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Abstract

In 1955 Kotzig proved that every planar 3-connected graph con-
tains an edge such that sum of degrees of its endvertices is at most
13. Moreover, if the graph does not contain 3-vertices, then this sum
is at most 11. Such an edge is called light. The well-known result
of Steinitz that the 3-connected planar graphs are precisely the skele-
tons of 3-polytopes, gives an additional trump to Kotzig’s theorem.
On the other hand, in 1961, Tutte proved that every 3-connected
graph, distinct from K}, contains a contractible edge. In this paper,
we strengthen Kotzig’s theorem by showing that every 3-connected
planar graph distinct from K, contains an edge which is both light
and contractible. A consequence is that every 3-polytope can be con-
structed from the Tetrahedron by a sequence of splittings of vertices
of degree at most 11.
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1 Light Edges

Throughout the paper, we consider 3-connected planar graphs without loops
and multiple edges. The weight of an edge is the sum of the degrees of its
endvertices. It is well-known that every planar graph contains a vertex of
degree at most 5. Kotzig [5] proved a similar result for the edge weight:

Theorem 1 (Kotzig) FEvery 3-connected planar graph G contains an edge
of weight at most 13. Moreover, if G has minimum degree at least 4, then G
contains an edge of weight at most 11.

Regarding the above theorem, an edge of a 3-connected planar graph is
called light if it satisfies the requirements of the above theorem. In particular,
if the graph has minimum degree > 4, then an edge is light only if it is of
weight < 11.

The bounds of 13 and 11 from Kotzig’s theorem are the best possible in
the sense that there exist a planar 3-connected graph G such that each edge
of G'1 has weight at least 13, and a planar 3-connected graph G5 of minimum
degree 4 such that each edge of G has weight at least 11. As for (G;, consider
a copy of the Icosahedron and insert into each face a vertex and connect it
with the three vertices of the face. As for G5, consider any fulleren where no
two vertices of degree 5 are adjacent.

The well-known theorem of Steinitz [9, 10] states that the 3-connected
planar graphs are precisely the skeletons of 3-dimensional polytopes. This
gives an additional importance to Theorem 1.

Kotzig’s Theorem has been generalized in many directions. It served as
a starting point for looking for other subgraphs of small weight in plane
graphs, which later developed the subject into Light Graph Theory: let H
be a family of graphs, and let H be a connected graph such that infinitely
many members of H contain a subgraph isomorphic to H. Let Hg be the
subfamily of graphs in H that contain H as a subgraph. We say that H is
a light graph in the family H if there exists a constant ¢ for that each graph
G € Hpy contains a subgraph K = H such that dg(v) < ¢ for every vertex
v € K. Just to mention a few results from Light Graph Theory: Fabrici and
Jendrol’ [2] proved that only paths are light in the family of all 3-connected
plane graphs; the same holds also for the family of all 3-connected plane
graphs of minimum degree 4 (see [3]). A survey on light graphs in various
families of plane, projective plane, and general graphs can be found in the
paper by Jendrol’ and Voss [4].



Figure 1: A double wheel

1.1 Light Edge Avoiding Prescribed Triangle

Here we prove the existence of a light edge which avoids vertices of a pre-
scribed triangle face.

Lemma 1 Let G # K, be a plane 3-connected graph with an outer-face
O = x1w9w3. Let &' be the minimum degree of vertices of G distinct from xy,
Zo and x3. Let d be 13 if &' = 3, and 11 otherwise. Then G contains an edge
of weight at most d not incident with x1, xo and x;.

Proof: Suppose that the statement of the lemma is false and G is a coun-
terexample on n vertices. Obviously, n > 5. In addition, we may assume
that G has the maximum number of edges among all such graphs.

We claim that every face incident with x1,xs, or x3 s a triangle. Oth-
erwise, we may assume that z; lies on a face f’ of length > 4. Next insert
an edge between z; and some vertex of f' that is not adjacent to ;. This is
always possible since G is 3-connected. Let G’ be the resulting graph. Notice
that if G is of minimum degree > 4, then G’ is also of minimum degree > 4.
Hence G’ is a counterexample to the lemma with the same number of vertices
but it has more edges than GG, a contradiction.

By the above claim, it easily follows that at most one of z1, z9 and x5 is of
degree 3. Thus, we may assume that d(z;) > 4 and d(x2) > 4. Furthermore,
d(x3) > 3 since G is 3-connected.

Consider the double wheel W of order 8 depicted in Figure 1. Let w; and
we be the vertices of W of degree 6. We construct the graph W by gluing
a copy of GG in each face of W in such a way that the vertex z3 of the copy
is identified with either w; or ws. Notice that Wy is a planar 3-connected



graph and that each vertex of W has degree > 12 in Wy (this follows from
the assumption on the degrees of vertices z1, 2, and x3 in G).

By Kotzig’s Theorem, the graph W contains a light edge e,,. This edge
is not incident with any vertex of the copy of W, since these vertices are of
degree > 12. Thus, e, corresponds to an edge e of GG, that is not incident
with z1, x5 and z3. Notice that if 6’ > 4, then W has minimum degree > 4.
This implies that weight of e satisfies requirements of the lemma.

|

2 Contractible Edges

A subset S of vertices of a graph G is a cut, if the graph G — S is disconnected
and S is a minimal set with this property. In addition, if S is of size k, then
it is called a k-cut. A graph G is k-connected if it has at least k 4+ 1 vertices
and it has no cuts of size < k.

Let e = ab be an edge in a 3-connected graph G. Let G/e be the graph
obtained by identifying the vertices a and b into a new vertex w, and removing
the arising loop and multiple edges (in order to obtain a simple graph). We
say that G//e is obtained from G by contracting the edge e. Similarly, we
say that G is obtained from G/e by splitting w. If G/e is a 3-connected
graph, then we say that the edge e is contractible, and otherwise that e is
non-contractible. It is easy to see that e is non-contractible if and only if G
has a 3-cut S such that {a,b} C S.

Tutte [11] proved that every 3-connected graph, distinct from K, contains
a contractible edge and as a consequence, it follows:

Theorem 2 (Tutte) A graph G is 3-connected if and only if there exists a
sequence Gy, ..., G, of graphs with the following properties:

(a) Gy = Ky and G, = G;

(b) Giy1 has an edge xy with d(x),d(y) > 3 and G; = Gii1/zy, for every
1< n.

In fact, every 3-connected graph on > 5 vertices has more then just one
contractible edge, see the survey of Kriesell [6] for results of this kind.

Notice that if G is a 3-connected planar graph and S is a 3-cut, then
G'— S comprises of precisely two components: there cannot be more than two,

4



otherwise we obtain a subdivision of K33 in G. Let these two components
be denoted by G1(S) and Go(S). Let G}(S) be the subgraph of G induced
by V(G1(S)) US. Thus, G;(S) = Gi(S) — S, for i € {1,2}. Observe that if
x,y € S are non-adjacent, then there exists precisely one face incident with
both of them. When the graph G is clear from the context, its face which
contains these two vertices is denoted by f, .

A triangle vivyvs in a graph is called separating if {vq, vo, v3} is a cut. If
v1v9v3 is a separating triangle in G, then each of the edges v,vy, v1v3 and
vu3 is obviously non-contractible. But it is not necessarily true that every
non-contractible edge of G belongs to a separating triangle. However, in
this section we show that unless G contains a light contractible edge, we
may extend G to a supergraph that satisfies this condition by adding new
non-contractible edges and without creating any new contractible edges, see
Lemma 8.

The proofs of the following three folklore lemmas can be found in [1, 7, 8:

Lemma 2 Let G be a 3-connected graph of order at least five. Suppose x is
a 3-verter of G whose neighbors are a,b and c. If ab is an edge of G, then
xc 15 contractible.

If H is a subgraph of G, then we denote by G/H the graph constructed
from G by contracting all edges of H.

Lemma 3 Let x be a 3-vertex in a 3-connected graph G # Ky4. If xa and
xb are two non-contractible edges of G, then a and b are adjacent vertices of
degree 3. Moreover, G* = G /azb is 3-connected.

Lemma 4 Let G be a 3-connected graph and let C' = x1x2x3 be a 3-cycle of
G with all vertices of degree 3. An edge e of G/C' is contractible if and only
if its corresponding edge e in G is contractible.

Now, we are ready to prove the following lemma about smallest possible
3-connected graphs without a light contractible edge.

Lemma 5 Suppose that G # K, is a 3-connected planar with the small-
est possible number n > 5 of vertices such that every light edge is non-
contractible. Then, G does not contain a 3-cycle whose all vertices are of
degree 3.



Proof: Suppose first that n < 7. Then degree of each vertex of G is at most

5, and therefore each edge of G is light. Since every 3-connected graph on
at least 5 vertices contains a contractible edge, the graph G contains a light
contractible edge.

Therefore we may assume that n > 7. Suppose that C = zix923 is a
3-cycle of G such that all vertices of C are of degree 3.

Let y; be the neighbor of z; that does not belong to C'. Note that the
vertices y;, 2 and y3 are mutually distinct, since G is 3-connected. Let
G* = G/C and let w be the vertex of G* into which C is contracted. By
Lemma 3, the graph G* is 3-connected. Then w is a 3-vertex whose neighbors
are y,,y> and y3. Also notice that each edge e* of G* has the same weight
as the corresponding edge e of G. Lemma 4 claims that e* is contractible in
G* if and only if e is contractible in G. This implies that every light edge
of G* is non-contractible. Since G* has at least 5 vertices, it contradicts the
minimality of G.

|

The following two lemmas describe the structure of a graph containing
a non-contractible edge xy that becomes contractible after a new edge bc is
added to the graph.

Lemma 6 Let G be a planar 3-connected graph, xy a non-contractible edge
of G, and b and ¢ two non-adjacent vertices of G that lie on a common face.
Suppose that xy is contractible in GU{bc}. Then for each verter z such that
S =A{z,y,z} is a 3-cut the following four claims hold:

(a) b and c are distinct from x,y and z, and belong to distinct components

of G — S;

(b) z belongs to fy., and precisely one of x and y belongs to fy. (let this
vertex be denoted by w);

(¢) foo=w- bz -c---w in the clockwise or anti-clockwise orienta-
tion;

(d) w and z are non-adjacent.

Proof: Let z be an arbitrary vertex of G such that S = {z,y, 2z} is a 3-cut.
Since xy is contractible in G U {bc} but not in G, it follows that b and ¢
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Figure 2: Configurations in Lemma 7

belong to distinct components of G — S. Therefore the vertices b and ¢ are
distinct from z,y and z.

Since S is a cut and the edge bc connects the two components of G — S,
it follows that b, c and z belong to a common face. Moreover, one of z and
y lie on that face as well (but not both since no face may contain all three
vertices of a 3-cut in G). The order of the vertices w, z,b and ¢ that appear
around the face must be as described in the claim, because b and ¢ belong to
distinct components of G — S. Since G is 3-connected, it follows that w and
z are non-adjacent.

|

Lemma 7 Let ab and xy be two non-contractible edges and let S1 = {a, b, c}
and So = {x,y, 2z} be two 3-cuts of G. Suppose that the edge xy is contractible
in G U {bc}. Then, the following two claims hold:

(1) If a & {x,y}, then c is a vertex of degree 3 with N(c) = {z,z,y} and
cry s a 3-face.

(17) If a = x, then y is a vertex of degree 3 with N(y) = {a,b,c} and aby is
a 3-face.

Proof: First notice that G U {bc} is a planar graph, since the vertices b
and c lie on a common face in G. Also notice that b and ¢ are non-adjacent
in G. By Lemma 6, the vertices b and ¢ belong to different components of
G — S5 and they are distinct from z, y and z. By the same lemma, without
loss of generality, we may assume that y and z are non-adjacent and lie on
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the same face with b and ¢ (i.e., fy. = f,.) and fy, =y---c---z---b---y.
We may also assume that z is a vertex of G} = G;(S1) and x,y are vertices
of G5 = G5(S1). Consider now both the cases separately and see Figure 2
for illustration:

(7) Observe that z is a cut-vertex in G7, which separates a,b from c¢; oth-
erwise we infer that S is not a cut of GG. Since G is a 3-connected it
follows that c is adjacent only to z in G7.

Similarly one can show that {x,y} is a cut in G5, which also separates
a,b from c. To show the minimality of {x,y} observe that if x or y is
a vertex-cut in G35, then {z, z} or {y, 2} is a 2-cut in G.

If there is a vertex adjacent to ¢ in G which is distinct from x and v,
then {c,z,y} is a 3-cut in G U {bc} but this is a contradiction with the
assumption that xy is a contractible edge in G U {bc}. Since {z,y} is
a cut in G5, both z and y are adjacent to c¢. Thus, z,y are the only
neighbors of ¢ in G%. This implies that czy is a 3-face and N(c) =

{2, z,y}.

(#7) Since {z,y,b} is not a 3-cut in G U {bc}, we infer that aby is a 3-face.
Similarly, since {x,y, c} is not a 3-cut in G U {bc}, it follows that cy is
an edge of G, and hence N(y) = {a,b, c}.

Now we are ready to show that in a maximal graph which does not contain
a light contractible edge, every non-contractible edge belongs to a separating
3-cycle.

Lemma 8 Suppose that there exists a planar graph on n > 5 vertices such
that each of its light edges is non-contractible. Suppose that G is such a graph
on n vertices with mazrimum number of edges. Then, every non-contractible
edge of G belongs to a separating 3-cycle.

Proof: Suppose that the claim is false and G is a counterexample with
minimum number of vertices n > 5. Let ab be a non-contractible edge which
does not belong to a separating cycle and let S = {a, b, c} be a 3-cut of G.
Without loss of generality, we may assume that b and ¢ are non-adjacent.

Consider the graph G U {bc}. By the maximality of |F(G)| the graph
G U {bc} contains a light contractible edge xy. Obviously the edge zy is
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Figure 3: Configurations in Lemma 8

distinct from bc, since bc is non-contractible. The edge zy is light in G as
well, thus it must be non-contractible in G. Let {z,y, z} be a 3-cut of G.
We may assume that z,y € V(G%(S)) and z € V(G%(S)). By Lemma 6, we
may assume that b,y,c and z belong to a common face. Consider now the
following two cases and see Figure 3 for illustration:

e Case 1: a ¢ {x,y}. Then, by Lemma 7(a), we may assume that c is
a vertex of degree 3 with neighbors x, y and z. By the maximality of
G, the graph G U {yz} must contain a light contractible edge e = a'b'.
Notice that this edge is non-contractible in G. By Lemma 6 one of
the endvertices of e must be incident with f, ,, say 0. Observe that
the only 3-cut that shows non-contractibility of e is {a/,t/,c}. If e
belongs to G3(S), then {d', ¥, 2z} is a cut of G U {yz} which separates
a or b from y,x or ¢, and a’d’ would be non-contractible in G U {yz}.
Therefore we may assume that e belongs to G7(S). See the left graph of
Figure 3. In particular the edges a'b’ and zy are not incident. Hence,
by Lemma 7(a), z is a 3-vertex and za'b’ is a 3-face of G. Finally,
Lemma 2 implies that zc is a contractible edge of weight 6.

e Case 2: a € {z,y}, say a = x. We assume that no choice of z,y, z,a, b
and ¢ may satisfy Case 1. By Lemma 7(b), y is a 3-vertex with neigh-
bors a, b, c and aby is a face. Due to the maximality of GG, the graph
G U {yz} contains a light contractible edge a'bt’. The edge a’b’ must be
non-contractible in G and distinct from ay. Excluding Case 1, the edge
a'b’ must be incident with the edge ay. However, adding the edge yz



does not affect contractibility of any edge incident with y or z, therefore
the edge a'b’ must be incident with a.

We may assume that a = a’. Notice that O is a vertex of G7(S) and
by Lemma 7(b), we conclude that ayd’ is a 3-face and b’ is of degree 3.
Hence ' =bor b’ = c.

If b’ = ¢, then the edge cy has weight 6 and by Lemma 2 it is contractible
in G.

Consider now the case b = b’ and see the right graph of Figure 3. The
vertex b has degree 3 and the edge by has weight 6. If by is a non-
contractible edge, then b is a vertex of degree 3 and incident with two
non-contractible edges ab and by. Lemma 3 implies that a is also of
degree 3. Thus, G contains a 3-cycle with each vertex of degree 3, but
Lemma 5 excludes such a subgraph in GG. Thus we conclude that by is
a contractible light edge in G. This finishes the proof.

3 Contractible Light Edge

If C is a cycle of a plane graph G, then Int(C') denotes the subgraph of G
induced by the vertices and edges of G which lie on C or in its interior. We
are now ready to prove the theorem.

Theorem 3 Fvery 3-connected planar graph, distinct from K4, contains a
light and contractible edge.

Before we proceed with the proof of the theorem, let us emphasize that
this result strengthens Theorem 1, i.e., we show precisely the same bounds
on the weight of contractible edges.

Proof: Suppose that the theorem is false and GG is a counterexample with
the minimum number of vertices n > 5. Thus, every light edge of G is non-
contractible. We may additionally assume that GG has the maximum number
of edges between all such graphs of order n.

By Lemma 8, every non-contractible edge of GG belongs to a separating
3-cycle. Since G is 3-connected, it follows that every vertex that belongs to
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a separating 3-cycle is of degree > 4. Therefore every 3-vertex is incident
only to contractible edges. This implies that every 3-vertex of G is adjacent
only to vertices of degree > 11. In order to complete the proof consider the
following two possibilities:

Suppose first that every separating 3-cycle C' of G satisfies Int(C) = K.
By Theorem 1, the graph G contains a light edge e = uv. This edge e does
not lie on a separating 3-cycle; otherwise u and v are adjacent with a 3-
vertex, and each of them is of degree > 11 by the argument in the above
paragraph. Thus we conclude that e is a contractible light edge.

Suppose now that G has a separating 3-cycle C such that Int(C) # Kj.
We may additionally assume that C' = x;z9x3 is chosen so that G’ := Int(C')
has the smallest possible number of vertices. The graph G’ has at least
5 vertices. By the choice of C, each separating 3-cycle C’ of G’ satisfies
Int(C') = K4. By Lemma 1, G’ contains an edge €’ that is not incident with
Z1, To and z3 such that €' is light in G. Applying a similar argument as in
the previous paragraph, one can observe that €’ is also contractible. This
establishes the theorem.

|

Theorems 2 and 3 imply the following result:

Corollary 1 FEvery 3-polytope G can be constructed from Tetrahedron by a
sequential splittings of vertices of degree at most 11.
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