The prism over the middle-levels graph is hamiltonian

Peter Horák
Tomáś Kaiser
Moshe Rosenfeld
Zdeněk Ryjáček

Abstract

Let \mathbf{B}_{k} be the bipartite graph defined by the subsets of $\{1, \ldots, 2 k+1\}$ of size k and $k+1$. We prove that the prism over \mathbf{B}_{k} is hamiltonian. We also show that \mathbf{B}_{k} has a closed spanning 2-trail.

1 Introduction

Let $[2 k+1]$ be the set $\{1, \ldots, 2 k+1\}$. Consider the bipartite graph \mathbf{B}_{k} whose vertices are all subsets of $[2 k+1]$ of size k or $k+1$, and whose edges represent the inclusion between two such subsets. The notorious Middle two levels problem is whether \mathbf{B}_{k} is hamiltonian for all k. Most likely it was first asked by Havel [5] (see the account in [8]).

Many authors attempted to solve this problem. One approach was to prove the assertion for specific values of k. The best result in this direction was obtained by Shields and Savage [10] who proved that \mathbf{B}_{k} is hamiltonian for $1 \leq k \leq$ 15. Another approach aimed at identifying long cycles in \mathbf{B}_{k}. In [10], it was proved that \mathbf{B}_{k} has a cycle of length $\geq 0.86\left|\mathbf{B}_{k}\right|$, where $\left|\mathbf{B}_{k}\right|=2\binom{2 k+1}{k}$ is the number of vertices of \mathbf{B}_{k}. The best lower bound is due to R . Johnson who proved [11] that there is a cycle of length $(1-o(1))\left|\mathbf{B}_{k}\right|$. Yet another direction was to find other structures that hopefully would be useful for finding the elusive hamiltonian cycle in \mathbf{B}_{k}. For instance, since a hamiltonian cycle in \mathbf{B}_{k} is a disjoint union of two 1 -factors, one may hope to find a hamiltonian cycle by building a sufficiently large repertoire of 1-factors. Duffus et al. [3] proved that no two 1 -factors of the lexicographic 1-factorization form a hamiltonian cycle. This motivated Kierstead and Trotter [8] to generalize the lexicographic factorizations to lexical factorizations. Still no hamiltonian cycle was discovered. Another paper, [2], introduced the modular matchings.

In this paper, we use modular matchings to prove that \mathbf{B}_{k} is close to being hamiltonian. The word 'close' can be interpreted in several ways. For instance, one can view a hamiltonian cycle as a spanning closed walk that visits each vertex exactly once. One can also view a hamiltonian path as a spanning tree of maximum degree 2. It is then quite natural to explore the following modifications. Instead of searching for a hamiltonian cycle in a graph, search for a spanning, closed walk in which every vertex is visited at most twice (or, in general, k times). Similarly, instead of searching for a hamiltonian path, one can look for a spanning tree of maximum degree 3 (or k). In accordance with the terminology of [6], we call these spanning structures k-walks and k-trees, respectively.

It was shown in [6] that any graph with a k-tree has a k-walk, and that the existence of a k-walk guarantees the existence of a $(k+1)$-tree, for any k. This results in the following hierarchy among families of graphs:

$$
\begin{aligned}
1 \text {-walk (hamiltonian cycle) } & \Longrightarrow 2 \text {-tree (hamiltonian path) } \\
& \Longrightarrow 2 \text {-walk } \Longrightarrow 3 \text {-tree } \Longrightarrow \ldots
\end{aligned}
$$

Clearly, for every connected graph G, there is a k for which G has a k-walk (just duplicate all edges to obtain an eulerian graph whose Euler trail visits every vertex at most $\Delta(G)$ times). Graphs with a k-walk for a smaller k can be regarded as closer to being hamiltonian. For a nice survey of results on k-walks, k-trees and related topics, we refer the reader to Ellingham [4].

The prism over a graph G is the Cartesian product $G \square K_{2}$ of G with the complete graph $K_{2}[1,7,9]$. Thus, it consists of two copies of G and a 1-factor joining the corresponding vertices. It was observed in [7] that the property of having a hamiltonian prism is 'sandwiched' between the existence of a 2-tree and the existence of a 2 -walk. That is:

$$
\text { 2-tree } \Longrightarrow \text { hamiltonian prism } \Longrightarrow \text { 2-walk }
$$

and both implications are sharp. This can be naturally interpreted as saying that graphs with a hamiltonian prism are closer to being hamiltonian than those which only have a 2 -walk.

A hamiltonian cycle in a graph is a spanning 2-regular subgraph. In this note, we use the modular factorization to prove that \mathbf{B}_{k} has a spanning 3-connected cubic subgraph. A direct consequence of this is that \mathbf{B}_{k} has a hamiltonian prism and also a 2 -trail (a 2 -walk in which each edge is used at most once). As an aside, we note that in case \mathbf{B}_{k} fails to be hamiltonian, these cubic subgraphs yield a family of cubic, 3 -connected bipartite non-hamiltonian graphs.

2 Modular matchings

Our main tool is the concept of a modular matching in \mathbf{B}_{k}, as defined in [2]. We recall the related definitions, generally trying to keep in line with the notation
of [2]. The weight $\sum B$ of a set $B \subset[2 k+1]$ is defined to be the sum of all elements of B. The complement of B is denoted by \bar{B}.

Let $A \subset[2 k+1]$ be a k-set (set of size k). For an integer $i=1, \ldots, k+1$, let $\mathbf{m}_{i}(A)$ be the set obtained when one adds the j-th largest element of \bar{A} to A, where

$$
j \equiv i+\sum A \quad(\bmod k+1)
$$

and $1 \leq j \leq k+1$. Let \mathbf{m}_{i} be the set of edges of \mathbf{B}_{k} of the form $\left\{A, \mathbf{m}_{i}(A)\right\}$.
Theorem 1 ([2]) For $i=1, \ldots, k+1, \mathbf{m}_{i}$ is a matching in \mathbf{B}_{k} and the set $\left\{\mathbf{m}_{1}, \ldots, \mathbf{m}_{k+1}\right\}$ is a 1-factorization of \mathbf{B}_{k}.

An important observation, which is implicit in the proof of [2, Theorem 1], is the following:

Lemma 2 Define a mapping $\mathbf{b}_{i}: \mathbf{B}_{k+1} \rightarrow \mathbf{B}_{k}$ by setting $\mathbf{b}_{i}(B)$ to be the set obtained by removing the j-th smallest element from B, where

$$
j \equiv i+\sum B \quad(\bmod k+1)
$$

and the index is based at 1 . The composition $\mathbf{b}_{i} \circ \mathbf{m}_{i}$ is the identity.
It will be convenient to view the set $[2 k+1]$ as ordered cyclically, with 1 being the successor of $2 k+1$. A segment in a set $B \subset[2 k+1]$ is a maximal contiguous sequence of elements of B. Since the elements 1 and $2 k+1$ are considered to be adjacent, a segment may 'wrap around'.

3 A connected spanning subgraph of B_{k}

In this section, we show that three suitably selected modular matchings in \mathbf{B}_{k} form a connected spanning cubic subgraph of \mathbf{B}_{k}. To this end, we introduce the following notation. Throughout this section, let A be a k-subset of $[2 k+1]$. The elements of \bar{A} can be labeled by numbers $+1, \ldots,+(k+1)$ such that adding the element with label $+i$ to A, one obtains the set B such that $\{A, B\} \in \mathbf{m}_{i}$ (thus, $B=\mathbf{m}_{i}(A)$. We shall use $A(+i)$ to denote the element of $[2 k+1]$ labeled $+i$. By Lemma 2, the elements $A(+1), \ldots, A(+(k+1))$ form a decreasing sequence (except for at most one increase caused by the wrap-around at 1).

Symmetrically, if B is a $(k+1)$-subset of [$2 k+1$], then the elements of B can be labeled by $-1, \ldots,-(k+1)$ in such a way that removing the element labeled $-i$ from B (we shall write $B(-i)$ for the element), one obtains the set $\mathbf{b}_{i}(B)$. Again by Lemma 2, the sequence $B(-1), \ldots, B(-(k+1)$) is increasing (with a possible wrap-around at $2 k+1$).

We need to be able to describe a sequence of additions and removals of elements of the above type. First, let $i, j \in[k+1]$. We write A^{+i} for the set
obtained by adding $A(+i)$ to A (i.e., the set $\mathbf{m}_{i}(A)$). The symbol $A^{+i,-j}$ denotes the outcome of the removal of $A^{+i}(-j)$ from A^{+i}. The definition is extended to sequences like $A^{+i_{1},-i_{2}, \ldots, \pm i_{r}}$ (in which the signs must alternate) in a natural way. Expressions like $B^{-i_{1},+i_{2}, \ldots, \pm i_{s}}$, where B is a $(k+1)$-set, are defined symmetrically.

To help the reader, we introduce a graphical notation for the above operations, used in Figure 1. A sequence of additions and deletions is represented using a rectangular grid, each of whose rows corresponds to a set involved in the sequence. For brevity, we identify the rows with such sets. Columns correspond to (and are identified with) elements of $[2 k+1]$. A square in row S and column x is marked gray iff $x \in S$. A label like $+i$ in row S denotes the element $S(+i)$. Labels on the left and on the top of a diagram mark special sets and elements. Finally, a square marked in bold represents the element whose addition/removal leads to the next set in the sequence. Observe that this is always a square with a label ($+i$ or $-i$).

Lemma 3 For any k-set $A \neq\{1, \ldots, k\}$, the spanning subgraph of \mathbf{B}_{k} formed by the edges in $\mathbf{m}_{1} \cup \mathbf{m}_{2} \cup \mathbf{m}_{3}$ contains a path P that starts in A and ends in a k-set of smaller weight.

Proof. Assume first that some element of A is larger than $a=A(+2)$ (see Figure 1a), and set $C=A^{+2,-3}$. Since

$$
C(-3)=A^{+2}(-3)>A^{+2}(-2)=a
$$

the weight of C is less than that of A. Thus, the path that starts at A and follows first the edge of \mathbf{m}_{2} and then the edge of \mathbf{m}_{3} has the required property.

We may therefore assume that a is the largest element of A^{+2} (as in Figures 1b and c). Let s and z be the first and the last element of the last segment σ of A preceding a, respectively. Clearly, $s<a$ (although our definition allows a segment to wrap around). Furthermore, $s>1$ since $A \neq\{1, \ldots, k\}$.

Note that $A^{+2}(-1)=z$. Set $D=A^{+2,-1}$, observing that $D(+2)=s-1$. Furthermore, set $E=D^{+2,-3}=A^{+2,-1,+2,-3}$.

To interpret E, we distinguish two cases based on the length of σ. If σ has length 1 (i.e., $s+1 \notin A$, see Figure 1b), then $D^{+2}(-3)=a$. Consequently, E differs from A in that it has $s-1$ in place of s. We infer that $\sum E<\sum A$. The desired path follows the matchings in the order $\mathbf{m}_{2}, \mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}$ starting from A.

It remains to consider the case that the length of σ is more than 1 (Figure 1c). The element $D^{+2}(-3)$ is now s, so $E=A \cup\{a\} \backslash\{s\}$. Since $E^{+2}=z$, one has $E^{+2}(-3)=a$. Setting $F=E^{+2,-3}$, one has $F=A \cup\{s-1\} \backslash\{s\}$, and hence $\sum F<\sum A$. Recalling that $F=A^{+2,-1,+2,-3,+2,-3}$, one sees that a path from A to F uses edges of $\mathbf{m}_{2}, \mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}, \mathbf{m}_{2}$ and \mathbf{m}_{3} in order. The proof is finished.

Theorem 4 The union M of the matchings $\mathbf{m}_{1}, \mathbf{m}_{2}$ and \mathbf{m}_{3} is a connected spanning cubic subgraph of \mathbf{B}_{k}.

Figure 1: An illustration to the proof of Lemma 3.

Proof. Lemma 3 implies that every vertex different from $A_{0}=\{1, \ldots, k\}$ is joined to A_{0} by a path in M. Therefore, M is connected. It is cubic since $\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}$ are pairwise disjoint by Theorem 1.

4 The subgraph M is 3-connected

We now strengthen the result of Section 3 by showing that the spanning cubic subgraph M of \mathbf{B}_{k} is actually 3-connected. When working with elements of [2k+1], we perform all our computations modulo $2 k+1$, using $2 k+1$ in place of 0 . Thus, for instance, $(2 k+1)+1$ is 1 .

Let $A \subset[2 k+1]$. The shift $\operatorname{sh}(A)$ of A is the set

$$
\operatorname{sh}(A)=\{x+1: x \in A\}
$$

Thus, as we consider the elements 1 and $2 k+1$ to be adjacent, the shift of A is obtained from A by a translation by one to the right. Set $\operatorname{sh}^{0}(A)=A$ and, for $n>0, \operatorname{sh}^{n}(A)=\operatorname{sh}\left(\operatorname{sh}^{n-1}(A)\right)$. Clearly, $\operatorname{sh}^{2 k+1}(A)=A$.

Lemma 5 Let A be a subset of $[2 k+1]$ with $|A| \in\{k, k+1\}$. Then $\operatorname{sh}^{n}(A) \neq A$ for all $n=1, \ldots, 2 k$.

Proof. Let $n<2 k+1$ be smallest such that $\operatorname{sh}^{n}(A)=A$. Since $\operatorname{sh}^{2 k+1}(A)=$ A, the number $2 k+1$ is clearly divisible by n. For $a \in A$, set

$$
\tilde{a}=\{a+n i: 0 \leq i<(2 k+1) / n\} .
$$

The sets \tilde{a}, each of which is of size $(2 k+1) / n$, partition A. It follows that $|A|$, which is k or $k+1$, is divisible by $(2 k+1) / n$. However, $(2 k+1) / n$ divides $2 k+1$, and so it can divide neither k nor $k+1$, a contradiction.

Lemma 6 If $\{A, B\} \in \mathbf{m}_{i}$, then $\{\operatorname{sh}(A), \operatorname{sh}(B)\} \in \mathbf{m}_{i}$ as well.

Proof. Suppose that $\{\operatorname{sh}(A), C\} \in \mathbf{m}_{i}$. Let $B-A=\{d\}$ and $C-\operatorname{sh}(A)=$ $\left\{d^{\prime}\right\}$. Clearly, to prove that $C=\operatorname{sh}(B)$ it is only needed to show that $d^{\prime}=$ $d+1$. Set $n \equiv i+\sum A$, where $1 \leq n \leq 2 k+1$. We will distinguish two cases. Suppose first that $2 k+1 \in A$. Let $A=\left\{a_{1}, \ldots, a_{k-1}, a_{k}=2 k+1\right\}$. Then $\operatorname{sh}(A)=\left\{1, a_{1}+1, \ldots, a_{k-1}+1\right\}$. We get

$$
\begin{aligned}
n & \equiv i+\sum_{j=1}^{k} a_{j} \quad(\bmod k+1) \\
& \equiv i+(2 k+1)+2+\sum_{j=1}^{k-1}\left(a_{j}+1\right) \quad(\bmod k+1) \\
& \equiv i+\sum \operatorname{sh}(A) \quad(\bmod k+1)
\end{aligned}
$$

Thus, d and d^{\prime} is the n-th largest element of \bar{A} and $\overline{\operatorname{sh}(A)}$, respectively. As $\operatorname{sh}(A)$ is the shift of $A, \overline{\operatorname{sh}(A)}=\operatorname{sh}(\bar{A})$. Since $2 k+1 \notin \bar{A}$, for each n, the n-th largest element of $\frac{\operatorname{sh}(A)}{}$ is larger by one than the n-th largest element of \bar{A}. Hence, $d^{\prime}=d+1$.

Now suppose that $2 k+1 \notin A$. Thus, for $A=\left\{a_{j}: 1 \leq j \leq k\right\}$, we have $\operatorname{sh}(A)=\left\{a_{j}+1: 1 \leq j \leq k\right\}$. We obtain

$$
\begin{aligned}
n & \equiv\left(i+\sum A\right) \quad(\bmod k+1) \\
& \equiv i+(k+1)+\sum A \quad(\bmod k+1) \\
& \equiv 1+i+\sum_{j=1}^{k}\left(a_{j}+1\right) \quad(\bmod k+1) \\
& \equiv 1+i+\sum \operatorname{sh}(A) \quad(\bmod k+1) .
\end{aligned}
$$

That is, d is the n-th largest element of \bar{A}, while d^{\prime} is the $(n-1)$-st largest element of $\overline{\operatorname{sh}(A)}$. Since $2 k+1 \in \bar{A}$, for each n, the $(n-1)$-st largest element of $\overline{\operatorname{sh}(A)}$ is larger by one than the n-th largest element of \bar{A}. For $n=1$, the statement means that if $d=2 k+1$, then $d^{\prime}=1$. Thus, also in this case, $d^{\prime}=d+1$.

The edges of $\mathbf{m}_{i} \cup \mathbf{m}_{j}, 1 \leq i \neq j \leq k$, form a 2 -factor of \mathbf{B}_{k}. The following lemmas describe some properties of the cycles of the 2-factors $\mathbf{m}_{i} \cup \mathbf{m}_{i+1}$.

Lemma 7 Let C be a cycle in the 2 -factor $\mathbf{m}_{i} \cup \mathbf{m}_{i+1}$, where $i \in\{1, \ldots, k-1\}$. If the set A is on C then, for all $t, \operatorname{sh}^{t}(A)$ is on C as well.

Proof. A segment of a set A will be denoted by $[a, b]$, where a and b are the smallest and the largest numbers in the segment, respectively. Let A be a k-set and $\left[a_{j}, b_{j}\right], j=1, \ldots, n$ be its segments. We label the segments in such a way that $\left[a_{1}, b_{1}\right]$ is the first segment to the right of $A(+i)$, and the segment $\left[a_{j}, b_{j}\right]$ is the first segment to the right of the segment $\left[a_{j-1}, b_{j-1}\right]$, with a possible wraparound. It is easy to see that the path P through the vertices given below is a part of the cycle of C (see Figure 2 for an illustration).

$$
\begin{aligned}
& A=\left\{\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{n-1}, b_{n-1}\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \left\{A(+i),\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{n-1}, b_{n-1}\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \left\{A(+i),\left[a_{1}+1, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{n-1}, b_{n-1}\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \left\{A(+i),\left[a_{1}+1, b_{1}+1\right],\left[a_{2}, b_{2}\right], \ldots,\left[a_{n-1}, b_{n-1}\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \left\{A(+i),\left[a_{1}+1, b_{1}+1\right],\left[a_{2}+1, b_{2}\right], \ldots,\left[a_{n-1}, b_{n-1}\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \left\{A(+i),\left[a_{1}+1, b_{1}+1\right],\left[a_{2}+1, b_{2}+1\right], \ldots,\left[a_{n-1}, b_{n-1}\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \quad \vdots \\
& \left\{A(+i),\left[a_{1}+1, b_{1}+1\right],\left[a_{2}+1, b_{2}+1\right], \ldots,\left[a_{n-1}+1, b_{n-1}+1\right],\left[a_{n}, b_{n}\right]\right\}, \\
& \left\{A(+i),\left[a_{1}+1, b_{1}+1\right],\left[a_{2}+1, b_{2}+1\right], \ldots,\left[a_{n-1}+1, b_{n-1}+1\right],\left[a_{n}+1, b_{n}\right]\right\} \\
& \quad=B .
\end{aligned}
$$

If $A(+i)=b_{n}+1$, then $B=\operatorname{sh}(A)$. Otherwise, the two vertices on P that immediately follow B are

$$
\begin{aligned}
& \left\{A(+i),\left[a_{1}+1, b_{1}+1\right],\left[a_{2}+1, b_{2}+1\right], \ldots,\left[a_{n-1}+1, b_{n-1}+1\right]\right. \\
& \left.\quad\left[a_{n}+1, b_{n}+1\right]\right\} \\
& \left\{\left[a_{1}+1, b_{1}+1\right],\left[a_{2}+1, b_{2}+1\right], \ldots,\left[a_{n-1}+1, b_{n-1}+1\right],\left[a_{n}+1, b_{n}+1\right]\right\} \\
& \quad=\operatorname{sh}(A) .
\end{aligned}
$$

This shows that if a k-set A is on C then its shift is on C as well. Applying the same argument repeatedly, we get that the vertex $\operatorname{sh}^{t}(A)$ is on C for all $t>1$. By Lemma 6 , the same applies to each $(k+1)$-set on C.

From the proof of the preceding lemma and Lemma 5, we immediately get:
Corollary 8 If A is a t-set, then the cycle of $\mathbf{m}_{i} \cup \mathbf{m}_{i+1}$ containing A is of length $2(2 k+1)(t+\delta)$, where $\delta \in\{0,1\}$. In particular, if two m-sets A and B, $m \in\{k, k+1\}$, are on a cycle of $\mathbf{m}_{i} \cup \mathbf{m}_{i+1}$, then the number of segments of A differs from the number of segments of B by at most 1 .

Figure 2: The path P in the proof of Lemma 7 .

If A, B be vertices on a cycle, then $d_{C}(A, B)$ denotes the length of the shorter path from A to B on C. From Lemma 6 and from the proof of Lemma 7, we get:

Corollary 9 Let A be on a cycle C of $\mathbf{m}_{i} \cup \mathbf{m}_{i+1}$, where $i \in\{1, \ldots, k-1\}$. Then the vertices $A, \operatorname{sh}(A), \ldots, \operatorname{sh}^{2 k}(A)$ are uniformly distributed on C, i.e.,

$$
d_{C}(A, \operatorname{sh}(A))=d_{C}\left(\operatorname{sh}^{i}(A), \operatorname{sh}^{i+1}(A)\right)
$$

where $i \in\{1, \ldots, 2 k\}$.
Corollary 10 Let A be a k-set, C be a cycle of $\mathbf{m}_{1} \cup \mathbf{m}_{2}$ containing A, and $\{A, B\} \in \mathbf{m}_{3}$. Then either B is not on C, or $d_{C}(A, B)>d_{C}(A, \operatorname{sh}(A))$.

Proof. From the proof of Lemma 6, we see that no $(k+1)$-set on the path P from A to $\operatorname{sh}(A)$, that is a part of C, contains the number a_{1}. Similarly, no $(k+1)$-set on the path from $\operatorname{sh}^{2 k}(A)$ to A, that is a part of C, contains the element b_{n}. Thus, if B is on C, then $d_{C}(A, B)>d_{C}(A, \operatorname{sh}(A))$.

For $\{A, B\} \in \mathbf{m}_{i}$, we define $\mathbf{m}_{i}(A)$ to equal B.
Theorem 11 The union M of the matchings $\mathbf{m}_{1}, \mathbf{m}_{2}$ and \mathbf{m}_{3} is a 3-connected graph.

Proof. By Theorem $4, M$ is connected. Let F be an edge-cut of M, and let $x \in F$, where $x \in \mathbf{m}_{i}, 1 \leq i \leq 3$. As x is on a cycle in the 2 -factor $\mathbf{m}_{i} \cup \mathbf{m}_{j}$, where $i \neq j$ and $1 \leq j \leq 3$, there is an edge $y \neq x$ such that $y \in F$. Thus, $|F| \geq 2$. Assume, for the sake of a contradiction, that $|F|=2$. If $y \in \mathbf{m}_{j}$, then F contains at least two edges of the cycle of $\mathbf{m}_{i} \cup \mathbf{m}_{k}(k \in\{1,2,3\}-\{i, j\})$ that passes through the edge x. This in turn implies that $|F|>2$. Hence, both the edges x and y are from the same matching \mathbf{m}_{i}. Let the set of vertices of a component of $M-F$ be denoted by R, and set $S=V(M)-R$. Suppose first that $i=1$.

Let C be the cycle of $\mathbf{m}_{1} \cup \mathbf{m}_{2}$ containing the edge x. Then, by Lemma 7 and Corollary 9 , there is a vertex A on C such that $A \in R$ and $\operatorname{sh}^{t}(A) \in S$ for some $t \leq 2 k$. Let C^{\prime} be a cycle of $\mathbf{m}_{2} \cup \mathbf{m}_{3}$ passing through A. Since the edge-cut F does not contain any edge of $\mathbf{m}_{2} \cup \mathbf{m}_{3}$, all the vertices of C^{\prime} are in R. Thus, by Lemma $6, \operatorname{sh}^{t}(A) \in R$, a contradiction. An analogous argument applies if $i=3$. Thus, we are left with the case $i=2$.

Let C be a cycle of $\mathbf{m}_{1} \cup \mathbf{m}_{2}$ that contains the edge x. Then C passes through y as $|F|=2$. Write P_{1} and P_{2} for the two paths of $C-\{x, y\}$, assuming $\left|P_{1}\right| \leq\left|P_{2}\right|$. Let A_{x} denote the vertex of P_{1} incident with the edge x. Without loss of generality, we assume that $P_{1} \subset R$. Suppose first that the vertex $B=\mathbf{m}_{3}\left(A_{x}\right)$ is on C as well. Then, by Lemma 6 and Corollary 10, there is an r with the property that $\operatorname{sh}^{r}\left(A_{x}\right) \in P_{1}$, but $B^{\prime} \in P_{2}$, where $z=\left\{\operatorname{sh}^{r}(A), B^{\prime}\right\} \in \mathbf{m}_{3}$. However, then $z \in F$, and $|F|>2$. Thus, $B=\mathbf{m}_{3}\left(A_{x}\right) \notin C$. However, then B is on the cycle C^{\prime} of $\mathbf{m}_{2} \cup \mathbf{m}_{3}$ that passes through x. Clearly, $B \in R$, for otherwise $|F|>2$. By the same token as above, y is on C^{\prime} as well. Assume that, for some $t, \operatorname{sh}^{t}(B) \in S$. Consider a cycle $C^{\prime \prime}$ of $\mathbf{m}_{1} \cup \mathbf{m}_{2}$ passing through B. As B is not on C, all vertices of $C^{\prime \prime}$ are in R. From Lemma 7, all shifts of B are in $C^{\prime \prime}$, which contradicts the fact that $\operatorname{sh}^{t}(B)$ is in S, and $|F|>2$. We need to consider now the case that for all $t, \operatorname{sh}^{t}(B) \in R$. Let T_{1} and T_{2} denote the two paths of $C^{\prime}-F$, and suppose that B is on T_{1}. As $\operatorname{sh}^{t}(B)$ is on T_{1} for all $t \geq 0$, then, by Corollary 9 , for any E on C^{\prime}, there is at most one $t_{e}<2 k+1$ so that $\operatorname{sh}^{t_{e}}(E)$ is on T_{2}. However, A_{x} is on both P_{1} and C^{\prime}, and $\left|P_{1}\right| \leq\left|P_{2}\right|$ leads to a contradiction with the previous statement as $\left|P_{1}\right| \leq\left|P_{2}\right|$ implies (Corollary 9) that at least two distinct shifts of A_{x} have to be on $P_{2} \subset S$, hence on T_{2}. The proof is complete.

Corollary 12 The prism over the graph \mathbf{B}_{k} is hamiltonian.
Proof. By [9] (see also [1]), any 3-connected cubic graph has a hamiltonian prism. Thus, the assertion follows from Theorem 11.

We remark that Corollary 12 can also be directly derived from Theorem 4, by showing that a connected cubic bipartite graph has a hamiltonian prism. We conclude the paper with the following observation on 2-trails (defined in Section 1):

Corollary 13 The graph \mathbf{B}_{k} has a 2-trail.

Proof. Adding any matching $\mathbf{m}_{i}(i \geq 4)$ to M, we obtain a connected spanning 4 -regular subgraph of \mathbf{B}_{k}. The Euler trail of this subgraph is a 2-trail in \mathbf{B}_{k}.

References

[1] R. Čada, T. Kaiser, M. Rosenfeld and Z. Ryjáček, Hamiltonian decompositions of prisms over cubic graphs, Discrete Math. 286 (2004), 45-56.
[2] D. A. Duffus, H. A. Kierstead and H. S. Snevily, An explicit 1-factorization in the middle of the Boolean lattice, J. Combin. Theory Ser. A 65 (1994), 334-342.
[3] D. A. Duffus, B. Sands and R. Woodrow, Lexicographic matchings cannot form hamiltonian cycles, Order 5 (1988), 149-161.
[4] M. N. Ellingham, Spanning paths, cycles, trees and walks for graphs on surfaces, Congr. Numerantium 115 (1996), 55-90.
[5] I. Havel, Semipaths in directed cubes, in Graphs and Other Combinatorial Topics (M. Fiedler, ed.), Teubner, Leipzig, 1983, pp. 101-108.
[6] B. Jackson and N. C. Wormald, k-walks of graphs, Australas. J. Combin. 2 (1990), 135-146.
[7] T. Kaiser, D. Král', M. Rosenfeld, Z. Ryjáček and H.-J. Voss, Hamilton cycles in prisms over graphs, submitted.
[8] H. A. Kierstead and W. T. Trotter, Explicit matchings in the middle levels of the Boolean lattice, Order 5 (1988), 163-171.
[9] P. Paulraja, A characterization of hamiltonian prisms. J. Graph Theory 17 (1993), 161-171.
[10] I. Shields and C. Savage, A Hamilton path heuristic with applications to the Middle two levels problem, Congr. Numerantium 140 (1999), 161-178.
[11] T. Trotter, private communication, 2004.

