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Abstract

The notion of the list-T-coloring is a common generalization of the
T-coloring and the list-coloring. Given a set of non-negative integers
T, a graph G and a list-assignment L, the graph G is said to be 7-
colorable from the list-assignment L if there exists a coloring ¢ such
that the color ¢(v) of each vertex v is contained in its list L(v) and
|c(u) — ¢(v)| ¢ T for any two adjacent vertices u and v. The T-choice
number of a graph G number is the minimum integer £ such that G
is T-colorable for any list-assignment . which assigns each vertex of
G a list of at least k colors.

We focus on list-T-colorings with infinite sets 7. In particular, we
show that for any fixed set T" of integers, all graphs have finite T-choice
number if and only if the T-choice number of K5 is finite. For the case
when the T-choice number of K5 is finite, two upper bounds on the
T-choice number of a graph G are provided: one being polynomial in
the maximum degree of the graph GG, and one being polynomial in the
T-choice number of K5.

Keywords: graph coloring, list coloring, T-coloring

1 Introduction

Special types of graph colorings attracted attention of researchers in connec-
tion with with their applications in wireless networks. Hale [7] formulated
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several frequency assignment problems in the terms of graph theory. Suppose
that transmitters are stationed at various locations, and we wish to assign ev-
ery transmitter a frequency over which it will operate. The frequencies need
to be assigned in a way such that the frequencies of nearby standing trans-
mitters do not interfere. If interference occurred only when the transmitters
use the same frequency, the problem could be formulated as a graph-coloring
problem: every transmitter is represented by a vertex, and frequencies are
referred to as colors. Any pair of vertices representing close transmitters is
connected by an edge.

In practice, interference occurs even if the frequencies are different, e.g.,
when the difference of the frequencies equals a certain value. 7T-colorings
of graphs deal with this restriction: given a set of nonnegative integers 7T,
a T-coloring of a graph G is a vertex-coloring (with positive integers) of G
such that the absolute value of the difference between any two colors as-
signed to adjacent vertices does not belong to the set T'. Let us remark that
the set T = {0,7,14,15} is the set of forbidden differences in the model
for frequency assignment in UHF television transmitter systems [9]. The
concept of T-colorings has been extensively studied as witnessed by the sur-
vey of Roberts [10]. The reader is referred to this survey for more detailed
introduction.

However, it is not always possible for a given transmitter to operate on
all frequencies — instead a transmitter is assigned a set of frequencies which
it can operate. This leads us to the concept of list colorings introduced
independently by Vizing [14], and by Erdds, Rubin and Taylor [4]. Combining
list colorings with T-colorings, list-T-colorings arise. This notion was first
introduced by Tesman [13] and further studied by Alon and Zaks [2], Fiala,
Kral’ and Skrekovski [5], Tesman [11], Waller [15, 16], and others. Given a
set L(v) of allowed colors for each vertex of a graph G, a list-T-coloring of
(G is a proper T-coloring of the graph G such that the color assigned to a
vertex v belongs to the set L(v). A graph G is said to be T-k-choosable if a
list-T-coloring exists for every collection of sets L(v) such that |L(v)| = k for
every vertex v. The T-choice number chp(G) of a graph G is the minimum
number k such that G is T-k-choosable.

So far, researchers mainly focused on the case when the set T' is finite.
Alon et al. [2] proposed to consider the case when T is infinite, in particular,
to characterize those infinite sets T' for which the T-choice number of all
graphs is finite. In this paper, we attempt to make the first step in this
direction. In particular, it is shown that for any set 7', the T-choice number



is either finite for all graphs or infinite for all (non-trivial) graphs.

We also investigate the behavior of the T-choice number of a given graph
G in terms of its maximum degree A. In order to do this, we introduce the
following function:

Definition 1.1. If T is a set of integers, then chr(A) is the smallest integer
¢ such that every graph with mazximum degree A is T-£-choosable.

In Section 3, we prove that for any integer A > 1, chp(A) is finite if and
only if chy(1) is finite. For the case when the chp(1) is finite, two upper
bounds on the 7T-choice number of a graph GG are provided in Sections 3 and
4: one being polynomial in the maximum degree of the graph G and one
polynomial in chy(1) = chp(K53). At the end of the paper, we investigate
the connection between chy(A) and the length of the longest arithmetical
progression contained in 7.

2 Preliminaries

Throughout the paper, the following notation is used: if a is an integer and
B is a set of integers, then a + B denotes the set {a +b:b € B}. If A and
B are two sets of integers, A + B denotes the set {a +b:a € A,b € B}.
Similarly, — A stands for the set {—a : a € A}. Two colors ¢; and ¢, are said
to be conflicting with respect to a set T if |c; — co| € T. When the set T is
clear from the context, the colors are said just to be conflicting. A non-trivial
graph is a graph that contains at least one edge.

Next, we establish a proposition which outlines the connection between
T-choice number of the graph K, (i.e., a single edge) and structure of the set
T.

Proposition 2.1. Let k > 2 be an integer. The graph Ko is T-k-choosable
of and only if the following inequality holds for every k distinct integers
7:1, ceey Zk N

iy + (TU-T))N---N(ix +(TU-T))| < k.

Proof. Let u and v be the two vertices of the graph K. Firstly, consider the
case when there exist k distinct integers 1, ..., such that

(i +(Tu=-T)N---N(ix+ (TU-=T))| > k.



Let L(u) be {i1,...,ix} and L(v) be any k-element subset of the set (i; +
(Tu-T)Nn---N(g+ (TU—-T)). Now, it is impossible to color properly
both v and v from their lists because all colors in L(u) conflict with all colors
in L(v).

The other implication is also not too difficult: fix a list-assignment L,
and let L(u) = {i1,...,ix}. Because

|(is + (TU-T))N---N(ix + (TU-T))| <k,

there exist colors ¢; € L(u) and ¢s € L(v) such that |¢; —co| ¢ T. Otherwise,
we have that the set L(v) is contained in the above intersection, so the size
of the intersection must be at least k, a contradiction. Now, we can use ¢;
to color u and ¢y to color v and we obtain a proper coloring. Hence, K5 can
be colored properly from the list assignment L. O

Motivated by the preceeding proposition, we use the following property
to ease our arguments:

Definition 2.2. Let kK > 2 be an integer. A set of integers T is k-good if
and only if the graph Ks is T-k-choosable, i.e., it satisfies the condition in
Proposition 2.1. Furthermore, T is good if it is good for some k.

3 Upper Bound Polynomial in the Maximum
Degree

In this section, we combine methods from the probability theory and the
extremal combinatorics to obtain an upper bound on chy(A) which is poly-
nomial in A (if a set T is fixed). First, we shortly introduce the concepts we
use in our arguments.

3.1 Lovasz Local Lemma

The probabilistic method is a remarkable technique based on the probabil-
ity theory which can be used to prove theorems which have nothing to do
with probability and proved its usefulness in many proofs in combinatorics.
For examples of such usages and a deeper introduction to the probabilistic
method, we refer the reader to the monograph on the subject by Alon and
Spencer [1].



In a typical probabilistic proof of a combinatorial result, one usually has
to show that the probability of a certain event is positive. If we have mutually
independent events and each of them holds with a positive probability, then
there is a positive probability that all the events hold simultaneously. This
can be generalized to the case when the events are almost independent, as
shown in the following theorem proved in [3]:

Theorem 3.1. (Lovasz Local Lemma, General Case)

Let Ay, Ag, ..., A, be events in an arbitrary probability space. Let D(V, E)
be the dependency digraph for the events Ay, ..., A,, ie, V = {1,...,n}
and the event A; is independent of all the events in the set {A; : (i,]) ¢
E}. Suppose there exist real numbers xy,...,T,, 0 < x; < 1, for which the
following holds:

(1,5)€E

Then, the probability Prob| \i_, A;] that none of the events Ay, ..., A, holds
1S positive.

In our proof, we use the symmetric version of Theorem 3.1:

Theorem 3.2. (Lovasz Local Lemma, Symmetric Case)

Let Ay, Ao, ..., A, be events in an arbitrary probability space. Suppose each
event A; is mutually independent of a set of all the other events A; but at
most d, and that Prob[A;] < p for all1 < i < n. Ifep(d+ 1) < 1, then
Prob[ Aj_; A;] > 0.

3.2 The Problem of Zarankiewicz

Extremal combinatorics found a lot of applications in the computer science.
We refer the reader to the monograph [8] by Jukna for examples and more
background. The problem of Zarankiewicz is an analogue of the well-known
theorem of Turdn that determines the maximum number of edges in a graph
of order n not containing a complete graph of order & as a subgraph [12]. The
problem of Zarankiewicz is the following: for given natural numbers m, n, s
and t, determine the maximum number of edges in m by n bipartite graph
which does not contain a complete s by ¢ bipartite graph. This maximum is
denoted by z(m,n;s,t). Zarankiewicz [17] originally asked the question for
s=t=3and m =n = 4,5 and 6. Later, the generalized version of the



problem appeared and became known as the problem of Zarankiewicz. Note
that this problem can be also reformulated in terms of 0—1 matrices: at most
how many 1’s can a 0—1 matrix of m rows and n columns contain if it has no
s by t submatrix all whose entries are 1’s?

Unfortunately, no exact expression for z(m,n;s,t) is known, even the
magnitude of z(n, n;t,t) is unknown for fixed (but large) values of ¢ [6]. On
the other hand, several upper and lower bounds are known, for example the
following one can be found in [6, Theorem 1.3.2]:

Theorem 3.3. Let m, n, s andt be natural numbers which satisfy2 < s <m
and 2 <t < n, the following holds:

z(m,n;s,t) < (s — )Y —t+ 1)m'" Y+ (t — Dm.

In our proof, it is enough to consider the following specialized version of
the preceding theorem for m = n and s = t.

Theorem 3.4. Let n and t be natural numbers such that 2 < t < n. The
following holds:

z(n,m;t,t) < (t—D)Yn —t+ D)n' Y+ (t — 1)n.

3.3 The Upper Bound

In this subsection, we combine the concepts introduced in the previous two
subsections to obtain the desired bound on chp(A). A conflict graph of
an edge uv is the bipartite graph whose vertices correspond to the colors
contained in lists of the vertices v and v and edges join the conflicting colors:

Definition 3.5. Let G be a graph, L be a list-assignment of G, let T’ be a set
of integers and let e = uv be an edge of G. The conflict graph of the edge e
is the bipartite graph whose verter set is (L(u) X {0}) U (L(v) x {1}) and two
vertices (c1,0) and (c2, 1) are joined by an edge if and only if |c; — co| € T.
The conflict graph of an edge e is denoted by C'G,.

Now, we introduce the notion of density for bipartite graphs which relates
the number of vertices and the number of edges of a bipartite graph.

Definition 3.6. The density of a bipartite graph G with parts of orders m
and n s the ratio of the number of edges of G to the number of edges in
complete m by n bipartite graph, i.e., the density of the graph G is |Eg|

mn °



Before stating the main theorem, let us prove two lemmas. The first
lemma shows that if the conflict graphs of all the edges in G have small
density, then the graph GG can be colored from the given lists:

Lemma 3.7. Let G be a graph with mazimum degree at most A, let T be a
set of integers and let L be a list-assignment of G. If it is impossible to color
G from L, then there exists an edge e such that the density of CG, is greater

1
than JeA -

Proof. We use Theorem 3.2. Color the vertices independently from their lists
at random. Let ¢ be the resulting coloring. A, denotes the event that the
colors of the end-vertices of e = uv are conflicting, i.e., |c(u) — c(v)| € T. As
the maximum degree of GG is at most A and each edge has two end-vertices,
the event A; in dependent on at most 2(A — 1) other events. Therefore, if
Prob[A4,] < 26% for all edges, there exists a proper coloring by Theorem 3.2.
As no such coloring exists, there must be an edge e, such that Prob[A.] > =~

2eA”
Since Prob[A.] is exactly the density of C'G,, the statement of the lemma
readily follows. [

The following lemma shows that if the density of a bipartite graph is
large, then it contains a large complete bipartite subgraph:

Lemma 3.8. Let k > 2 be an integer and p a real number, 0 < p < 1. If
G is a n by n bipartite graph where n > (k — 1)28/p¥, the density of G is
at least p, then G contains the complete bipartite graph Ky as a (induced)
subgraph.

Proof. Assuming the contrary, there exists an integer £ > 2, a real number
0 < p < 1, and a bipartite graph G(AU B, E) with |A| = |B| > (k—1)2%/p*
whose density is at least p abd which does not contain a copy of Kj ;. By
Theorem 3.4, we have

B < (k=1D)Y*(n—k4+1)n'"YE 4 (kE-1)n
= (k= DY Y*(n — (k — 1) + (k — 1) /Epl/k)

Therefore,
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Hence, we infer that n < (k — 1)2%/p*, a contradiction.

IA

Now, we are ready to prove the main theorem of this section:

Theorem 3.9. Let G be a graph of mazimum degree A and T a set of
integers. If the set T s k-good, then G is T-f-choosable for every integer
0> (k—1)(4eA)F.

Proof. Fix a list assignment L such that |L(v)| > (k — 1)(4eA)* for each
vertex v of GG. Since the set T' is k-good, no conflict graph of C'G, for any
edge e € Eg can contain Kjj (recall the Proposition 2.1). Therefore, by
Lemma 3.8, no CG, has density greater than ;<. Lemma 3.7 now implies
that the vertices of the graph G can be colored from the list assignment

L. ]

The following simple corollary shows that the finiteness of the T'-choice
number of a graph G depends only on the set T

Corollary 3.10. For every every set T, the following statements are equiv-
alent:

e chr(Ks) is finite, i.e., T is good.
e chr(G) is finite for every non-trivial graph G.

Proof. Tt is easy to see that if chp(G) is finite, chp(K3) must be finite as
well. The other implication directly follows from Theorem 3.9: If K, is T-k-
choosable, then the graph G must be T-k'-choosable for k' = [(k—1)(4eA)¥]
where A is the maximum degree of the graph G. []



4 Upper Bound Polynomial in the T-choice
number of K,

In the previous section, we showed that if T is good, then ch(A) is bounded

by a polynomial in A. The constructed upper bound was, however, exponen-

tial in the chp(K3). In this section, we provide an upper bound polynomial

in chy(K3), but, on the other hand, exponential in the maximum degree A.
First, let us state the following lemma:

Lemma 4.1. Let T, S; and Sy be three sets of integers, where |S1| = k and
|Sa| > k. If the set T is k-good, then there exists an integer ¢ € Sy such that
the following holds:

S2 N (¢ + (TU=T))| <|S2f = (152 — k)/k
Proof. Set M = |Sy| — (|S2| — k)/k. Consider the set

S* = {(Cl,Cg) 1Cc € 51,62 € SQ, ‘Cl — CQ‘ € T}
= {(61,62)361651,02ESQ,EItET362:Cl—|—t\/62:cl—t}.

Since the set T' is k-good, at most k—1 elements of Sy are allowed to be in the
intersection of all the sets (), 4 (s + (T'U =T)). Therefore, we have that at
most k—1 elements of Sy may appear k£ times in the set 5*, the other elements
of S, may appear at most & — 1 times. Therefore, |S*| < |Ss|(k—1) +k — 1.
On the other hand, if no color ¢ with the properties from the statement of
the lemma exists, then each color s € S; appears in at least M + 1 pairs in
S*. Hence
1S*| > (M + 1)k = |So|(k — 1) + k.

This inequality contradicts the previously established bound |S*| < |Ss|(k —
1)+ k-1 o

In the following theorem, we show an upper bound on the T-choice num-
ber which is, for a fixed graph G, polynomial in chr(K>):

Theorem 4.2. Let G be a graph with mazimum degree at most A and let T
be a set of integers. If the set T is k-good, then the T-choice number of G is
at most (A(k — 1) + 3)k=.



Proof. Fix a graph G and a list assignment L which assigns each vertex of
G a list of at least (A(k — 1) + 3)k2 colors.

We color the vertices of the graph G sequentially. When a vertex v is
colored, we remove the conflicting colors from the lists of uncolored neighbors
of v. The colors are chosen in a way such that at the time when the vertex
v is supposed to be colored, the number of the colors remaining in its list is
at least A(k — 1) + 1. The procedure for coloring the vertex v is as follows:

Consider uncolored neighbors of v in G. We show that there exists a color
¢ € L(v) such that for each uncolored neighbor w of v the number of colors
in L(w) which are forbidden by the choice of the color ¢ for the vertex v is
not large. More precisely, the following holds for any uncolored neighbor w
of v:

[Lw) \ ((c +T)U (¢ = T))| > (|L(w)| = k) /k (1)

Assume the opposite. As |L(v)| > A(k — 1) + 1, we have by the pigeon-hole
principle, that there exists an uncolored neighbor w of v and a k-element
subset B of L(v) such that for each color ¢ € B, the following holds:

[L(w) \ (¢ + T Uc—T)[ < (|L(w)| - k)/k.

However, this is impossible by Lemma 4.1 (consider S; = B, Sy = L(w)).
Therefore, a color ¢ € L(v) satisfying (1) for all uncolored neighbors w of v
exists. Color the vertex v by the color ¢ and remove any conflicting colors
from the lists of neighbors of v. Continue with another vertex until all vertices
of the graph G are colored.

Since we remove the conflicting colors from the lists of the neighboring
vertices at each step, the constructed coloring is a proper list-T-coloring. It
remains to prove that |L(v)| > A(k —1)+1 at the time when the vertex v is
to be colored. To show this, we calculate the true number of colors required:
If the size of the list L(v) was not changed before the vertex is colored, the
required initial size would be A(k — 1) + 1. Each change reduces the size of
the list from £ to at least (£ —k)/k, i.e., if the size of L(v) changed only once,
the required initial size would be (A(k — 1)+ 1)k + k. In general, the size of
L(v) is changed at most A times, hence, we must start with lists of sizes at
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least

s = (L ((AK-D+0)k+E).Dk+k

~"

A times
= (AGk =1+ + (.. ((k)k+k)..)E+k
(A—Jtimes
= (Ak-1)+1D)k*+E*+E> 1+ +k
A
= (A(k—1)+ l)kA+kkk — 11

< (A(k—=1)+1)k* +2k% = (A(k — 1) + 3)k*
This completes the proof of the theorem. |

The following corollary follows straightforwardly from Theorem 4.2:

Corollary 4.3. Let T be a set of integers. If T is k-good, then chp(A) <
(A(k — 1)+ 3)kD

5 Bad Sets with no Arithmetic Progressions

For a fixed graph G, it is natural to expect, that its T-choice number would
depend on the size of the longest arithmetic progression contained in the set
T. For the case of T finite, the following result by Waller [15] shows that the
choice of the set T = {0,d,2d,...,(k — 1)d} is the worst possible among all
sets T" with |T| = k:

Theorem 5.1. A 2-connected graph G with mazimum degree A is not (|T|A)-
T-choosable if and only if the set T is arithmetic (i.e., T = {0,d,2d, ..., (k—
1)d} for some integers k and d) and G is either a complete graph or an odd
cycle.

One might think that only the arithmetic progressions contained in the
set T' of the forbidden differences cause the difficulties. Quite surprisingly,
this is not the case:

Theorem 5.2. There exists an infinite set of integersT' such that T contains

no three-element arithmetic progression, but the set T is not k-good for any
k> 2.

11



Before we prove this theorem, let us remark that for the set 7" from The-
orem 5.2, the T-choice number of every non-trivial graph is infinite (follows
easily from Corrolary 3.10). Note also that the length three is the best pos-
sible, because any two integers form an arithmetic progression of length two.

Proof of Theorem 5.2: We construct the set T' by induction: we create the
sets 11,75, ..., such that T; C T;,,. Each T; does not contain an arithmetic
progression of length three and, moreover, the set 7; is not i-good. The
desired set T is the union of all the sets T;: T = | J;2, T;.

Instead of constructing the sets T; directly, we create auxiliary sets A;
and B; such that A; C A, and B; C B;;1. Then, we just set T; = A; + B;.

In the first step, set A; = {0,1} and B; = {0, 3}, therefore the set T} is
{0,1,3,4}.

In the (i + 1)-th step, we obtain A;; and B;;; as follows: let m; be the
maximum value in the set A; + B;. Set A;11 = A; U {2my + 1}. Let my be
the maximum value in the set A;,1 + B;. Set B; ;1 = B; U{2my + 1}.

Clearly, the set T; is a proper subset of T;,1 (A; C A;11 and B; C B;11).
It is not hard to see that the set T; is not i-good: consider any i-element
subset {ai,...,a;} of A;. Then for each a;, B; is contained in (—a;) + T;:

(—a;) +T; = (—a;) + (A + By) 2 (—a;) + (a; + B;) = B

Hence,
B;i € ((ma) +To) 0N ((—a) + T5)

Since the size of B; is © 4+ 1, the set T} is not i-good.

It remains to prove that 7T; does not contain three-element arithmetic
progression. The proof proceeds by induction: the set T clearly contains no
three-element arithmetic progression. We show that if the set A;+ B; contains
no three-element arithmetic progression, then the set A;.; + B; contains no
three-element arithmetic progression as well.

Let @ = 2my 4+ 1 be the newly added element of A;,;. Then,

If the set A;;1 + B; contains a three-element arithmetic progression, two
elements of the progression must be contained in A; + B; and one in a + B;
or vice-versa. (In the opposite case, we would have three-element arithmetic
progression in A; + B; or even in B; itself). As m; is the maximum value in
the set A; + B; and the set B; contains no negative values, the difference d of

12



the arithmetic progression must be at least m; + 1. On the other hand, the
maximum difference between any two elements contained in the set A; + B;
(and similarly, in the set a + B;) is at most m; - a contradiction.

The case of extending A;,1 + B; to A;11 + By is symmetric. O

6 Future Research

In Sections 3 and 4, we obtained two upper bounds on chr(A). The first is,
for a fixed set T, polynomial in A. The other one is polynomial in chy(1).
It is natural to ask whether there exists an upper bound polynomial in both
A and ChT(l)I

Problem 6.1. Does there exist a polynomial p(k,A) such that for every
k-good set of integers T, chp(A) < p(k,A)?

The only lower bounds on chr(A) we are aware of are trivial: either linear
in chr(1) or in A. It is natural to suppose that a better lower bound can be
obtained.
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