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Abstract

An L(2,1)-labeling of a graph G is a mapping c¢: V(G) — {0,..., K}
such that the labels of two adjacent vertices differ by at least two
and the labels of vertices at distance two differ by at least one. A
hole of ¢ is an integer h € {0,..., K} that is not used as a label for
any vertex of G. The smallest integer K for which an L(2,1)-labeling
of G exists is denoted by A(G). The minimum number of holes in
an optimal labeling, i.e., a labeling with K = A(G), is denoted by
p(G). Georges and Mauro showed that p(G) < A, where A is the
maximum degree of G, and conjectured that if p(G) = A and G is
connected, then the order of G is at most A(A + 1). We disprove
this conjecture by constructing graphs G with p(G) = A and order

(B[ (A+1) = A%/4.
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1 Introduction

L(2, 1)-labelings of graphs form an important model for the frequency assign-
ment problem [5]. An L(2,1)-labeling of a graph G is a labeling ¢ : V(G) —
{0,..., K} of the vertices of G such that the labels of any two adjacent ver-
tices differ by at least two and the labels of any two vertices at distance two
are different. The smallest K for which there exists a proper labeling of G is
denoted by \(G).

One of the most studied problems on L(2, 1)-labelings is the famous Delta
Square Conjecture of Griggs and Yeh [4]: they conjectured that A(G) <
A(G)? for every graph G where A(G) is the maximum degree of G. Though
the conjecture has been verified for several special classes of graphs, including
graphs of maximum degree two, chordal graphs [11] (see also [1, 8]), and
hamiltonian cubic graphs [6, 7], it remains widely open. The original upper
bound A(G) < A(G)? + 2A(G) by Griggs and Yeh [4] has been improved
to M(G) < A(G)? + A(G) in [2] (an analogous bound in a more general
setting of the channel assignment problem was proved by McDiarmid [10]).
A recent more general result of the first two authors yields the present record
AMG) < AG)? + AG) — 1.

In this paper, we focus on surjective L(2, 1)-labelings that was first studied
in a more detail by Georges and Mauro [3]. If ¢ is a labeling of G, then a
number h, 0 < h < K, is a hole, if there is no vertex v of G with ¢(v) = h.
The minimum number of holes in an L(2,1)-labeling of G with K = A(G) is
denoted by p(G). Georges and Mauro [3] established that p(G) never exceeds
the maximum degree A(G) of G. In [3], Georges and Mauro also posed
(among others) the following conjectures on L(2, 1)-labelings and holes:

Conjecture 1. If G is a r-regular graph and p(G) > 1, then p(G) divides r.

Conjecture 2. If G is a connected graph with mazimum degree A(G) and
p(G) = A(G), then the order of G does not exceed A(A + 1).

Conjecture 3. If G is a graph with A\(G) > 2A(G), then p(G) = 0. In other
words, if G is a graph with p(G) > 0, then \(G) < 2A(G).

In this paper, we focus on Conjecture 2. We provide a construction of
connected r-regular graphs G of order (r + 1) {WJ ~ r3/4 with p(G) =
r (Corollary 6). This shows that Conjecture 2 does not hold for A > 3.
Note that Conjecture 2 trivially holds for A = 1 since the only graph G



satisfying the assumptions of the conjecture is Ky. In [3], it was shown that
Conjecture 2 also holds for A = 2.

2 Previous results

In this section, we survey results obtained by Georges and Mauro [3] on the
structure of graphs G with p(G) = A(G). The following theorem shows that
the structure of such graphs is very restricted:

Theorem 1. If G is a graph with p(G) = A(G), then G is a A-regular graph
with \(G) = 2A. Moreover, for every optimum L(2,1)-labeling ¢, i.e., a
labeling using the labels 0, ..., \(G), the following holds:

e cvery odd integer between 0 and A\(G) is a hole of ¢,

e the cardinality of the preimage in ¢ of every even number between 0 and
MG) is the same, and

e the subgraph of G induced by the preimages of any two even numbers
is a perfect matching (union of disjoint edges).

In particular, there exists an integert > 0 such that the order of G is (A+1)t.

In [3], Georges and Mauro constructed connected A-regular graphs G
with p(G) = A of order (A + 1)t for every t = 1,...,A. They conjectured
that the number ¢ (under the assumption that G is connected) cannot exceed
A (this is equivalent to Conjecture 2 stated in Section 1).

We now recall a construction of an r-regular graph 2, of order r(r + 1)
from [3]. Consider a union of r vertex disjoint cliques of order r and number
the vertices of each clique from 1 to r. Add to the graph r new vertices and
join the i-th of them to the vertices of the cliques numbered with 7. The
resulting graph is €2,. Clearly, (), is a connected r-regular graph. It can be
shown that A(€2,.) = 2r and p(£2,) = 7.

In order to show that A(€2,) = 2r and p(2,) = r for the graph €,
Georges and Mauro [3] showed that 2. has a special property which we call
the neighborhood property in this paper. Assume that G is a connected
r-regular graph of order (r + 1)t. We say that G has the t-neighborhood
property if the following holds for any two (disjoint) sets V and W of vertices
of G: if neither V nor W contains two vertices at distance at most two and
no vertex of V' is adjacent to a vertex of W, then |[V|+ |[W| < t.
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We finish this section with the following proposition whose proof is implic-
itly contained in [3]. We include its short proof for the sake of completeness.

Proposition 2. If G is a connected r-regular graph of order (r + 1)t with
AMG) < 2r that has the t-neighborhood property, then \(G) = 2r and p(G) =
T

Proof. Let us consider an L(2,1)-labeling of G with 0,...,2r and let V;,
t = 0,...,2r, be the set of the vertices labelled with i. Since G has the
t-neighborhood property, it holds

Vil + [Visa| < t (1)

for every 1 = 0,...,2r — 1.
First, we show that V; = () for all odd #’s. Let iy be an odd integer between
0 and 2r and let p = |V;,|. We now bound the sum |[Vg| + - -- + |V5,| using

(1):

2r (i0—1)/2 T

2 Vil= > (Val + Vi) + 30 (Vain| + [Vail) = Vi < (r+1)t—pe.
i=0 i=0 i=(io+1)/2

Since the sets V;, ..., V5, partition the vertex set of G, the sum of their sizes

is (r 4+ 1)t. Therefore, = 0. Since the choice of iy was arbitrary, V; = ) for
all odd s as claimed.

Note that |V;| < t for every i = 0,...,2r by (1). Since the sum |Vg|+---+
|Var| is equal to (r + 1)t and the set V; is empty for every odd i, it must hold
that |V;| = t for every i = 0,2,4,...,2r. The statement of the proposition
now readily follows. ]

3 Construction

In this section, we present our construction of graphs of order ©(A?) with
p = A (the exact parameters of the constructed graphs can be found in
Theorem 5). First, we describe the considered graphs in Subsection 3.1.
In Subsection 3.2, we analyze their properties. Finally, we slightly general-
ize our construction to obtain additional graphs with similar properties in
Subsection 3.3.



3.1 The Graph

In this subsection, we construct an («a+  — 1)-regular connected graph I'y, 5
of order (a + B)af with p(Ty5) = A(Tas) = a+ B — 1. The vertex set of
'y 5 1s comprised of two sets V, and V;:

Vo = {la,ba] |1 <a<a,1<b<p&1<a<a}l,and
Vi = {la,0,0]|1<a<a,1<b<pB&1<b< P},

Note that |V,| = o8 and |V,| = af?. The vertices of V are later referred to
as green and those of V, as red.

We now describe the edge set of I'y g. Two distinct green vertices [a, b, @]
and [a',V/, @] are joined by an edge if b = 0 and @ = @. Similarly, two
distinct red vertices [a, b, b] and [a/, ¥, ] are joined by an edge if @ = o’ and
b=7"0. A green vertex [a,b,a@] and a red vertex [a/, ,5’] are joined by an
edgeifa=d and b=10'.

Notice the following: the subgraph of I'y g induced by the green vertices is
comprised of af cliques of order «, the subgraph induced by the red vertices
of af cliques of order /3, and the spanning subgraph containing edges between
the red and green vertices is comprised of af complete bipartite graphs
isomorphic to K, g. It is not hard to verify that the graph I', 5 is connected,
its order is (o + B)af and it is (aw+ 8 — 1)-regular. Examples of graphs I',, 4
for some (small) values of o and § are given in Figure 1. Note that the graph
', 1 is isomorphic to the graph 2,. Also note that the graphs I', g and I'g ,
are isomorphic for all o, 8 > 1.

3.2 Analysis

In this subsection, we analyze properties of the graphs I', 3. First, we show
an upper bound on \(I'y, 5):

Proposition 3. For every o, > 1, the number A(I'y3) does not exceed

200 4 23 — 2.
Proof. We partition green vertices into « independent sets Vi,...,V, and
red vertices into S independent sets Wy,...,Wjs. A green vertex [a, b, a) is

contained in the set V; where 7 is congruent to a + @ modulo a. A red vertex

[a, b, b] is contained in the set W; where i is congruent to b + b modulo 3.
Clearly, the sets Vi,...,V, and Wy,...,Wjs are independent. We claim

that the distance between any two vertices contained in the same set is at
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Figure 1: The graphs I'; 4 and I'y3. Green vertices are depicted by empty
circles and red vertices by full ones.

least three: assume the opposite. By symmetry, it is enough to consider
the case when Vi contains two distinct green vertices [a, b, a] and [a/, V', @]
at distance two. If the common neighbor of [a,b,a] and [a’,b',@] is a green
vertex, then b = b’ and @ = @'. By the definition of V;, it follows that a = a’
and the vertices [a, b,a] and [d/,b’,@'] are not distinct. On the other hand, if
their common neighbor is a red vertex, then a = o’ and b = b’. The definition
of V; now yields that @ = @ and the vertices [a, b,a] and [d', V', @] are not
distinct as supposed.

We now construct an L(2,1)-labeling of ', g. Label the vertices of V;,
1 =1,...,a, by the number 2¢ — 2 and the vertices of W;, 2 = 1,...,3, by
the number 2« + 2i — 2. The obtained labeling is a proper L(2,1)-labeling
of ['y 5. In particular, A(T's 5) < 20+ 25 — 2. ]

We now establish the key proeprty of graphs I',, s:

Lemma 4. For every o, > 1, the graph I'y g has the af-neighborhood
property.

Proof. Fix a > 1 and 8 > 1 and let us consider two sets V; and V5 of vertices
of I'y 5. Assume that V; contains no two vertices at distance at most two,
V5 no two vertices at distance at most two, and no two vertices of V; and V5
are adjacent. We show that |V;| 4+ |Vo| < af. The statement of the lemma
would then follow.

Let us construct two auxiliary matrices M, and M, of type o x 3. For
a,1 <a<a and b, 1 <b < f, the entry Myla,b] is the number of green
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vertices of the form [a,b,a], 1 <@ < «, contained in V; U V5. Similarly, the
entry M, [a,b] is the number of red vertices of the form [a,b,b], 1 < b < 3,
contained in V3 U V4. Next, several properties of the matrices M, and M, are
established. We formulate the properties as a series of claims:

Claim 4.1. All the entries of the matrices M, and M, are integers 0, 1 or
2.

For fixed numbers a, 1 < a < «, and b, 1 < b < f3, all the green vertices
la,b,@], 1 <@ < a, of [', 3 are at distance two. In particular, at most one
of them is contained in the set V; and at most one of them in V5. Hence,
Mgla,b] < 2. A symmetric argument applies to M,.

Claim 4.2. For everya, 1 <a < a, and b, 1 < b < 3, at most one of the
entries My[a,b] and M,[a,b] is non-zero.

If M,yla,b] > 0, then there is a green vertex [a,b,a@], 1 < @ < «, that is
contained in V; U V5. Since every red vertex [a,b,b], 1 < b < 3, is adjacent
to the green vertex [a,b,a] contained in V; U V5, no red vertex of the form
[a,b,b], 1 < b < B3, is contained in Vi U V,. Hence, M,[a,b] is equal to zero.
An analogous argument yields that if A, [a,b] > 0, then M[a, b] = 0.

Claim 4.3. If M,a,b] = 2 fora, 1 < a < a, and b, 1 < b < 3, then
M.,la',b] = M,[a, 0] =0 for everya’, 1 < o' <, and b', 1 < b < 6.

Let @; and @y, 1 < @,a2 < a, be two distinct integers such that both
green vertices [a, b, @] and [a, b, s are contained in V;UV4. Since the distance
between the vertices [a, b, a;] and [a, b, Gs] is two, one of them is contained in
V1 and the other in V,. By symmetry, we can assume that [a, b, a;] € V; and
la, b, as] € V5.

Let us consider integers o/, 1 < ¢’ < o, and b, 1 < b < B. If a = d,
then M,[da’,b] = 0 by Claim 4.2. In the rest, we consider the case a # a'.
The green vertices [a', b, a1 and [d', b, @s] are neighbors of the green vertices
[a,b, @] and [a, b, @], respectively. Since the red vertex [a/, b, b] is a neighbor
of both the green vertices [da’,b,@;] and [d', b, @], the vertex [da’, b, b] can be
included neither in V; nor in V5. Since the choice of b was arbitrary, M,[d’, b]
must be equal to zero for every o' # a, 1 < a < a. A symmetric argument

yields that M,[a, '] = 0 for every b/, 1 < b’ < B.

Claim 4.4. If M,[a,b] = 2 fora, 1 < a < a, and b, 1 <
M,[d',b] = M,[a,b'] =0 for everya’, 1 <a' < a, and ', 1 <V

b < 3, then
< B.



The proof is analogous to the proof of Claim 4.3.

Claim 4.5. For every a, 1 < a < «, the sum of the entries of M, on the
a-th row is at most (3.

For every b, 1 < b < 3, the vertices [a,b,b], 1 < b < 3, form a clique in
I'w 3. Hence, at most one of them can be contained in V; U V5. Since there
are 3 possible choices of b, there are at most 3 red vertices with the first
coordinate equal to a in V; U V5.

Claim 4.6. For every b, 1 < b < 3, the sum of the entries of M, on the b-th
column is at most c.

The proof is analogous to the proof of Claim 4.5.

We now continue the main part of the proof of Lemma 4. Let A, be the
set of all integers a such that Myla,b] = 2 for some b. Similarly, B, is the
set of all b’s such that M[a,b] = 2 for some a. Analogously, A, and B, are
sets of all integers a and b such that M,[a,b] = 2. In addition, let M be the
matrix that is the sum of the matrices M, and M, i.e., M = M, + M,. Note
that the sum of all the entries of M is |Vi| + |V3|. By Claims 4.3 and 4.4,
it holds that My[a,b] = M,[a,b] = M][a,b] = 0 for all [a,b] € A, x B, and
la,b] € A; x B,. On the other hand, by the definitions of the sets A,, B,,
A, and B, if [a,b] € (A, U A,) x (B, U B,), Myla,b] <1, M,[a,b] <1, and
at most one of Mg[a,b] and M,[a,b] is non-zero by Claim 4.2. We conclude
that M|a, bl = M,[a,b]+ M,[a,b] <1 for every [a,b] & (A,UA,) x (B,UB,).

In order to finish the proof, we distinguish four cases according the car-
dinalities of the sets A,, By, A, and B,:

o [Ay| <|A;| and |B,| > |B;|
Observe first that the following holds:

B[ < |By
1B (|4 = [4g]) < |Bgl(|Ar] = [4,])

By Claim 4.1, it holds that MJa,b] < 2 for every [a,b] € (A, X By) U
(A, x B,). Since M|a,b] = 0 for all [a,b] € (A, X B,) U (A, x By), the
sum of the entries M|a, b] for [a,b] € (A, U A,) x (B, U B,) is at most
the following (the first inequality follows from (2)):
2(14g1[By| + | A[Br]) - < |Agl[By| + | Ar|[Br| + | Ag|[ By | + | Ag| Br|
< ([Agl + AN (Bl + | Br])-
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Since M|a,b] < 1 for every [a,b] & (A, U A,) x (By U B,), the sum of
the entries of the matrix M is at most a3 as desired.

o |4y > |A;] and |B,| < |B|
This case is symmetric to the first one.

o [Ay] <|A,| and |B,| < |B,|

For a € A,, all the entries of M, on the a-th row are zero by Claim 4.3.
In particular, the entries of M and M, on the a-th row coincide. Hence,
the sum of the entries of the matrix M on the rows a € A, is at
most |A,|5 by Claim 4.5. The sum of the entries M|a, b] with [a,b] €
A, x (B, U B,) is at most 2|A,||B,| < |A4|(|By| + |Br|) by Claim 4.2.
Finally, all the remaining entries of M are at most one. We infer that
the sum of all the entries of M does not exceed af.

o [Ay| > |A,| and |By| > |B;|
An argument that is similar to that in the previous case and that
involves Claim 4.6 applies.

Since the sum of the entries of M is equal to |V;| + |V3|, we conclude that
Vil + [Va < af. O

The following theorem readily follows from Propositions 2 and 3 and
Lemma 4:

Theorem 5. For every o, 8 > 1, the graph Iy g has the following properties:
o the order of Ty 5 is (a+ f)af,
e the graph I, g is connected,
e the graph Uy g is (o +  — 1)-regular, and
e its hole number p(I'n ) is o+ — 1.
An immediate corollary of Theorem 5 is the following;:

Corollary 6. For every r > 1, there exists an r-reqular connected graph G
2
of order (r +1) {%J ~ 13[4 with p(G) = r.

Proof. Set o= [r/2] 4+ 1 and 8 = [r/2], and consider the graph I', 5. Note
that af(a+ ) = (r+1) [%J O



3.3 Generalization

In this subsection, we slightly generalize our construction. If GG is a graph
with the vertex set V(G), then G!¥! is the graph whose vertex set is V(G) x
{1,...,5} and two distinct vertices [v,4] and [v',4'] of GI* are joined by an
edge if v = v’ or v # v’ and vv' is an edge of G. Clearly, if G is an r-regular
graph of order n, then G is an (754 s — 1)-regular graph of order ns. Note
that G!* is the lexicographic products of G and the complete graph of order
S.
We now formulate the following lemma:

Lemma 7. Let G be a connected r-regular graph of order (r + 1)t. If G has
the t-neighborhood property, then GU8) has also the t-neighborhood property
for every s > 1.

Proof. Let V and W be two sets of vertices of G!*! such that the distance
between any two vertices in each of the sets is at least two and no vertex of
V' is adjacent to a vertex of W. Let V' be the set of vertices v of G such
that [v,i] € V for some i, 1 < i < s. Similarly, W’ is the set of vertices w
such that [w,i] € W. Note that the sets V' and W’ are disjoint, |V| = |V/|
and |W| = |[W'|. Moreover, V' and W' do not contain any two vertices at
distance two and no vertex of V' is ajdacent to a vertex of W'. Since G
has the t-neighborhood property, |V'| + |W'| < t. Hence, |V|+ |[W| < t.
Because the choice of V and W was arbitrary, G!*! has the t-neighborhood
property. []

Fix a,8 > 1 and s > 2. Consider the labeling of I'y, 3 with the labels
0,2,...,2a + 28 — 2 constructed in Proposition 3. We now construct an
L(2,1)-labeling of Ff}ﬂ. If v is a vertex of I', g that is labeled with v, then

a vertex [v,i], i = 1,...,s, of I‘Ei]ﬂ is labeled with v + 2(i — 1)(a + 8).
The obtained labeling is a proper L(2, 1)-labeling of Ff}ﬂ. Hence, )\(FLS,]B) <
2s(a+ ) — 2.

The following theorem readily follows from Lemmas 4 and 7:

Theorem 8. For every a, 3,s > 1, the graph Ff}ﬂ has the following proper-

ties:

e the order of Ff}ﬂ is (a+ B)aps,
e the graph Ff}ﬂ 1S connected,
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e the graph FE,],B is ((a+ B)s — 1)-regular, and

e its hole number p(FEi]ﬂ) is (a+B)s — 1.

Note that Theorem 8 yields a construction of connected r-regular graphs
2
G of order (r + 1)t for some (but not all) numbers ¢ between r and [%J

4 Conclusion

We conclude the paper with several problems in the spirit of Conjecture 2.
The first problem that comes to one’s mind is the following:

Problem 1. Is it true that there exists a function f(r) with the following
property: if G is a connected r-reqular graph of order (r+ 1)t with p(G) =,
then t < f(r)? Does there exist a polynomial f(r) with this property?

Georges and Mauro [3] constructed connected r-regular graphs of order
(r+1)t for every t =1,...,r. We constructed such graphs for some numbers
t larger than r, but we were not able to construct such graphs for all ¢ =
1,..., [%J This leads us to the following problem:

Problem 2. Assume that G is a connected r-reqular graph of order (r+1)t,

with p(G) = r. Is it true that for everyt =1,...,ty, there exists a connected

r-regular graph of order (r + 1)t with p(G) = r? In particular, is this true
2

for ty = [LT) J ?

In the case of cubic graphs, we are aware of constructions of connected
cubic graphs G of orders 4, 8, 12 and 16 with p(G) = 3. We have a computer-
assisted proof that there is no such cubic graph of order 20. If the answer
to Problem 2 were positive, then the answer to the following problem would
also be positive:

Problem 3. Is it true that there is no connected cubic graph G with p(G) = 3
whose order is at least 207
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