¢ of the vertices of G by non-
negative reals is proper with respect to reals x1,...,z, if the labels
of the end-vertices of an x;-edge differ by at least z;. The span of the
labeling c is the supremum of the labels used by c¢. The A-function
AG(z1,...,x) is the infimum of the spans of all the proper labelings
with respect to z1,...,zg.

We show that the A-function of any graph G is piecewise linear in
Z1,...,xE with finitely many linear parts. Moreover, we show that for
every integers k£ and A, there exist constants Cy 5 and Dy, such that
the A-function of every A-graph G with k types of edges and chro-
matic number at most A is comprised of at most Cj s linear parts,
and the coefficients of x1,...,z; of the linear functions comprising
Ac(z1, ..., zk) are integers between 0 and Dy, o. Among others, our re-
sults yield proofs of Piecewise Linearity Conjecture, Coefficient Bound
Conjecture and Delta Bound Conjecture of Griggs and Jin.
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1 Introduction

Radio frequency problems can be expressed as various graph labeling prob-
lems [12, 18]. A prominent role among such graph labeling problems plays the
notion of L(p1, ..., px)-labelings, graph labelings with distance constraints.
Several approaches to study the dependence of the span of optimum label-
ings on the parameters pq, ..., p;r have recently been proposed: an approach
based on real-value relaxation of L(py, ..., pg)-labelings can be found in the
work of Griggs and Jin [8, 9, 10], another approach based on the notion of
A-graphs can be found in [2]. In the present paper, we generalize the no-
tion of A-graphs introduced in [2] from k& = 2 to arbitrary k£ and provide
structural results for the general model. The obtained results yield proofs
of Piecewise Linearity Conjecture, Coefficient Bound Conjecture and Delta
Bound Conjecture of Griggs and Jin stated in [8].

A labeling c of the vertices of a (finite or infinite) graph G by non-negative
integers is an L(pi, ..., px)-labeling for positive integers pi, ..., py, if the la-
bels of any two vertices v and v at distance (exactly) i differ by at least p;.
Let us remark here that all graphs as well as A-graphs considered in this paper
can be finite or infinite unless stated otherwise. The maximum label used by
¢ is said to be the span of ¢ and the least span of an L(py, . .., px)-labeling of a
graph G is denoted by Ag(p1, - - ., pr) (we deviate from the standard notation
in order to emphasize the dependence on the parameters py, ..., px). There
is an enormous amount of literature on algorithms for L(p, ..., px)-labelings
of graphs [1, 3, 6, 7, 15, 19]. From the structural point of view, the attention
of researchers focused mainly on the case of L(2,1)-labelings, partly because
of the following conjecture of Griggs and Yeh [11]:

Conjecture 1 (A? Conjecture) If G is a finite graph of mazimum degree
A, then Mg(2,1) < A2,

Conjecture 1 was verified for several special classes of graphs, including
graphs of maximum degree two, chordal graphs [20], see also [4, 16], and
hamiltonian cubic graphs [13, 14]. In the general case, the original bound
A (2,1) < A? 4+ 2A from [11] has been improved to A1 (G) < A% + A in [5]
and a recent more general result of the author and Skrekovski [17] yields the
present record A1 (G) < A?+ A —1.

In order to capture the dependence of the optimum spans on the parame-
ters, Griggs and Jin [8] allowed both the parameters py, ..., py and the labels
used by a labeling ¢ to be any non-negative reals. Similarly to the original
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notion, they define the span of a labeling ¢ as the supremum of the labels
used by ¢, and Ag(p1,...,pr) denotes the span of an optimum labeling of
a graph G, i.e., the minimum (that is always attained if Ag(p1,...,px) is
finite) of the spans of all L(py,...,px)-labelings of G. In this setting, Griggs
and Jin [8] prove that for any reals py, ..., pg, the value of Ag(p1,...,px) can
be expressed as Zle a;p; for some non-negative integers «;. Moreover, if

all p1,...,pr are integers, the values \g(p1,...,pxr) in the original and the
relaxed settings coincide. They also show that the function Ag(ps, ..., k)
is a continuous function piecewise linear in the parameters pq,...,pr, and

conjecture the following [8]:

Conjecture 2 (Piecewise Linearity Conjecture) For any graph G, the
graph of the function Ag(p1, ..., px) is comprised by finitely many linear parts,
i.e., there exist finitely many hyperplanes in R¥ through the origin such that
the function Ag(p1,-..,px) is linear in each of the convex polyhedral cones
(formed by non-negative reals) that are determined by the hyperplanes.

Conjecture 3 (Coefficient Bound Conjecture) For every graph G and
every integer k, there exists a constant Dy such that the following holds
for all reals py,...,px: the value of the function Ag(pi,...,pr) is equal to
Ele a;p; for some integer coefficients a,...,ay between 0 and Dy g (the
integers o, . . ., oy may depend on p1, ..., px). Moreover, there is a labeling ¢
with span Ag(p1, - - -, p) such that c(v) = S°F_, a;(v)p; where a1 (v), . . ., ag(v)
are integers between 0 and Dy, .

Conjecture 4 (Delta Bound Conjecture) For every integers A and k,
there exists a constant Dy A such that, for every graph G with mazimum
degree at most A and every reals pi1,...,px the following holds: the value
of the function Ag(p1,--.,pr) is equal to Zle a;p; for some integer coeffi-
cients ay, . . ., o between 0 and Dy A (the integers o, ..., o may depend on
P1,--->DPk)- Moreover, there is a labeling ¢ with span Ag(p1, - - ., pk) such that
c(v) = 8 a;(v)p; where ay(v), ..., ar(v) are integers between 0 and Dy a.

Note that Delta Bound Conjecture implies Coefficient Bound Conjecture.
Griggs and Jin [8] proved all the three Conjectures 2, 3 and 4 for k£ = 2 (for
k =1, the conjectures are trivial) and Conjecture 2 also for finite graphs G.

In the present paper, we consider the problems posed in [8] in the more
general setting of A-graphs that was introduced for k£ = 2 in [2]. A \-graph
G with k types of edges is a graph G whose edges are labeled by variables



Z1,...,T,. An edge labeled by a variable x; is called z;-edge. Two vertices
of G may be joined by edges of several types. A proper labeling ¢ of G with
respect to the real numbers zq,...,x; is a labeling of the vertices of G' by
non-negative reals such that the labels of the end-vertices of an z;-edge uv
differ by at least z;, i.e., |c(u) — ¢(v)| > x;. The span of the labeling c is
the supremum of the labels used by ¢ and Ag(x1, ..., z) is defined to be the
infimum of the spans of all proper labelings with respect to x,...,xr. The
results of [2] yield that for every reals z1,...,z, if Ag(x1,...,2x) is finite,
then there exists a proper labeling ¢ with span A\g(z1,...,zx) and the span
of ¢ is equal to the maximum label used by c¢, i.e., both the infimum and the
supremum in the definitions are attained. The A-function of a A-graph G is

Aa(z1,...,x,) viewed as a function of variables x1,...,z;. The chromatic
number of a A-graph G is the chromatic number of the underlying graph, i.e.,
Ae(l,...,1) + 1.

L(p1, - .., px)-labelings of graphs can be modeled as A-graphs as follows:
if G is a graph, form a A-graph G*) with the vertex set V(G) such that
two vertices u and v are joined by an z;-edge in G®), i = 1, ..., k, if their
distance in G is exactly i. Clearly, the optimum span Ag(p1, - .., px) is equal
to the value Mg (71, . . ., 71) of the A-function of G®) for z; = p;, i = 1,..., k.
Because of this close relation, we decided to use the notation Ag(...) both for
the spans of optimum L(py, . . ., px)-labelings and the A-functions of A-graphs.
Since it is always clear throughout the paper whether G is a graph (in which
case, Ag(p1, - - -, pr) stands for the span of an optimum L(py, .. ., px)-labeling)
or a A-graph (in which case, \g stands for the A-function of G), the confusion
of the notations is avoided.

Similarly as in the case of L(p,...,px)-labeling [8], A-functions of A-
graphs have the scaling property, i.e., for every non-negative reals x1, ...,z
and 3, the following holds: Ag(Bz1, ..., Bzx) = BAg(z1, ..., x). Therefore,
the M\-function of any A\-graph is linear on every ray through the origin in R¥.
In Section 4, we show that the A-function Ag of any A-graph G is comprised
of finitely many linear parts, i.e., the subset of R¥ formed by non-negative
reals can be partitioned into finitely many (infinite) polyhedral cones (with
the tips at the origin of R*) such that A\ is linear on each of these cones.

Our main result is Theorem 9 that asserts the existence of the constants
Ck,a and Dy 5 such that the A-function of any A-graph G with £ types of
edges and chromatic number at most A is comprised of at most Cj 5 linear
parts and the coefficients of 1, ..., z; of the linear functions comprising the
A-function are integers between 0 and Dy . In this paper, we solely focus on
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proving the existence of the constants Cy , and Dy 4 without attempting to
optimize their growth. Let us remark that the existence of the constants Cj 5
and Dy, 5 for k = 2 follows from the results of [2]. However, the technique used
in [2] does not seem to generalize to k > 2. As demonstrated in Section 5, our
main result yields the proofs of Piecewise Linearity Conjecture, Coefficient
Bound Conjecture and Delta Bound Conjecture for L(p,...,px)-labelings
(Conjectures 2, 3 and 4).

2 Preliminaries

In [2], an analogue of Gallai-Roy Theorem for infinite graphs with edges
of different weights was proved. We will not state the theorem in its full
generality but just in the form restricted to A-graphs. An orientation of an
infinite graph G is said to be finitary if it does not contain a directed walk of
arbitrary length. In particular, a finitary orientation of GG is acyclic. A weight
of a finite directed path P in an orientation of a A-graph G with respect to
x1,...,Zg is the sum of the variables assigned to its edges, i.e., Zle o;x; if
P contains «; z;-edges. The weight of a finitary orientation G of a A-graph
G is the maximum weight of a directed path in G (note that the maximum
is always attained since the lengths of directed paths in G are bounded in a
finitary orientation and there are only finitely many different types of edges
in G). We now state the version of Gallai-Roy Theorem for A-graphs:

Theorem 1 Let G be a A\-graph with k types of edges. For any real numbers
X1y .-y Tk, Ag(T1, ..., 2k) 18 equal to the minimum weight of a finitary ori-
entation G of G (in particular, there exists a finitary orientation of weight
Aa(z1, ..., xp) )

If G is a finitary orientation of a A-graph G, then the labeling ¢, where
¢(v) is the maximum weight of a directed path ending at a vertex v, is a
proper labeling of G with respect to zq,...,x,. We say that the labeling c,
defined in this way, corresponds to the orientation G. Clearly, the span of
the labeling corresponding to G is the weight of G. On the other hand, for a
proper labeling ¢ of G for positive reals z1, ..., Ty, whose span is finite, one
may define a (finitary) orientation G of G such that an edge uv is directed
from u to v if ¢(u) < ¢(v). Such orientation G corresponds to the labeling c.
Observe that the weight of the orientation corresponding to a proper labeling
¢ is at most the span of ¢ (in general, it can be strictly smaller).
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If G is a A-graph with k£ types of edges, we say that an edge wv is an
x<p-edge if uv is an z;-edge where ¢ < £. The set of all z<,-edges of G is the
set of all x;-edges with ¢+ = 1,..., /. Similarly, we use the terms z_s,-edges,
x>p-edges, etc. We demonstrate this notation in the next auxiliary lemma
that will be used later:

Lemma 2 Let G be a A-graph with k types of edges and with chromatic
number at most A, and let 0 < £ < k. If there exist an integer D and a
finitary orientation G of G such that every directed path in G contains at
most D x<,-edges, then:

Ag<$1, Ceey .CL'k) < dpax + (E + 1)DA . max{:z:@rl, Ceey ZEk}

where dyax 1S the mazimum sum of wezghts of x<g-edges on a directed path
n G i.€., dmax would be the weight ofG iof the parameters xoiq, ..., xy were
equal to zero.

In particular, it holds that A\g(z1, ..., zr) < A-max{z,..., zx}.

Proof: Fix a finitary orientation G that has the properties described in the
statement of the lemma (if / = 0, fix any finitary orientation G of G). Let
d(v) be the maximum sum of the weights of z<,-edges on a directed path
in G ending at a vertex v. Clearly, dp., = max,ecy () d(v). Let D be the
set of all different values of d(v) and let §(v) be the number of the elements
of D smaller than d(v). Since every directed path in G contains at most D
T<p-edges, it holds that |D] < (¢ + 1)P, and thus 0 < 6(v) < |D| < (€ +1)P
for every vertex v of GG. Finally, let i be a coloring of the vertices of G' with
colors 1,..., A.
Let us define a labeling ¢’ of the vertices of G as follows:

¢(v) = d(v) + (0(v)A + p(v)) - max{ze, ..., 2} -
Since 0(v) < |D| for every vertex v of G, the span of ¢’ does not exceed:
dmax + |D|A - max{x1,. .., 25} < dmax + (£ +1)PA -max{zp,,..., 7%}

In the rest, we show that ¢’ is a proper labeling with respect to zy, ..., zy.
Consider an z;-edge uv of G. By symmetry, we may assume that the edge
uw is directed from u to v in G. In particular, it holds that d(u) < d(v) and



d(u) < §(v). We distinguish two major cases: the first one is ¢ < ¢. In this
case, d(u) + z; < d(v) and thus 6(u) < §(v). We can immediately conclude:

d(v) — ' (u) d(v) —
d(v) = d(u) + (A + p(v) — p(w)) - max{ze, ..., o}
d(v) — d(u) > z; .

Therefore, the edge uv is properly colored in the first case.
The other case is that i > £. If d(u) = d(v), then d(u) = §(v) and the
following holds (similarly to the first case):

I

AVARAYS

' (u) = ¢(v)] = |p(u) = p(v)| - max{zers, ..., 2x} 2 i -

If d(u) < d(v), then §(u) < §(v) and we have the following:

¢(v) =c(u) = dv) —d(u) + ((6(v) = d(w)A + u(v) — p(w)) - max{zes, . ..

> (A4 p(v) — p(u)) - max{xpr1,..., e} > ;.

Hence, the labels of v and v also differ by at least x; in the second case.

3 Orientations with Minimum Weight

In this section, we construct orientations of A-graphs with minimum weight
such that the maximum length of a directed path in the constructed orien-
tation is bounded. First, let us define numbers D; 5, and K, for integer A
and ¢ as follows:

Dy = A
Kip = (i+1)Pn
Dipia = (2Kia)Siat3. A

Next, we state several propositions that can be verified directly from the
definitions of D; 5, and K; 5. Their proofs are left to the reader.

Proposition 3 For integers A > 2 and i, the number of multisets that con-
sist of at most D; x numbers 1,...,1 does not exceed K; » — 1.

d(u) + ((0(v) = 0(u))A + p(v) — p(w)) - max{zeys, . ..



Proposition 4 The following holds for every integers A and i:
Di—H,A > (2Ki’A)Ki2’A+2 A+ Ki,A AL

We now introduce some notations used in the proof the main lemma
of this section (Lemma 7). For an integer M and positive reals xy, ..., Zg,
Ca(z1, ..., x,) denotes the set of all combinations of z1, ...,z with non-
negative integer coefficients whose sum does not exceed M, i.e.:

k k
Ly, zp) = {Zajijgal,...,ak& Zang} .
j=1

j=1
The set I,,(z1,...,zx) is then defined to be the set of all non-negative reals
that can be expressed as a difference of two numbers from I'y (x4, ..., z),
le.

(@1, z) = {a = Bla, B € Ty(zn,. .., 2%) & — >0} .

Since 0 € [p(zq,...,2), the set T'p(xy1,...,2¢) is contained in the set
My (1, ..., 2). The following estimates on the sizes of I'y/(z1,...,2) and
Iy (z1, ...,z directly follow from Proposition 3:

Proposition 5 Let x4, ...,z be any positive real numbers and let A > 2 be
a positive integer. The following two estimates hold:

‘FDk’A(.’L‘l,...,.’Ek” < KkA
‘FIDk,A({EI)"°7$k)| < K,f,A

We now establish an auxiliary lemma that will be extremely useful in the
proof of Lemma 7:

Lemma 6 Let xy,...,x,, 1 > --- > xr > 0, be real numbers, A > 2
a positive integer, and y another positive real number. There exists a real

number t, ,
Kpaly <t < (2Kg4) 2 Ay

such that the set Iy (x1,..., 1) contains no element strictly between t and
Kpa(t + Ay). In particular, the real t has the following property (%): if
yel'y (z1,...,2) and v > t, then v > K aA(t + Ay).

ol
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Proof: By Proposition 5, the set T, | (x1,..., ) contains less than K
real numbers. Let us define reals ¢;, j =1,..., K ,% A, as follows:

tj = <2Kk,A)]Ay .

Since Ky A(t; + Ay) < 2Ky zt; =t forall j =1,..., K7, —1, all the open
intervals I},
Ij = (tj,Kk,A(tj + Ay)) ,j = 1, ceey KI?,A’

are disjoint. Since all the K7 , intervals I; are disjoint and I';, | (@1,...,2%) <
K}, , there exists jo such that no element of 'y, (21, ..., ) is contained in
I,. The number ¢;; is the desired number %.

|

We state and prove the key lemma of this section:

Lemma 7 Let G be a (finite or infinite) A\-graph G with k types of edges and
with chromatic number at most A. Fiz real numbers x,...,Tg, 1 > -++ >
xr > 0. For each ¢ = 1,...,k, there exists a finitary orientation G of G
of weight \g(x1,. .., zx) such that every directed path in G contains at most
Dy n x<4-edges.

Proof: If A = 1, there is nothing to prove since GG contains no edges and
the statement of the lemma holds vacuously. Therefore, we assume A > 2
in the remaining. For the rest of the proof, let us fix a proper coloring y (in
the usual sense) of the vertices of G with colors 1,... A,

The proof of the lemma proceeds by induction on the number £. First,
we have to deal with the case £ = 1. Consider any finitary orientation G of
G of weight A\g(z1,...,2x). Such an orientation exists by Theorem 1. By
Lemma 2, it holds Ag(z1,...,2x) < Az;. Since the weight of any directed
path in G does not exceed Ag(z1,...,2x) < Az, every directed path in G
contains at most Dy » = A z;-edges.

We now deal with the case ¢ > 1. By the induction, there exists a finitary
orientation G of G of weight Ag(x1,...,xE) such that any directed path
contains at most Dy_y o x<,_1-edges. Let ¢(v) be the labeling corresponding
to G, and let d(v) be the maximum sum of weights of z<, ;-edges on a
directed path in G ending at a vertex v. Clearly, d(v) < ¢(v) for every vertex
v of G. Finally, let §(v) be the number of the elements of I'p, | , smaller



or equal to d(v). Since |I'p, ,,| < Ky_1a by Proposition 5, 1 < §(v) <
Ky_1,a — 1 for every vertex v of G.
By Lemma 6 (applied for y = z, and k = £—1), there exists a real number
t,
KpaAzy < t < (2K 0)Ki-1a Ay

such that the set T, (@1,...,2,1) contains no element strictly between
t and Ky_1 A(t + Axy), i.e., t has the property (x) from Lemma 6. We define
a new labeling ¢’ and show that it is is a proper labeling with respect to
L1yeeey T

1. If ¢(v) — d(v) < (Ky—1,4 — 6(v))t, then ¢'(v) = ¢(v).
2. Otherwise, ¢'(v) = d(v) + (K14 — 1)t + 0(v)Azp + p(v)z,.

Fix an x;-edge uv of G. In order to verify that ¢’ is a proper labeling on the
edge uv, we distinguish five major cases:

e Both the labels ¢(u) and ¢/(v) are defined by the first rule.
Since ¢/ (u) = ¢(u) and ¢'(v) = ¢(v), we have |(u) — ' (v)| = |c(u) —
c(v)| > z;.

e The label ¢(u) is defined by the first rule, the label ¢/(v) is
defined by the second rule and i < /.
We distinguish two cases according to the orientation of the edge uv in
G. If the edge is directed from u to v, we have d(u)+z; < d(v). Because
the label of u is defined by the first rule, the label ¢'(u) = c(u) is at
most d(u) + (Ky—1,4 — 1)t. On the other hand, the label ¢'(v) is larger
than d(v) 4 (Ky—1, —1)t. We infer that ¢'(v) — ' (u) > d(v) —d(u) > ;.
The other case is that the edge uv is directed from v to u. In particular,
d(v) + z; < d(u), 6(v) < §(u) and ¢(v) < c(u). First, we show that
d(u) — d(v) — z; > t. Assume for contrary that d(u) — d(v) — z; < t.
Since c is a proper labeling of G, ¢(v) < ¢(u) — x;. Since the label to u
was defined by the first rule, we have c(u) < d(u) + (K14 — 6(u))t.
Therefore, the following holds:

c(v)

IAIAIAIA



However, this yields that the label of u should have been defined by
the first rule. We conclude that d(u) — d(v) — z; > t. Moreover, since
¢ has the property (x) and d(u) — d(v) —z; € I'p, | (21,...,Z¢1), it
holds that d(u) — d(v) — z; > Ki—1 A(t + Axy).

We now bound the label ¢/(v) assigned to the vertex v from above
(recall that u(v)z, < Az, < t):

d(v) = dw)+ (Ke1a — 1)t + 8(v) Az + p(v)zy
< d(U) + Kg_l,At + Kg_l,AAZEg
< du)—x < celu)—z; = d(u) —x; .

Hence, the labels of the vertices u and v differ by at least x; as required.

The label ¢(u) is defined by the first rule, the label ¢'(v) is
defined by the second rule and : > /.

If d(u) < d(v), then (u) < d(u) + (K14 — 1)t and ¢'(v) > d(v) +
(Kp—1n — D)t + p(v)ze > d(u) + (Kp—yp — 1)t + x4. Therefore, ¢'(v) —
c'(u) > z, as desired.

In the rest, we focus on the case d(u) > d(v). This implies that 6(u) >
d(v), the edge wv is directed from v to w and c(u) > c(v). First, we

exclude the case d(u) — d(v) < t. Since the label of the vertex u was
defined by the first rule, we have c(u) < d(u) + (Kyp_1 5 — 6(u))t. We

infer the following upper bound on ¢(v):

c(v) c(u) < d(u) + (K1 a — 0(u))t
d(U) + 1+ (Kg_l,/\ — 5(u))t

Cl(’U) + (Kg_l’A — (S(U))t .

VAN VAN VAN

Then the label to v should have been defined by the first rule not by
the second one. We may conclude that d(u) — d(v) > t. Since ¢ has
the property () and d(u) — d(v) € T, (z1,...,2¢1), it holds that

d(u) — d(v) > Ky A(t + Azg). The following upper bound on ¢(v)
readily follows (recall that 6(v) < Ky_1 5 — 1):

d(v) = dw)+ (Kp1a — 1)t +6(v)Azg + p(v)z,
< d(’l)) + Kg_l,At —t+ Kg_l,AAZEg
< du)—t < elu)—xp = (u)—xp < (u)— ;.
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Hence, the labels of the end-vertices of the x;-edge uv differ by at least
x; as required.

Both the labels ¢(u) and ¢/(v) are defined by the second rule
and ¢ < /.

By symmetry, we may assume that the edge uv is directed from u to v
in G. In such case, d(u) +z; < d(v) and 6(u) < 6(v). We now estimate
the difference of the labels ¢/(u) and ¢'(v):

¢(v) = d(u) = d(v) —d(w) + (6(v) = 6(u))Axg + (u(v) — p(u))ze
> x;+ Az — |p(v) — p(u)|ze > x; .
We conclude that the edge uv is properly colored.

Both the labels ¢(u) and ¢/(v) are defined by the second rule
and ¢ > /.

By symmetry, we may assume that the edge uv is directed from u to v
in G. In such case, d(u) < d(v). If d(u) = d(v), then:

'(v) = ¢ (w)] = |p(v) = p(w)lze 2 20 2 ;-

In the rest, we deal with the case d(u) < d(v). In particular, §(u) <

d(v). We bound the difference between ¢’ (u) and ¢'(v) as follows (recall
that 1 < u(v), u(v) < A):

¢(v) = d(u) = d(v) —d(u)+ (6(v) — 6(u))Aze + (u(v) — p(u))z,
> Azg—|p(v) — plu)|ze > x40 2 z; .

Therefore, the difference of the labels ¢/(u) and ¢'(v) is at least z; as
desired.

As the next step, we show that the span of ¢’ is equal to Ag(z1, ..., xk).

In order to do so, it is enough to show that ¢'(v) < Ag(z1,...,xzx) for every
vertex v of G. Let cmax and dmax be the maximums of the values ¢(v) and
d(v) taken over all the vertices v of G. Clearly, ¢nax = Ag(x1,...,2x). By
Lemma 2, the following holds:

Cmax < dmax + fDl_l’AA c Xy = dmax + KE—I,AA * Ty .

Fix a vertex v of G. In order to show that ¢/ (v) < cpax, we distinguish three
cases according to difference between d(v) and dpay:

12



e d(v) = dpax
Since ¢(v) < ¢max < d(v) + Ky aAzy < d(v) +t < d(v) + (Kp_10 —
d(v))t, the label of the vertex v was defined by the first rule. Conse-
quently, ¢'(v) = ¢(v) < Cmax-

® dpax —d(v) <t
First, let us observe that d(v) < Ky 1o — 2. Again, we bound the
original label ¢(v) from above:

c(v) < Cmax < dmax +1 < d(v) + 2t < d(v) + (K10 — 6(v))t .

Therefore, the label of the vertex v was defined by the first rule, and
d(v) = ¢(v) < Cmax-

® diyax —d(v) >t
Since ¢ has the property (%) and dmax — d(v) € I'p, | (@1,..., Ze-1),
dmax — d(v) > Ky_1 A(t + Axy). If the first rule applies to the vertex v,
then ¢'(v) = ¢(v) < ¢max- If the second rule applies, then the following
estimate on ¢'(v) holds:
dv) = )+ (Ko—1a — 1)t 4+ 0(v) Az + p(v)ze
)+ Kp_iat + K1 aAay

dmax S Cmax .

d(v
d(v

IA A

Hence, the label ¢/(v) does not exceed Cpax.

Let G’ be the orientation of G corresponding to the labeling ¢. Since

all x1,...,x; are positive, the orientation G is finitary and its weight is at
most the span of ¢’. Since the span of ¢ is Ag(z1,...,2), the weight of
G' is exactly Ag(z1,...,2). In order to finish the proof of the lemma, we

establish that each directed path in G' contains at most Dy n x<p-edges.
All the labels ¢/(v) defined by the first rule are contained in the following
union of intervals:

U (7,7 + Ke—1,4t)

VELDy_y A (@15sme—1)

C U <’Y, v+ (2Ke—1,A)K‘?‘1’A+1AIE5)

WEFDZ—I,A (1,eerTpg—1)

13



The labels ¢/(v) assigned by the second rule are from the following set:

U (i + (Ko p — 1)t + iz + jzg, j =1,..., A}

Vi€l D,y 5 (T1502p-1)

where 71,72, . .. are all the elements of I'p,_, , listed in the increasing order.

Consider a directed path P in G’ and let C be the set of labels of the end-
vertices of x<e-edges on P. Since any two labels in C' differ by at least z,
and [I'p,_, ,(1,...,7¢-1)] < K¢_1,4 by Proposition 5, we have the following
upper bound on the number of labels contained in C that were defined by
the first rule:

(2K q,0) 510t A

< (2Ke—1,A)K‘?‘1’A+2A -
Ty

|FD£—1,A<$1’ cees xﬂ—l)‘

Similarly, the number of the labels defined by the second rule does not exceed:
|FD£—1,A (1171, ceey Zl?g_l)|A S Kg_l’AA .

Combining both the bounds, we ianer from Proposition 4 that the size of C'
does not exceed Dyp = (2K, 1) 12T A. Therefore, every directed path
in G' contains at most Dy v<p-edges as desired.

|

We modify Lemma 7 to a version used in Section 4:

Lemma 8 Let G be a (finite or infinite) A-graph with k types of edges
and chromatic number at most A. For any k-tuple of non-negative reals
Z1,..., T, there exists a finitary orientation of G with weight Ag(x1, ..., Tk)
with mazimum length of a directed path at most Dy 4.

Proof: By symmetry, we can assume that z; > --- > x; (otherwise, per-
mute the types of the edges of G). If z;, > 0, the statement of the lemma
follows directly from Lemma 7. In the rest, we deal with the case when
x> 0and xpyy =+ =2, = 0.

Fix a coloring p of G with A colors 1,..., u. Let G’ be the subgraph of
G formed by w<j-edges. By Lemma 7, there exists a finitary orientation G
of G’ with weight Ag/ (z1,...,zp) = Aa(x1, ..., x;) and with maximum path
length at most Dy o. Let c(v) be the labeling of G' corresponding to G
Observe that c(v) € T'p,, (21, ..,z ) for every vertex v of G.
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We extend G’ to a finitary orientation G of G. An Tsp-edge uv is directed
from u to v if ¢(u) < ¢(v), from v to u if ¢(u) > ¢(v). If ¢(u) = ¢(v), then the
edge uv is directed from u to v if u(u) < pu(v), and from u to v, otherwise.
Clearly, the weight of G is the same as the weight of el

Let P be a directed path in G. Clearly, the labels ¢(v) of vertices v does
not decrease along the path P. Moreover, each subpath of P formed by
vertices v with the same label has length at most A — 1 as the labels p(v) of
the vertices comprising the subpath strictly increase. Since all the labels ¢(v)
are from the set I'p,, | (z1,...,2p), P contains at most K 5 such subpaths.

Hence, the length of a directed P in G does not exceed K i A - A. Therefore,

the maximum length of a directed path in G is at most Ky p - A < Dy a.
]

4 Main Result

In this section, we prove our main result on the structure of the A-functions
of A-graphs. Before doing so, we introduce several definitions. Fj 5 denotes
the set of all linear functions of k£ variables with integer coefficients between
0 and Dyia, i.e.,

k
Fin = {Zaﬂ?i,o <o; < Dk,A} -

1=0

Next, F°8* is the set of all functions ¢ that are equal to the maximum of
some of the functions from Fj 4, i.e.,

wn = 1o(m, ..., 1) = I?él;(f(xl,...,xp) for FF C Fpa, F # 0} .

minmax

Finally, F;"x is the set of all functions that are equal to the minimum of
some of the functions from F7%%, i.e.,

,f,i\nmax ={o(z1,...,2p) = ?Ea}(f(asl, ) for FC FIRF #0}

Observe Fix C Fgx C F™@. Clearly, all the three sets F 5, Fi'3* and
minmax

A are finite. Therefore, the subset of R* formed by k-tuples of non-
negative reals can be partitioned into finitely many closed polyhedral cones
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(with the tips at the origin of R*) such that every function contained in
,ﬂ“max is linear on each of the cones. Let Cj 5 be the number of such cones.
We now state and prove the main result of the paper (note that both the

numbers Cy o and Dy 5 just depend on £ and A):

Theorem 9 For every A-graph G with k types of edges and chromatic num-
ber at most A, Ag(x1, ..., xx) is a piecewise linear function of x1, ...,z with
at most Cy n linear parts formed by linear function with integer coefficients
between 0 and Dy, . Moreover, the subset of RF formed by non-negative inte-
gers can be partitioned into at most Cy p (closed) polyhedral cones such that
for each of the cones the following holds: there exist integers a;(v) between
0 and Dy such that the labeling ¢, c¢(v) = Zle a;(v)x;, is a proper labeling
of G with respect to x1,. ..,z and the span of ¢ is Ag(x1, ..., Tk).

Proof: Let D be the set of all finitary orientations of G with maximum
length of a directed path at most Dy 4. For an orientation GeD,let F (é)
be the set of all the functions Zle o;x; such that G contains a directed path
with precisely a; x;-edges. Since the maximum length of a directed path in
G does not exceed Dy a, the set F(C_j) is a subset of Fj 4, i.e., F(C_j) C Fia-
By the definition, the weight of the orientation G with respect to x1,...,Tg
is the following:

wa(21, ..., 0p) = max f(x, ..., 2x) .
feF(G)

Let W be the set of all the functions ws(z1, ..., zx) where G ranges through

all the orientations contained in D. Clearly, W C F"?*. For w € W, let éw
be one of the orientations in D with ws = w. By Theorem 1 and Lemma 8,
the following equality holds:

Ao(T1, .. xp) = gleigwé(xl, ceyTg) = uI%iV%w(xl, cey Tg)
Similarly as before, we have Ag(z1, ..., zx) € FPy™™.

Consider the partition of k-tuples of non-negative reals into Cj p poly-
hedral cones such that every function of F"\"™® is linear on each of the
cones. In particular, Ag(z1,...,x) € ,?j\“ma" is linear on each of the cones.
Fix one such cone and let w € W be a function such that A\g(z1,...,zx) =
w(z1,. .., o) on the fixed cone. Let ¢ be the labeling corresponding to the
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orientation G,. Since no directed path of G, € D has length more than
Dy, ¢(v) for a single vertex v when viewed as a function of z,...,zy be-
longs to Fi"t*. In particular, every function c(v) is linear on the fixed cone.
Therefore, the considered polyhedral cones form a possible partition of RF
with the properties from the statement of the theorem. The bounds on the
integers coefficients of linear functions readily follows from the definitions of
Fk,A, l?,l/a\m and I?,qji\nmax.

m

minmax

Since only the functions from F{ could be the A-function of a A-
graph with k types of edges and with chromatic number at most A, we have
the following:

Corollary 10 There exists only finitely many piecewise linear functions that
could be the \-function of a A-graph with k types of edges and with chromatic
number at most A.

Another immediate corollary is the following somewhat surprising state-
ment:

Corollary 11 Let zq,...,x; be a fixed k-tuple of positive reals and let ~
be a non-negative real. There exist only finitely many different k-parameter
A-functions Ag such that Ag(x1,...,x5) = 7.

Proof: If G is a A\-graph with & types of edges such that Ag(x1,...,zx) =7,
then the chromatic number of G does not exceed m—kl by the scaling
property. By Corollary 10, A-graphs with k types o,f”’edges with bounded
chromatic number have only finitely many different A-functions.

Note that Corollary 11 includes the result of [2] that the number of -
functions with prescribed boundary values is finite.

5 Labelings with Distance Constraints

In this section, we infer from Theorem 9 Piecewise Linearity Conjecture, Co-
efficient Bound Conjecture and Delta Bound Conjecture stated in [8]. First,
let us state the following simple proposition that can be found in [8] (note
that its proof employs the Axiom of Choice):
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Proposition 12 If G is a graph of mazimum degree A and k is a positive

integer, then the chromatic number of the k-th power of G does not exceed
AF 4+ 1.

We can now state the theorem from that the three conjectures mentioned
above readily follow:

Theorem 13 For every integers A and k, there exist constants Cj , and
Dy, o with the following property: for any graph G with mazimum degree
A, there exist finitely many hyperplanes in R¥ through the origin such that
the function Ag(p1, - - ., px) 18 linear in each of at most Ch.a convez polyhedral
cones that are determined by the hyperplanes. Moreover, for each of the cones
the following is true: there exist integers a;(v) between 0 and Dy such that
the labeling c, c(v) = Zle a;(v)p;, is a proper L(py, ..., px)-labeling of G
with respect to 1, ...,z and the span of ¢ is Ag(p1, - - -, Pk)-

Proof: Set C) n = Cpakqq and Dy n = Dy akqq. Let G be a graph with
maximum degree A and form the A-graph G*) as described in Section 1.
By Proposition 12, the chromatic number of G*) does not exceed A* + 1.

Theorem 13 now follows from Theorem 9.
u

An immediate corollary of Theorem 13 (alternatively, of Corollary 10) is
the following:

Corollary 14 For every integers A and k, the set Ay a, that consists of
all (piecewise linear) functions Ag(p1, - ..,px) where G is a finite or infinite
graph of maximum degree A, is finite.
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