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Abstract

Let Bk be the bipartite graph defined by the subsets of {1, . . . , 2k + 1}
of size k and k + 1. We prove that the prism over Bk is hamiltonian. We
also show that Bk has a closed spanning 2-trail.

1 Introduction

Let [2k + 1] be the set {1, . . . , 2k + 1}. Consider the bipartite graph Bk whose
vertices are all subsets of [2k + 1] of size k or k + 1, and whose edges represent
the inclusion between two such subsets. The notorious Middle two levels problem
is whether Bk is hamiltonian for all k. Most likely it was first asked by Havel [5]
(see the account in [8]).

Many authors attempted to solve this problem. One approach was to prove the
assertion for specific values of k. The best result in this direction was obtained
by Shields and Savage [10] who proved that Bk is hamiltonian for 1 ≤ k ≤
15. Another approach aimed at identifying long cycles in Bk. In [10], it was
proved that Bk has a cycle of length ≥ 0.86 |Bk|, where |Bk| = 2

(
2k+1
k

)
is the

number of vertices of Bk. The best lower bound is due to R. Johnson who
proved [11] that there is a cycle of length (1 − o(1)) |Bk|. Yet another direction
was to find other structures that hopefully would be useful for finding the elusive
hamiltonian cycle in Bk. For instance, since a hamiltonian cycle in Bk is a
disjoint union of two 1-factors, one may hope to find a hamiltonian cycle by
building a sufficiently large repertoire of 1-factors. Duffus et al. [3] proved that no
two 1-factors of the lexicographic 1-factorization form a hamiltonian cycle. This
motivated Kierstead and Trotter [8] to generalize the lexicographic factorizations
to lexical factorizations. Still no hamiltonian cycle was discovered. Another
paper, [2], introduced the modular matchings.

1



In this paper, we use modular matchings to prove that Bk is close to being
hamiltonian. The word ‘close’ can be interpreted in several ways. For instance,
one can view a hamiltonian cycle as a spanning closed walk that visits each
vertex exactly once. One can also view a hamiltonian path as a spanning tree of
maximum degree 2. It is then quite natural to explore the following modifications.
Instead of searching for a hamiltonian cycle in a graph, search for a spanning,
closed walk in which every vertex is visited at most twice (or, in general, k times).
Similarly, instead of searching for a hamiltonian path, one can look for a spanning
tree of maximum degree 3 (or k). In accordance with the terminology of [6], we
call these spanning structures k-walks and k-trees, respectively.

It was shown in [6] that any graph with a k-tree has a k-walk, and that the
existence of a k-walk guarantees the existence of a (k + 1)-tree, for any k. This
results in the following hierarchy among families of graphs:

1-walk (hamiltonian cycle) =⇒ 2-tree (hamiltonian path)

=⇒ 2-walk =⇒ 3-tree =⇒ . . .

Clearly, for every connected graph G, there is a k for which G has a k-walk (just
duplicate all edges to obtain an eulerian graph whose Euler trail visits every vertex
at most ∆(G) times). Graphs with a k-walk for a smaller k can be regarded as
closer to being hamiltonian. For a nice survey of results on k-walks, k-trees and
related topics, we refer the reader to Ellingham [4].

The prism over a graph G is the Cartesian product G2K2 of G with the
complete graph K2 [1, 7, 9]. Thus, it consists of two copies of G and a 1-factor
joining the corresponding vertices. It was observed in [7] that the property of
having a hamiltonian prism is ‘sandwiched’ between the existence of a 2-tree and
the existence of a 2-walk. That is:

2-tree =⇒ hamiltonian prism =⇒ 2-walk

and both implications are sharp. This can be naturally interpreted as saying
that graphs with a hamiltonian prism are closer to being hamiltonian than those
which only have a 2-walk.

A hamiltonian cycle in a graph is a spanning 2-regular subgraph. In this note,
we use the modular factorization to prove that Bk has a spanning 3-connected
cubic subgraph. A direct consequence of this is that Bk has a hamiltonian prism
and also a 2-trail (a 2-walk in which each edge is used at most once). As an aside,
we note that in case Bk fails to be hamiltonian, these cubic subgraphs yield a
family of cubic, 3-connected bipartite non-hamiltonian graphs.

2 Modular matchings

Our main tool is the concept of a modular matching in Bk, as defined in [2]. We
recall the related definitions, generally trying to keep in line with the notation
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of [2]. The weight
∑
B of a set B ⊂ [2k + 1] is defined to be the sum of all

elements of B. The complement of B is denoted by B.
Let A ⊂ [2k + 1] be a k-set (set of size k). For an integer i = 1, . . . , k + 1,

let mi(A) be the set obtained when one adds the j-th largest element of A to A,
where

j ≡ i+
∑

A (mod k + 1)

and 1 ≤ j ≤ k + 1. Let mi be the set of edges of Bk of the form {A,mi(A)}.

Theorem 1 ([2]) For i = 1, . . . , k + 1, mi is a matching in Bk and the set
{m1, . . . ,mk+1} is a 1-factorization of Bk. 2

An important observation, which is implicit in the proof of [2, Theorem 1], is
the following:

Lemma 2 Define a mapping bi : Bk+1 → Bk by setting bi(B) to be the set
obtained by removing the j-th smallest element from B, where

j ≡ i+
∑

B (mod k + 1)

and the index is based at 1. The composition bi ◦mi is the identity. 2

It will be convenient to view the set [2k + 1] as ordered cyclically, with 1 being
the successor of 2k+ 1. A segment in a set B ⊂ [2k + 1] is a maximal contiguous
sequence of elements of B. Since the elements 1 and 2k + 1 are considered to be
adjacent, a segment may ‘wrap around’.

3 A connected spanning subgraph of Bk

In this section, we show that three suitably selected modular matchings in Bk

form a connected spanning cubic subgraph of Bk. To this end, we introduce the
following notation. Throughout this section, let A be a k-subset of [2k + 1]. The
elements of A can be labeled by numbers +1, . . . ,+(k + 1) such that adding the
element with label +i to A, one obtains the set B such that {A,B} ∈ mi (thus,
B = mi(A)). We shall use A(+i) to denote the element of [2k + 1] labeled +i.
By Lemma 2, the elements A(+1), . . . , A(+(k + 1)) form a decreasing sequence
(except for at most one increase caused by the wrap-around at 1).

Symmetrically, if B is a (k+ 1)-subset of [2k + 1], then the elements of B can
be labeled by −1, . . . ,−(k + 1) in such a way that removing the element labeled
−i from B (we shall write B(−i) for the element), one obtains the set bi(B).
Again by Lemma 2, the sequence B(−1), . . . , B(−(k + 1)) is increasing (with a
possible wrap-around at 2k + 1).

We need to be able to describe a sequence of additions and removals of el-
ements of the above type. First, let i, j ∈ [k + 1]. We write A+i for the set
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obtained by adding A(+i) to A (i.e., the set mi(A)). The symbol A+i,−j denotes
the outcome of the removal of A+i(−j) from A+i. The definition is extended to
sequences like A+i1,−i2,...,±ir (in which the signs must alternate) in a natural way.
Expressions like B−i1,+i2,...,±is , where B is a (k+1)-set, are defined symmetrically.

To help the reader, we introduce a graphical notation for the above operations,
used in Figure 1. A sequence of additions and deletions is represented using a
rectangular grid, each of whose rows corresponds to a set involved in the sequence.
For brevity, we identify the rows with such sets. Columns correspond to (and are
identified with) elements of [2k + 1]. A square in row S and column x is marked
gray iff x ∈ S. A label like +i in row S denotes the element S(+i). Labels on
the left and on the top of a diagram mark special sets and elements. Finally, a
square marked in bold represents the element whose addition/removal leads to
the next set in the sequence. Observe that this is always a square with a label
(+i or −i).
Lemma 3 For any k-set A 6= {1, . . . , k}, the spanning subgraph of Bk formed by
the edges in m1∪m2∪m3 contains a path P that starts in A and ends in a k-set
of smaller weight.

Proof. Assume first that some element of A is larger than a = A(+2) (see
Figure 1a), and set C = A+2,−3. Since

C(−3) = A+2(−3) > A+2(−2) = a,

the weight of C is less than that of A. Thus, the path that starts at A and follows
first the edge of m2 and then the edge of m3 has the required property.

We may therefore assume that a is the largest element of A+2 (as in Figures 1b
and c). Let s and z be the first and the last element of the last segment σ of
A preceding a, respectively. Clearly, s < a (although our definition allows a
segment to wrap around). Furthermore, s > 1 since A 6= {1, . . . , k}.

Note that A+2(−1) = z. Set D = A+2,−1, observing that D(+2) = s − 1.
Furthermore, set E = D+2,−3 = A+2,−1,+2,−3.

To interpret E, we distinguish two cases based on the length of σ. If σ has
length 1 (i.e., s + 1 /∈ A, see Figure 1b), then D+2(−3) = a. Consequently, E
differs from A in that it has s− 1 in place of s. We infer that

∑
E <

∑
A. The

desired path follows the matchings in the order m2,m1,m2,m3 starting from A.
It remains to consider the case that the length of σ is more than 1 (Figure 1c).

The element D+2(−3) is now s, so E = A ∪ {a} \ {s}. Since E+2 = z, one has
E+2(−3) = a. Setting F = E+2,−3, one has F = A ∪ {s− 1} \ {s}, and hence∑
F <

∑
A. Recalling that F = A+2,−1,+2,−3,+2,−3, one sees that a path from A

to F uses edges of m2,m1,m2,m3,m2 and m3 in order. The proof is finished. 2

Theorem 4 The union M of the matchings m1, m2 and m3 is a connected
spanning cubic subgraph of Bk.
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Figure 1: An illustration to the proof of Lemma 3.

Proof. Lemma 3 implies that every vertex different from A0 = {1, . . . , k} is
joined to A0 by a path in M . Therefore, M is connected. It is cubic since
m1,m2,m3 are pairwise disjoint by Theorem 1. 2

4 The subgraph M is 3-connected

We now strengthen the result of Section 3 by showing that the spanning cubic
subgraph M of Bk is actually 3-connected. When working with elements of
[2k + 1], we perform all our computations modulo 2k + 1, using 2k + 1 in place
of 0. Thus, for instance, (2k + 1) + 1 is 1.

Let A ⊂ [2k + 1]. The shift sh(A) of A is the set

sh(A) = {x+ 1 : x ∈ A} .

Thus, as we consider the elements 1 and 2k+ 1 to be adjacent, the shift of A
is obtained from A by a translation by one to the right. Set sh0(A) = A and, for
n > 0, shn(A) = sh(shn−1(A)). Clearly, sh2k+1(A) = A.

Lemma 5 Let A be a subset of [2k + 1] with |A| ∈ {k, k + 1}. Then shn(A) 6= A
for all n = 1, ..., 2k.

Proof. Let n < 2k+ 1 be smallest such that shn(A) = A. Since sh2k+1(A) =
A, the number 2k + 1 is clearly divisible by n. For a ∈ A, set

ã = {a+ ni : 0 ≤ i < (2k + 1)/n} .
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The sets ã, each of which is of size (2k + 1)/n, partition A. It follows that |A|,
which is k or k+1, is divisible by (2k+1)/n. However, (2k+1)/n divides 2k+1,
and so it can divide neither k nor k + 1, a contradiction. 2

Lemma 6 If {A,B} ∈mi, then {sh(A), sh(B)} ∈mi as well.

Proof. Suppose that {sh(A), C} ∈ mi. Let B − A = {d} and C − sh(A) =
{d′}. Clearly, to prove that C = sh(B) it is only needed to show that d′ =
d + 1. Set n ≡ i +

∑
A, where 1 ≤ n ≤ 2k + 1. We will distinguish two

cases. Suppose first that 2k + 1 ∈ A. Let A = {a1, ..., ak−1, ak = 2k + 1}. Then
sh(A) = {1, a1 + 1, ..., ak−1 + 1}. We get

n ≡ i+
k∑
j=1

aj (mod k + 1)

≡ i+ (2k + 1) + 2 +
k−1∑
j=1

(aj + 1) (mod k + 1)

≡ i+
∑

sh(A) (mod k + 1).

Thus, d and d′ is the n-th largest element of A and sh(A), respectively. As sh(A)
is the shift of A, sh(A) = sh(A). Since 2k + 1 /∈ A, for each n, the n-th largest
element of sh(A) is larger by one than the n-th largest element of A. Hence,
d′ = d+ 1.

Now suppose that 2k + 1 /∈ A. Thus, for A = {aj : 1 ≤ j ≤ k}, we have
sh(A) = {aj + 1 : 1 ≤ j ≤ k}. We obtain

n ≡ (i+
∑

A) (mod k + 1)

≡ i+ (k + 1) +
∑

A (mod k + 1)

≡ 1 + i+
k∑
j=1

(aj + 1) (mod k + 1)

≡ 1 + i+
∑

sh(A) (mod k + 1).

That is, d is the n-th largest element of A, while d′ is the (n−1)-st largest element
of sh(A). Since 2k + 1 ∈ A, for each n, the (n − 1)-st largest element of sh(A)
is larger by one than the n-th largest element of A. For n = 1, the statement
means that if d = 2k + 1, then d′ = 1. Thus, also in this case, d′ = d+ 1. 2

The edges of mi ∪mj, 1 ≤ i 6= j ≤ k, form a 2-factor of Bk. The following
lemmas describe some properties of the cycles of the 2-factors mi ∪mi+1.
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Lemma 7 Let C be a cycle in the 2-factor mi ∪mi+1, where i ∈ {1, . . . , k − 1}.
If the set A is on C then, for all t, sht(A) is on C as well.

Proof. A segment of a set A will be denoted by [a, b], where a and b are the
smallest and the largest numbers in the segment, respectively. Let A be a k-set
and [aj, bj], j = 1, . . . , n be its segments. We label the segments in such a way
that [a1, b1] is the first segment to the right of A(+i), and the segment [aj, bj] is
the first segment to the right of the segment [aj−1, bj−1], with a possible wrap-
around. It is easy to see that the path P through the vertices given below is a
part of the cycle of C (see Figure 2 for an illustration).

A = {[a1, b1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1, b1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2] , . . . , [an−1, bn−1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1, bn−1] , [an, bn]} ,

...,

{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] , [an, bn]} ,
{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] , [an + 1, bn]}

= B.

If A(+i) = bn + 1, then B = sh(A). Otherwise, the two vertices on P that
immediately follow B are

{A(+i), [a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] ,

[an + 1, bn + 1]},
{[a1 + 1, b1 + 1] , [a2 + 1, b2 + 1] , . . . , [an−1 + 1, bn−1 + 1] , [an + 1, bn + 1]}

= sh(A).

This shows that if a k-set A is on C then its shift is on C as well. Applying
the same argument repeatedly, we get that the vertex sht(A) is on C for all t > 1.
By Lemma 6, the same applies to each (k + 1)-set on C. 2

From the proof of the preceding lemma and Lemma 5, we immediately get:

Corollary 8 If A is a t-set, then the cycle of mi ∪ mi+1 containing A is of
length 2(2k + 1)(t + δ), where δ ∈ {0, 1}. In particular, if two m-sets A and B,
m ∈ {k, k + 1}, are on a cycle of mi ∪mi+1, then the number of segments of A
differs from the number of segments of B by at most 1.

7



A

sh(A)

+i

Figure 2: The path P in the proof of Lemma 7.

If A,B be vertices on a cycle, then dC(A,B) denotes the length of the shorter
path from A to B on C. From Lemma 6 and from the proof of Lemma 7, we get:

Corollary 9 Let A be on a cycle C of mi∪mi+1, where i ∈ {1, . . . , k − 1}. Then
the vertices A, sh(A), . . . , sh2k(A) are uniformly distributed on C, i.e.,

dC(A, sh(A)) = dC(shi(A), shi+1(A)),

where i ∈ {1, . . . , 2k}.

Corollary 10 Let A be a k-set, C be a cycle of m1 ∪ m2 containing A, and
{A,B} ∈m3. Then either B is not on C, or dC(A,B) > dC(A, sh(A)).

Proof. From the proof of Lemma 6, we see that no (k + 1)-set on the path
P from A to sh(A), that is a part of C, contains the number a1. Similarly, no
(k+1)-set on the path from sh2k(A) to A, that is a part of C, contains the element
bn. Thus, if B is on C, then dC(A,B) > dC(A, sh(A)). 2

For {A,B} ∈mi, we define mi(A) to equal B.

Theorem 11 The union M of the matchings m1,m2 and m3 is a 3-connected
graph.

Proof. By Theorem 4, M is connected. Let F be an edge-cut of M , and let
x ∈ F , where x ∈mi, 1 ≤ i ≤ 3. As x is on a cycle in the 2-factor mi∪mj, where
i 6= j and 1 ≤ j ≤ 3, there is an edge y 6= x such that y ∈ F . Thus, |F | ≥ 2.
Assume, for the sake of a contradiction, that |F | = 2. If y ∈mj, then F contains
at least two edges of the cycle of mi ∪ mk (k ∈ {1, 2, 3} − {i, j}) that passes
through the edge x. This in turn implies that |F | > 2. Hence, both the edges
x and y are from the same matching mi. Let the set of vertices of a component
of M − F be denoted by R, and set S = V (M) − R. Suppose first that i = 1.
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Let C be the cycle of m1 ∪m2 containing the edge x. Then, by Lemma 7 and
Corollary 9, there is a vertex A on C such that A ∈ R and sht(A) ∈ S for some
t ≤ 2k. Let C ′ be a cycle of m2 ∪m3 passing through A. Since the edge-cut F
does not contain any edge of m2 ∪m3, all the vertices of C ′ are in R. Thus, by
Lemma 6, sht(A) ∈ R, a contradiction. An analogous argument applies if i = 3.
Thus, we are left with the case i = 2.

Let C be a cycle of m1 ∪ m2 that contains the edge x. Then C passes
through y as |F | = 2. Write P1 and P2 for the two paths of C −{x, y}, assuming
|P1| ≤ |P2|. Let Ax denote the vertex of P1 incident with the edge x. Without loss
of generality, we assume that P1 ⊂ R. Suppose first that the vertex B = m3(Ax)
is on C as well. Then, by Lemma 6 and Corollary 10, there is an r with the
property that shr(Ax) ∈ P1, butB′ ∈ P2, where z = {shr(A), B′} ∈m3. However,
then z ∈ F , and |F | > 2. Thus, B = m3(Ax) /∈ C. However, then B is on the
cycle C ′ of m2 ∪ m3 that passes through x. Clearly, B ∈ R, for otherwise
|F | > 2. By the same token as above, y is on C ′ as well. Assume that, for some
t, sht(B) ∈ S. Consider a cycle C ′′ of m1 ∪ m2 passing through B. As B is
not on C, all vertices of C ′′ are in R. From Lemma 7, all shifts of B are in C ′′,
which contradicts the fact that sht(B) is in S, and |F | > 2. We need to consider
now the case that for all t, sht(B) ∈ R. Let T1 and T2 denote the two paths of
C ′ − F , and suppose that B is on T1. As sht(B) is on T1 for all t ≥ 0, then, by
Corollary 9, for any E on C ′, there is at most one te < 2k + 1 so that shte(E) is
on T2. However, Ax is on both P1 and C ′, and |P1| ≤ |P2| leads to a contradiction
with the previous statement as |P1| ≤ |P2| implies (Corollary 9) that at least two
distinct shifts of Ax have to be on P2 ⊂ S, hence on T2. The proof is complete.

2

Corollary 12 The prism over the graph Bk is hamiltonian.

Proof. By [9] (see also [1]), any 3-connected cubic graph has a hamiltonian
prism. Thus, the assertion follows from Theorem 11. 2

We remark that Corollary 12 can also be directly derived from Theorem 4,
by showing that a connected cubic bipartite graph has a hamiltonian prism.
We conclude the paper with the following observation on 2-trails (defined in
Section 1):

Corollary 13 The graph Bk has a 2-trail.

Proof. Adding any matching mi (i ≥ 4) to M , we obtain a connected spanning
4-regular subgraph of Bk. The Euler trail of this subgraph is a 2-trail in Bk. 2
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