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Abstract

We consider a game played by two players, Paul and Carol. At
the beginning of the game, Carol fixes a coloring of n balls. At each
turn, Paul chooses a pair of the balls and asks Carol whether the balls
have the same color. Carol truthfully answers his question. Paul’s
goal is to determine the most frequent (plurality) color in the coloring
by asking as few questions as possible. The game is studied in the
probabilistic setting when Paul is allowed to choose his next question
randomly.

We give asymptotically tight bounds both for the case of two colors
and many colors. For the balls colored by two colors, we provide a
strategy for Paul to determine the plurality color with the expected
number of 2n/3 + O(v/nlogn) questions and a lower bound 2n/3 —
O(y/n) on the expected number of Paul’s questions. For the balls
colored by k colors, we prove a lower bound Q(kn) on the expected
number of questions.
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1 Introduction

We study a two-player game played by Paul and Carol. Paul wants to de-
termine a certain property of the input based on Carol’s answers. At the
beginning of the game, Carol fixes a coloring of n balls by &k colors. Paul
does not know the coloring. At each step, he chooses two balls and asks
Carol whether the balls have the same color. Carol truthfully answers the
posed question. Paul wants to ask the least number of questions (in the worst
case) to determine the desired property of the coloring.

In the probabilistic setting, Paul can choose his next question randomly,
depending on the previous course of the game. As in the previous literature,
we consider Las Vegas strategies, which means that at the end of the game
Paul is not allowed to make any error. His goal is to minimize the expected
number of questions asked for the worst case (most difficult) coloring.

1.1 Previous work

The basic problem studied before is the Majority problem: Paul wants to find
a ball b such that the number of balls with the same color is greater than
n/2, or to declare that there is no such ball. If the balls are colored just with
two colors and no randomness is allowed, Paul needs to ask at least n — v(n)
questions for some coloring, and Paul has a strategy such that he asks at
most n — v(n) questions [10, 4] for any coloring, where v(n) is the number of
1’s in the binary representation of n. If the number of colors is unrestricted,
then the necessary and sufficient number of questions to resolve the Majority
problem is [3n/2] — 2, see [6]. Other variants of the Majority problem were
considered in [1, §].

Another problem is the Partition problem in which Paul wants to partition
the balls according to their colors. Dvofdk et al. [5] showed that in the
deterministic case, the necessary and sufficient number of questions to resolve
the Partition problem with n balls of k colors is (k — 1)n — (§). They also
showed that in the probabilistic setting the necessary and sufficient expected
number of questions to resolve the problem for n balls of three colors is
5n/3 —8/3 + o(1).

Another variant, the Plurality problem was introduced by Aigner et al. [2].
Here Paul seeks a ball with the plurality color, i.e., the color such that the
number of balls with this color exceeds the number of balls of any other color;
if no such ball exists, Paul declares that there is a tie. Paul’s goal is only to



Deterministic strategies Probabilistic strategies
Problem Lower bound Upper bound Lower bound Upper bound
Majority
2 colors n —v(n) n—v(n) 2n/3 —o(n) [*] 2n/3 4+ o(n) [#]
Plurality
2 colors n—v(n) n—v(n) 2n/3 —o(n) [*] 2n/3 +o(n) [*]
3 colors 3n/2 —0(1) 5n/3 + 0(1) 3n/2 — o(n) 3n/2 +0(1)
k colors kn/40 O(kn) O(kn) [*] kn/2 4+ o(n)
Partition
2 colors n—1 n—1 n—1 n—1
3 colors 2n—3 2n —3 5n/3 —8/3 5n/3 —8/3 + o(1)
k colors | (k—1)n— (];) (k—1)n— (g) (k—1)(n—k)/4 [#] kn/2 4+ o(n)

Table 1: The summary of the previous and new results. The results obtained
in this paper are marked [+].

point to a single ball with this color, he does not want to find all such balls.
Aigner et al. [2] give a deterministic strategy to solve the Plurality problem
with n balls of three colors asking at most |5n/3] — 2 questions and showed
that Carol can force Paul to ask at least 3|n/2] — 2 questions. In addition,
if the number & of colors of the balls is not fixed to be three, Aigner et al. [3]
provide lower and upper bounds of order ©(kn) for deterministic strategies
(the lower bound is kn/40, but they did not try to tune the multiplicative
constant). In the probabilistic setting, Dvotdk et al. [5] showed that the
necessary and sufficient expected number of questions to resolve the problem
with n balls of three colors is 3n/2 + o(n).

1.2 Our results

We establish new lower and upper bounds for the Plurality problem in the
probabilistic setting (see Table 1). For n balls of two colors, we show that the
necessary and sufficient expected number of questions to resolve the Plurality
problem is %” + o(n). Note that for two colors, the Majority and Plurality
problems coincide, and our bounds apply to the Majority problem, too.

For the general number £ of colors, we show a lower bound Q(kn) on the
expected number of questions of Paul to resolve the Plurality problem with n
balls of k colors; the constant at the linear term in € is approximately 2/27.



This improves the lower bound Q(kn) of Aigner et al. [3] from deterministic to
probabilistic strategies. Since it seems that the argument of [3] does not easily
translate to the probabilistic setting, we use a different method in our proof.
Since the number of questions necessary to resolve the Partition problem
must be larger than the number of questions for the Plurality problem, our
bound also yields a lower bound Q(kn) on the expected number of questions
to resolve the Partition problem. However, for this problem, we provide a
simpler and better lower bound of (kK — 1)n/4 on the number of questions.

2 Notation

We now introduce notation used in the paper. The base of all the logarithms
is 2, i.e., logx always means log,z. We use a way of representing Paul’s
information about the colors of the balls from [5]: The game of Paul and
Carol can be viewed as a game on a graph whose vertices correspond to the
balls. At the beginning, the graph has no edges. At each turn, Paul chooses a
pair of nonadjacent vertices and adds that edge to the graph. Carol colors the
edge by red if the balls corresponding to its end-vertices have the same color,
or by blue if their colors are different. This edge-colored graph represents
the state of Paul’s knowledge and is referred to as Paul’s graph. A coloring
of the balls is consistent with Paul’s graph if the colors of every pair of
balls corresponding to the vertices joined by a red (blue) edge are the same
(different). In the Partition problem with k colors, the game ends when there
is a unique coloring (up to a permutation of the colors) of the balls consistent
with Paul’s graph. In the Plurality problem with k colors, the game ends
when there is a vertex v such that in any coloring consistent with Paul’s
graph the ball corresponding to v has the plurality color.

3 Plurality Problem with Two Colors

3.1 Upper Bound

The natural idea for an upper bound is to compare random pairs of balls. If
the colors are different, the pair can be discarded, as it does not influence
the result. We then recurse on the pairs of balls of the same color. This
strategy performs well if the numbers of balls of both the colors are about
the same. However, on general instances the expected number of comparisons
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may be too large. To circumvent this problem, Paul first applies the previous
strategy only for a half of the balls, obtaining not only the plurality color,
but also a good estimate of the number of balls of each color. He then applies
the same strategy to classify a fraction of the remaining balls so that with
high probability the plurality color is determined with a small number of
additional comparisons.

The algorithm below determines the number of balls of each of the two
colors and finds a representative of the larger color class (in case that there
is no tie).

Algorithm COUNT
(1) if there is no ball, return 0 and no representative;
(2) if there is a single ball, return 1 and set the representative r to this
ball;
(3) randomly permute the n balls;
(4) for each ¢ < n/2, compare the (2¢ — 1)-th and 2i-th balls (in order
determined by the random permutation);
(5) let R be the set of balls containing one ball from each compared pair
where Carol answered that the balls have the same color;
(6) apply Algorithm COUNT recursively to the set R;
let 7 be the representative and m’ be the number of balls of the plurality
color (in case of tie, no r is found);
(7) let m = |n/2] — |R| + 2m/;
(8) if n is odd then
if there is no representative r then
set r to be the n-th ball and let m :=m + 1;
else
compare the n-th ball and r,
if they have the same color, then let m :=m + 1;
(9) output m and r (if r was defined);

We summarize the properties of Algorithm COUNT in the next lemma:

Lemma 3.1. Let n balls be colored so that there are a and b balls of each
color and a > b. Then Algorithm COUNT correctly determines the number
of balls with the plurality color and provides its representative (if there is no
tie). The expected number of Paul’s questions is at most a + b/3 + logn =
n—2b/3 +logn.



Proof. The pairs where Carol answered that the balls have different colors
contain equal number of balls of each color. Therefore, the plurality color for
the original coloring is the plurality color among the balls of R, if n is even.
If n is odd, we also have to adjust the number of balls with the plurality
color in Step (8). Overall, Algorithm COUNT always correctly determines
the number of balls with the plurality color and finds its representative.

Let mqp be the expected number of comparisons on an instance with a
and b balls of each color. We show by induction on n that

b
Map < @+ 3 + log(a + b).

The bound trivially holds if n is one or two. Assume that n =a+b > 3.
The probability that a ball of the second color is paired with a ball of the
first color, over the random permutation of n balls, is at least 1/2: for n
even it is a/(a +b — 1) > 1/2, and for n odd, counting the probability
that the ball is not matched, the probability is a/(a + b) > 1/2. Thus the
expected number of pairs of balls with different colors is at least b/2. Let
a’' and O’ be the numbers of balls of each of the two colors in R. Since the
expected number of pairs of balls with different colors is at least b/2, we have
Expla'] < (a —0/2)/2 = a/2 — b/4 and Exp[d’] < (b—0/2)/2 = b/4. In
particular, the expected number of balls with the plurality color in R is at
most a/2 — b/4. Since the plurality color in R is always the same as in the
original problem, we conclude by induction:

b
ma,b S ¢ ; + 1 =+ Exp[ma/,b/]
b Exp|V/ b
< a; + 1+ Exp[d'] + Xp[]+loga;
a+b a b
< 1+=-—-+—+1 -1
< + —|—2 4+12—|— og(a + b)
b
= a+ §+10g(a+b)
The bound from the statement of the lemma now readily follows. ]

We now present our algorithm for the Plurality problem:

Algorithm PLURALITY
(1) randomly permute the n balls;



(2) apply Algorithm COUNT to the first [n/2]| + 1 balls;
let o’ and o' be the numbers of balls of each color, ' > b, and let r’ be
the representative of the plurality color (if it exists)

(3) apply Algorithm COUNT to the next 2’ balls (or all the remaining balls
if 20' + [n/2] +1 > n);
let " and 0" be the numbers of balls of each color, a” > b", and let r”
be the representative of the plurality color (if it exists)

(4) if no representative (1’ or r") exists, output “TTE” and halt;

(5) if exactly one of the representatives r’ and r” exists, output this repre-
sentative as the ball with the plurality color and halt;

(6) compare ' and r"” and if they have the same color, output ' as the
ball with the plurality color and halt;

(7) otherwise continue by comparing all the remaining balls to r'—this
determines the color of all the balls relatively to ' and thus eventually
determines the correct answer—stop and output the answer as soon as
it is known.

Theorem 3.2. Algorithm PLURALITY correctly determines the plurality color.
For every coloring of the balls, the expected number of Paul’s questions does

not exceed 2n/3 + O(y/nlogn).

Proof. We first show that Algorithm PLURALITY correctly determines the
plurality color. If there is no representative r’, then all the balls are examined,
and the plurality color is correctly determined. If the representative r’ exists
and either there is no r” or the color of r” is the same as the color of 7/,
the number of balls with the same color as r' is at least ' +a" > [n/2] +1
and thus the color of 7’ is the plurality color. Otherwise, all the balls are
examined in the last step and the plurality color is correctly determined.

Next, we analyze the expected number of Paul’s questions. Suppose that
the number of balls with the plurality color is a and let b be the number of
balls with the other color. If b < n/12, then & < b and the entire number of
examined balls does not exceed n/2 4+ 20’ +1 < 2n/3 + 1 even in the worst
case. In the rest of the proof, we assume that b > n/12.

Since the number of Paul’s question never exceeds n, the contribution of
the cases which happen with probability O(1/n) is only a constant. There-
fore, we restrict our analysis to the case when such events do not happen.
This excludes the cases when the sample of the first n/2 or the next 2b' balls is
bad. More precisely, let B’ be the number of balls of the smaller color among



|n/2] + 1 balls examined in Step (2). The expectation of B' is b/2 + O(1)
and by Chernoff’s bound, the probability that |B" — b/2| > +/nlogn is at
most O(1/n) (see [7, 9], for example). Thus we assume for the rest of the
proof that |B' — b/2| < y/nlogn.

We now distinguish two cases. The first case is b > n/2 — 25y/nlogn.
Then |B'—n/4| < 14y/nlogn and, no matter if ' has the plurality color, we
have & > n/4 — 14y/nlogn. Therefore, there are at most O(y/nlogn) balls
not examined in Steps (2) and (3), and thus 8" > n/4 — O(y/nlogn). By
Lemma 3.1, the expected number of questions in the two runs of Algorithm
COUNT is at most:

n 20 20" n n n n
— — 42 - — 1 —— 4 - — = 1
53 T 3 + 0O (logn) < 5 61376 + O(y/nlogn)

= 210 (ymlogn) .

Since there are at most O(y/nlogn) additional questions, the theorem fol-
lows.

The second case is b < n/2—25y/nlogn. Then B’ < b/2++/nlogn < n/4
(using our previous assumption about B’) and thus r’ has the plurality color,
b = B, and there are at most 26’ < n/2 balls examined in Step (3). In
addition, o’ > b/2 — /nlogn > n/25 for large n.

Let B" be the number of balls of the smaller color among the 2b" balls in
Step (3). After removing the first |n/2] + 1 balls, there are b — B’ = b/2 +
v/nlogn balls of the smaller color. Hence, Exp[B"] is 2b'b/n + v/nlogn and
the probability that |B” —2b'b/n| > 2v/nlogn is at most the probability that
|B" — Exp[B"]| > v/nlogn which in turn is at most O(1/n), by Chernoff’s
bound (using also & > n/25). Similarly as before, the contribution of this
case to the expected number of Paul’s questions is a constant. Thus we
assume for the rest of the proof that |B” — 2b'b/n| < 2y/nlogn.

Using the case condition and b' > n/25 for large n, we have:

b
B" < 20— +24y/nlogn
n
b,.n—50\/nlogn_|_2 —_——

nlogn

n
o b - 50y/nlogn +9y/nlogn

nlogn
n
n - 50y/nlogn
— +
25-n

b 2¢/nlogn =10 .
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Thus r” is a representative of the plurality color, b = B”, and the algo-
rithm terminates in Step (6). By Lemma 3.1, the expected number of Paul’s
questions does not exceed:

n 20 20"
——— 42 =—— 40 <

+ 0 (g — %) + 0 <\/nlogn)
+g(§—4—b) +0 (/nlogn)

3n
2n
< 3 + O (\/nlogn) :

The last inequality holds since the quadratic function of b is maximized for
b=mn/2. O

n
2
n
2

3.2 Lower Bound for Two Colors

The proofs of the lower bounds presented in this subsection and in the next
section are based on Yao’s principle [9, 11] (its easy direction). Instead of
showing that for every probabilistic strategy of Paul, there is a coloring with
large expected number of questions, we construct a probability distribution
on the colorings such that the expected number of Paul’s questions (with
respect to the distribution) for any deterministic strategy is large. It follows
that for any probabilistic strategy, the expected number of questions is large,
averaging both over the distribution and the randomness of the strategy.
Consequently, for any probabilistic strategy, there exists a fixed input that
needs at least the same expected number of questions.

In this subsection, we choose the input distribution to be the uniform
distribution on all the 2" colorings of n balls. In Paul’s graph G, every
component G; of G uniquely determines the distribution of the colors among
the balls corresponding to its vertices, up to their swap. The advantage of a
component G;, Adv(G;), is the (absolute value of) the difference between the
numbers of balls in its two parts. The advantage of the graph G is defined
as Adv(G) = y/>_; Adv(G;)? (note that this is consistent in case of a single
component). A component G; is said to be balanced if Adv(G;) = 0.

A question of Paul is called essential if it corresponds to an edge between
two different components of Paul’s graph. In any strategy for two colors, the
answers of questions that are not essential are determined by the previous
answers. Therefore non-essential questions can be omitted. From now on we
assume, without loss of generality, that all Paul’s questions are essential.




Lemma 3.3. Fiz a deterministic strateqy of Paul. The expected advantage
of the final graph of Paul with respect to the uniform distribution on the 2™
colorings of n balls is at most \/n.

Proof. We show that Exp[Adv(G)?] = n where G is the final graph of Paul.
Since Exp[X?] > (Exp[X])? for every random variable X, the statement of
the lemma then follows.

The deterministic strategy of Paul can be viewed as a decision binary
tree whose nodes correspond to Paul’s questions. We prove by induction on
the number of leaves of a decision binary tree that the average advantage of
Paul’s graph in the leaves of any decision tree is y/n. The claim holds for the
trivial decision tree: since Paul’s graph G is comprised of n isolated vertices,
Adv(G) = v/n.

Consider a leaf v of the decision tree. We add a new query corresponding
to v (the node v has now two children). Suppose that p is the probability that
the node v is reached in the original tree. Since the query is essential and
the considered distribution is the uniform distribution on the 2™ colorings,
each of the two children of v is reached with probability p/2 in the new tree.

Suppose that the edge corresponding to the question joins two compo-
nents G; and G; with Adv(G;) = z and Adv(G;) = y. Their original contri-
bution to the average advantage was p(z? + y?). After the additional query,
we have a single component, with contribution either (z+y)? or (z—y)?, each
with probability p/2. The new contribution is thus ((z+vy)*+ (z —y)?)p/2 =
(x2+y?)p, i.e., it is equal to the original contribution. Since the contributions
of the graphs corresponding to the other leaves of the decision tree remain the
same, we conclude that the average advantage of Paul’s graph corresponding
to the leaves of the tree remains /n. [

Note that Lemma 3.3 in particular implies that it is very unlikely that
the final graph of Paul contains a component with advantage significantly
larger than \/n.

Lemma 3.4. Suppose that G is a final graph of Paul for the Plurality problem
with two colors. If G contains m unbalanced components, then the advantage
of G is at least m, i.e., Adv(G) > m.

Proof. For m = 0, the statement is trivial. If m > 0, there is a consistent
input with plurality color, thus Paul has to choose a ball which always has
the plurality color. Suppose Paul chooses a ball b from a component Gy of
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G. Consider a coloring of the balls such that the balls of the larger parts
of the remaining (at least) m — 1 unbalanced components are colored with
the color different from the color of b. Since the color of b is the plurality
color in this coloring, the advantage of Gy must be at least m. Therefore,
the advantage of the entire graph G is at least m. [

Theorem 3.5. For every probabilistic strateqy of Paul for the Plurality prob-
lem with n balls of two colors, there exists a coloring of the balls such that
Paul asks at least 2n/3 — O (/n) questions on average.

Proof. As explained in the beginning of the section, by Yao’s principle, it
is enough to establish that the expected number of Paul’s questions for any
deterministic strategy is at least 2n/3 — O (y/n) with respect to the uniform
distribution on the 2" colorings of n balls.

Fix a deterministic strategy of Paul. We can assume that each question
of Paul is essential. Upon each query, the number of unbalanced components
in Paul’s graph decreases on average by at most 3/2: the number can de-
crease by more than 1 only if two unbalanced components merge into a single
balanced component. Since both answers of Carol have probability 1/2, the
probability that a balanced component is created is at most 1/2, and the
expected decrease of the number of unbalanced components is at most 3/2.

Let g be the expected number of Paul’s questions. Since each question
decreases the number of unbalanced components by at most 3/2 on average,
the expected number of unbalanced components in the final graph of Paul is
at least n — 3¢/2. By Lemma 3.4, the average advantage of the final graph
is at least m — 3¢/2. On the other hand, the average advantage of the final
graph is at most y/n. We conclude that ¢ > 2n/3 — O (1/n). O

4 Lower Bounds for Large Numbers of Colors

In this section, we prove the lower bound 2(kn) for the Partition and the
Plurality problems with n balls of £ colors in the probabilistic setting. Since
any strategy for the Partition problem also yields a solution of the Plurality
Problem, it would be sufficient to give a lower bound only for the Plurality
problem. However, the proof of the lower bound for the Partition problem
is simpler, we achieve a better constant, and the bound holds for all values
of n and k (in the case of Plurality problem, the bound holds only if n is
sufficiently large compared to the number k of colors).
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4.1 Partition Problem

Let G be a graph of Paul. We define a potential of Paul’s graph that roughly
measures the progress achieved by Paul during the game. The partition
potential of a vertex v of G is equal to 0, if v is adjacent to a red edge (recall
that red edges correspond to equal comparisons), and to max{0,k — 1 —
deg(v)}, otherwise.

Lemma 4.1. If G s a final graph of Paul for the Partition problem such that
it is consistent with some coloring that uses all k colors, then the partition
potential of every vertex of G is zero.

Proof. Suppose for a contradiction that the potential of a vertex v is not 0,
i.e., there is no red edge incident with v in G and deg,(v) < k — 1. Consider
a coloring c of all the vertices of G that uses all the k colors (such a coloring
exists by the assumption of the lemma) and uncolor the vertex v. Note that
the coloring uses still at least k—1 colors. There are now at least two different
colors that the vertex v can be assigned, as at most deg(v) < k—1 colors for
v are forbidden. Since at least one of such colors is used by another vertex,
the partitions of the vertices corresponding to the possible extensions of ¢ to
v are different. ]

Theorem 4.2. Any probabilistic strateqy for the Partition problem with n
balls of k colors requires asking at least (k—1)(n—k)/4 questions on average
for some coloring of the balls.

Proof. By Yao’s principle, it is enough to show that every deterministic strat-
egy of Paul for the Partition problem with n balls of k colors requires asking
at least (k — 1)(n — k)/4 questions on average for a fixed probability distri-
bution on the colorings. The distribution which we consider is the following:
color the first £ balls by mutually different colors and use the uniform distri-
bution on all the k"% possible colorings of the remaining n — k balls. Paul’s
graph initially contains blue edges among any two of the first k£ vertices and
no other edges; thus the initial partition potential is (k — 1)(n — k). By
Lemma 4.1 and the fact that any used coloring uses all k£ colors, the final
potential is 0. We show that after each question, on average, the sum of the
partition potentials of the vertices of Paul’s graph decreases by at most four.
The theorem then follows.

Assume that Paul asks for the comparison of the balls corresponding to
the vertices v and w of G. Let p be the partition potential of v. If p = 0
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(this includes the case that v corresponds to one of the first k£ balls), the
potential of v cannot further decrease. If p > 0, the vertex v is not incident
with a red edge. Any precoloring of all the vertices of G except for v, that
is consistent with G, can be extended in at least k — deg(v) different ways
to v. Therefore, the probability that the edge vw will be red is at most
1/(k—degg(v)) =1/(p+1) < 1/p. In such case, the partition potential of v
drops down from p to zero. Otherwise, the potential of v is decreased by one.
Therefore, the potential of v decreases by at most 2 on average. Similarly,
the potential of w decreases by at most 2 on average. Since the potentials
of the remaining vertices do not change, the average decrease (after each
question) of the sum of the partition potentials of all the vertices of Paul’s
graph is at most four. ]

It seems interesting (and maybe not too hard) to close the gap between
lower and upper bounds for the Partition problem with n balls with & > 4
colors in the probabilistic setting. Dvorak et al. [5] provided a strategy such
that Paul asks %n + O(1) = kn/2 questions on average. On the other
hand, we established a lower bound (k—1)(n—k)/4 ~ kn/4 for the Partition
problem in the probabilistic setting. Let us recall that there are matching
lower and upper bounds of order (k —1)n — O(k?) ~ kn in the deterministic

setting.

4.2 Plurality Problem

We first introduce notation used throughout this subsection. A coloring of n
balls with k colors is nice if there exists the plurality color and the number
of balls of any of the colors does not exceed n/k + n??. Note that if k is
fixed, then Chernoff’s bound implies that a random coloring of n balls with
k colors is nice with probability 1 — o(1) (as n tends to infinity). A vertex
of Paul’s graph is free if it is incident with no red edge and with less than
|k/3] blue edges. The other vertices are said to be non-free. The plurality
potential of a vertex v of Paul’s graph is |k/3]| — deg.(v) if v is free, and 0
otherwise.

Lemma 4.3. If G is a final graph of Paul for the Plurality problem of n balls
with k > 3 colors such that G is consistent with some nice coloring, then G
contains at most n/3 + 2kn?/3 free vertices. In particular, the sum of the
plurality potentials of the vertices of G is at most |k/3] - n/3 + o(n) for a
fized k.
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Proof. Assume for a contradiction that G has more than n/3 + 2kn?/® free
vertices. Depending on Paul’s answer, we construct a coloring that is con-
sistent with G but for which Paul’s answer is incorrect. We distinguish two
cases.

In the first case, suppose that Paul claims that a ball b has the plurality
color. Color the ball b and all the balls corresponding to non-free vertices
in GG as in the nice coloring that exists by the assumption of the theorem.
Since the coloring is nice, at most n/k + n?? balls have the same color as
b. Fix any |k/3]| colors distinct from the color of the ball b. Recolor all the
balls corresponding to the free vertices greedily by the fixed |k/3] colors in
such a way that the resulting coloring is consistent with G. In case that the
vertex corresponding to b is free, the ball b keeps its original color. Note that
such a recoloring is always possible because each free vertex is incident with
at most |k/3] — 1 blue edges (that forbids at most |k/3] — 1 colors at each
such vertex). Since the (at least n/3 + 2kn?/3) balls corresponding to free
vertices are colored with |k/3] colors, there exists a color used for more than
n/k 4+ n?/3 such balls. Then, the color of b is not the plurality color in the
constructed coloring, contradicting Paul’s claim.

In the second case, suppose that Paul claims that there is a tie. Color
all the balls corresponding to non-free vertices in G as in the nice coloring.
Fix any |k/3] colors and use them to color all the remaining balls greedily
and consistently with G, as in the previous case. If there is no tie, we have
a coloring that contradicts Paul’s answer. Otherwise, similarly as in the
previous case, there exists a color used for at least n/k -+ 2n?/3 such balls and
thus any color class that has the maximum number of balls contains a ball
corresponding to a free vertex. Choose from all but one of the maximal color
classes such a vertex and recolor them one by one by a color not used for
any ball corresponding to a free vertex; there is always a choice of at least
|k/3] colors, as at most |k/3| colors are used for the original coloring the
free vertices and at most |k/3] free vertices are recolored. This coloring has
no tie, as no color used for recoloring can have more than n/k + n?/3 balls,
contradicting Paul’s claim. ]

Theorem 4.4. Let k > 3 be a fixed integer. For any probabilistic strategy
for the Plurality problem with n balls of k colors, there exists a coloring such
that Paul asks at least |k/3] -2n/9 — o(n) questions on average.

Proof. We again apply Yao’s principle and show that every deterministic
strategy for the Plurality problem requires asking at least |k/3]-2n/9—o(n)
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questions on average for the uniform distribution on k™ colorings of n balls
with k colors. Fix a deterministic strategy for the Plurality problem. Since a
random coloring is nice with probability 1—o(1), we may analyze the strategy
only for nice colorings. The initial potential is |k/3|n. By Lemma 4.3, the
sum of the plurality potentials of the vertices of Paul’s final graph is at least
|k/3] - n/3 + o(n). We show that the expected decrease of this sum is at
most 3 after every single question of Paul. This implies the required bound.

Consider a moment when Paul asked for the comparison of the balls corre-
sponding to the vertices v and w of G. If v is non-free, then its potential does
not change after Carol’s answer. Assume that v is free. For any precoloring of
all the vertices of G except for v, there are at least k—|k/3| > 2k/3 ways how
to extend the precoloring to v. Therefore, the probability that Carol answers
that the balls have the same color (with respect to the uniform distribution
on all the coloring) is at most 3/2k. In such case, the plurality potential of
v decreases by at most k£/3. Otherwise, it decreases by one. In particular,
the plurality potential of v decreases by at most 1+ 3/2k - k/3 = 1.5 on
average. Similarly, the plurality potential of w decreases by at most 1.5 on
average. Since the plurality potentials of the remaining vertices of G do not
change, the average decrease of the sum of the plurality potentials is at most
three. ]
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