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Abstract
We prove that the L(2,1)-LABELING problem is NP-complete for
graphs of treewidth two, thus adding a natural and well studied prob-
lem to the short list of problems whose computational complexity
separates treewidth one from treewidth two. We prove similar results
for other variants of the distance constrained graph labeling problem.

1 Introduction

The notion of distance constrained graph labeling attracted a lot of attention
in the past years both for its motivation by the practical frequency assign-
ment problem, and for its interesting graph theoretic properties. The task of
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assigning frequencies to transmitters to avoid undesired interference of sig-
nals is modeled in several ways. The so called channel assignment problem
assumes that a minimum allowed difference of channels is given for every
two transmitters. Thus the input of this problem is a weighted graph whose
vertices correspond to the transmitters, and the task is to assign nonnegative
integers (channels) to the vertices so that for every edge, the difference of the
assigned channels is at least the weight of the edge, and so that the largest
channel used is minimized.

Another approach, and this one we follow in the present paper, is the
distance constrained graph labeling. Here it 1s assumed that the distance
of transmitters can be modeled by a graph, and that the distance of the
transmitters influences possible interference in such a way that the closer
two transmitters are, the farther apart their frequencies must be. Formally,
an assignment of nonnegative integers to the vertices of a graph G is an
L(p1, - .., px)-labeling if for every two vertices at distance at most i < k,
the difference of the integers (labels) assigned to them is at least p;. Here
k > 1 is the depth to which the distance constraints are applied, and integers
p1 > py > ... > pr are parameters of the problem. Again, the goal is
to minimize the maximum label used. The most studied of the distance
constrained labelings is the case k = 2,p; = 2,p, = 1, i.e., the L(2,1)-
labeling. In this case adjacent vertices must be assigned labels that differ
by at least 2, while nonadjacent vertices with a common neighbor must be
assigned distinct labels. The maximum label used is called the span of the
labeling. The minimum span of an L(2,1)-labeling of a graph G will be
denoted by L 1)(G).

The notion of L(2,1)-labeling was in fact first proposed by Roberts [20]
and many nontrivial results were presented in a pioneer paper of Griggs and
Yeh [15]. Let us mention their conjecture that L 1)(G) < A*(G) (where
A(G) stands for the maximum vertex degree in GG). This conjecture has been
verified for various graph classes, but it is still open for general graphs (with
Lp1)(G) < A(G)?+ A(G) — 1 being the current record [16]). From the com-
putational complexity point of view, Griggs and Yeh proved that determining
L(31)(G) is an NP-hard problem, and this result was later strengthened by
Fiala et al. [7] by showing that deciding L21)(G) < k is NP-complete for
every fixed £ > 4. Griggs and Yeh also conjectured that it is NP-complete
to compute the L ;) number of a tree, but this was somewhat surprisingly

disproved by a dynamic programming polynomial time algorithm of Chang
and Kuo [4].



The common expectation says that problems solvable in polynomial time
for trees should also be polynomially solvable for graphs of bounded tree-
width, though sometimes the extension to bounded treewidth is not straight-
forward (cf. e.g., the case of chromatic index [2]). (We informally recall that
the treewidth is a graph invariant that describes how far is the graph from
being a tree. For a formal definition the reader is referred to a survey [3] or to
one of the original papers [1] introducing this invariant in terms of so called
partial k-trees. For our purposes we only need the fact that graphs of tree-
width at most two are exactly the graphs that do not contain a subdvision of
K, as a subgraph, and connected graphs of treewidth one are exactly trees.)
Only very few exceptions to this rule of thumb are known, and in fact very few
problems are known to be hard for graphs of bounded treewidth. An exam-
ple is, e.g., the MINIMUM BANDWIDTH problem (which is NP-hard already
for trees [12]) or the closely related CHANNEL ASSIGNMENT problem which
has been recently shown NP-complete for graphs of treewidth three [18]. The
natural question of the complexity of L(2,1)-labelings for graphs of bounded
treewidth has been posed many times and remained open since 1996. The
main result of our paper settles it by showing that determining the Ly )
number of graphs of treewidth two is NP-hard.

Before we formulate the result formally, we specify precisely what prob-
lem we deal with. The decision problem whether a given graph admits an
L(2,1)-labeling of fized span can be described in Monadic Second Order Logic
(MSOL), and therefore is solvable in linear time for any class of graphs of
bounded treewidth by a generic algorithm of Courcelle [5]. Thus we naturally
assume that the span is a part of the input, and we consider the following
problem.

L(2,1)-LABELING
Input: An integer A and a graph G.

Question: Is L1y (G) < A7

Theorem 1. The L(2,1)-LABELING problem is NP-complete for graphs of
treewidth at most two.

So far we have only discussed the model in which interference of the
frequencies (or channels) decreases linearly with their increasing difference.
It is, however, plausible to consider also such models in which frequencies far



apart may interfere (e.g., if one is a multiple of the other one). This means
more complicated metrics in the frequency space. A concrete step in this
direction is the cyclic metric introduced by van Heuvel et al. [23]. In this
metric, the graph of the channel space is the cycle of length A. Similarly
to the linear case, we talk about C(2,1)-labelings and denote by C(51)(G)
the minimum span of a C'(2, 1)-labeling of G' (note that in the cyclic metric,
the span is the number of available channels, not the difference between the
largest and smallest one). For general graphs, deciding if C(21)(G) < A is
NP-complete for every fixed A > 6 [9]. For A part of the input and graphs
of bounded treewidth, we fully characterize the complexity of the C(2,1)-
LABELING problem (which, given a graph G and an integer A as input, asks
if Clo,1)(G) < A):

Proposition 2. ([17]) Let T be a tree with at least one edge, and p > q
nonnegative integers. Then

Cog(T) =qA(T) +2p—¢q
where A(T) is the mazimum degree of a vertex in T .

Theorem 3. The C(2,1)-LABELING problem is NP-complete for graphs of
treewidth at most two.

Fiala and Kratochvil [9] defined the notion of H(2,1)-labeling as the
utmost generalization in the case when the metric of the channel space can
be described by a graph H, and showed that H(2,1)-labelings of a graph G
are exactly locally injective homomorphisms from G into the complement of
H. The complexity of the H(2,1)-LABELING problem for some parameter
graphs H then follows from [8], but the complete characterization is not
even in sight. On the other hand, if G has bounded treewidth, the H(2,1)-
LABELING problem is solvable in polynomial time since for a fixed graph H,
the existence of an H (2, 1)-labeling of G can be expressed in MSOL.

It remains to study thecase when both G and H are part of the input
and we refer to it as the(2,1)-LABELING problem. Observe that the L(2,1)-
LABELING problem is the restriction of (2,1)-LABELING to inputs such that
H is a path. Hence it followsfrom Theorem 1 that (2,1)-LABELING is NP-
complete for graphs of treewidth two. However, in this most general setting,
we are able to prove dichotomy even with respect to pathwidth (for definition
of pathwidth see [21, 22, 3], just recall that connected graphs of pathwidth
one are exactly caterpillars):



Theorem 4. For a tree T with m wvertices and an arbitrary graph H with
n vertices, one can decide in time O(n*m?) whether T allows an H(2,1)-
labeling.

Theorem 5. The (2,1)-LABELING problem is NP-complete for graphs G of
pathwidth at most two (the graph H may be arbitrary).

The paper is organized as follows. In Section 2 we review technical def-
initions and notation and prove an auxiliary result on systems of distant
representatives for symmetric sets. The main result, Theorem 1, is proved
in Section 3. The case of cyclic metric is discussed in Section 4. Theorems 4
and 5 are proved in Section 5. The last section contains concluding remarks
and open questions.

2 Preliminaries

All graphs considered are finite and simple, i.e., with a finite vertex set and
without loops or multiple edges. For a vertex u, the symbol N(u) denotes
the open neighborhood of u, i.e., the set of all vertices adjacent to u, and we
denote by degu = |N(u)| the degree of u.

A graph is called series-parallel if it can built from isolated edges with
endvertices called South and North poles by a sequence of series and parallel
compositions (the former identifies the North pole of one component with
the South pole of the other one, the latter unifies the North poles of the
components into a common North pole, and likewise the South poles). It
is well known that a graph has treewidth at most two if and only if all its
2-connected subgraphs are series-parallel.

The labels are always nonnegative integers, with 0 being the smallest
label used. We use the notation [z,y] = {z,z + 1,...,y — 1,y} to denote
intervals of consecutive integers. We say that a set S of integers is symmetric
within an interval [z, y] if S C [z,y] and for every i € [z,y], i € S if and only
ify+zx—1€585.

A system of distinct representatives for a set system Si,S5,,...,95, is a
system of distinct elements s; € S;,72 = 1,2,...,n. The theory of SDR’s is
well developed, the necessary and sufficient condition for their existence is
given by the well known Hall theorem, and an SDR can be found in polyno-
mial time (e.g., by a bipartite matching algorithm). If the ground set | J._, S;
is equipped with a metric function, we can further impose conditions on the



distance of the chosen representatives. We refer the reader to [11, 14] for a
survey on the computational complexity of finding systems of distant repre-
sentatives for sets in metric spaces and their applications in various graph
labeling problems. Now we will use a special variant of this problem as an
auxiliary tool:

SRL (Special representatives in the linear metric)

Input: An integer n and a collection of sets of integers S;, .5, ..., S, sym-
metric within the interval [2, A — 2], where A = 4n + 5.

Question: Does there exist a collection of distinct integers
S1,82, vy Smstlsto, ..., by, U, Us, ..., U, such that

e 5, € S;foreveryi=1,...,m,

o t; € {2i,\—2i— 1} forevery i =1,...,n,
o u; € {20+ 1,\—2i} forevery i =1,...,n,
o |t; —u;| > 2 forevery i =1,2,...,n?

Lemma 2.1. The problem SRL is NP-complete.

The proof is based on the following special variant of the 3-SAT problem
(known NP-complete, cf. e.g. [6]).

2-3-SAT

Input: A Boolean formula ® in conjunctive normal form, whose each clause
consists of 2 or 3 literals and whose every variable has at most 2 positive
and at most 2 negative occurrences.

Question: Is @ satisfiable?

Proof. We reduce from 2-3-SAT (cf. Section 2). Let ® have n variables
Z1,...,T, and m clauses C,...,C,,. The number of variables n will be the
n from the input of SRL. Recall that A = 4n + 5. For every j =1,2,....m
the set S; is constructed from the clause C; as follows

Si= | @i,a-2itu |J {2i+1,A-20—-1}.

i:IL‘iECj i:—h’EiECj

Thus every set S; has 4 or 6 elements and is symmetric within [0, A].

6



Assume that @ allows a satisfying assignment. If a variable x; is assigned
the value true, we set t; = 2i — 1, u; = A — 2¢ — 1. Analogously for z;
negatively valued, we let ¢; = 27, u; = A — 2. For each clause C; we choose
one satisfying literal. If C is satisfied by the literal z; for some ¢ =1,2,...,n,
we let s; = 24, if x; is the first occurrence of z; in @, and s; = A — 2i for the
second occurrence of z; in ®. In the case C} is satisfied by —z; we choose
s; = 2t + 1 for the first occurrence of —z; and s; = A — 2t — 1 otherwise.

Straightforwardly, the collection sy, ..., u, satisfies all four properties from
the definition of the SRL problem.
For the opposite direction suppose that sq,...,u, is a valid solution for

the SRL problem. The crucial observation is that for every ¢+ = 1,2,...,n,
there are only two possible choices for the values of ¢; and u; so that |t; —u;| >
2 . Namely, either t; = 2¢ and u; = A — 2¢ or alternatively ¢; = 2¢ + 1 and
u; = A—21—1. In the first case we assign x; = false and accordingly x; = true
in the second case.

Then for each j = 1,...,m, the value of u; indicates the satisfying literal
for the clause C;: If u; = 2¢ or A — 27, then C; is satisfied by the true
assignment to the variable ;. Alternatively, if u; = 2¢+1 or A — 2¢ — 4 then
the literal —z; satisfies C; as the variable z; is assigned false.

Since the size of the family S, S5s, ..., S,, is polynomial in the size of @,
2-3-SATxSRL as claimed. ]

We continue with an analogous lemma for set systems over a space with
the cyclic metric: For a fixed A > 2 and integers z,y € {0,1,..., A — 1} we
denote by p.(z,y) = min{|z — y|, A — |z — y|} the (cyclic) distance between
x and y.

SRC (Special representatives in the cyclic metric)

Input: An integer n and a collection of sets of integers S;, 5, ..., S, sym-
metric within the interval [1, A — 1] for A = 16n.

Question: Does there exists a collection of distinct integers
S1,89, s Smyt1,to, ..., tn, UL, Us, ..., U, such that

e forall:=1,...,m:s; €5,
e foralli=1,...,n:t € {4n —i,dn+ i},
e foralli=1,...,n:u; € {12n — i,12n + i},



e p.(t;,u;) =8n — 2i for every i =1,2,...,n7
Lemma 2.2. The problem SRC is NP-complete.

Proof. We show 2-3-SAT « SRC.

For every j = 1,2,...,m the set S is constructed from the clause C; €
® by following rules: if the clause C; contains the literal z; then integers
4n — 1,12n + 4 are inserted into S;, and if —z; € C; then we put integers
4n +1,12n — ¢ into S;. It can easily be seen that each set S; is symmetric.

Assume that & allows a satisfying assignment. We choose t; = 4n+ ¢ and
u; = 12n — ¢ when a variable x; is assigned true and we let ¢; = 4n — ¢ and
u; = 12n + 4 otherwise. From each clause C; we pick one satisfying literal.
When Cj is satisfied by z; we select s; = 4n — 4 if z; is the first occurrence
of z; in ®, and s; = 12n + ¢ if it is the second occurrence. In the case —z;
satisfies C; we choose s; = 4n + ¢ for the first occurrence of —z; in ® and
¢; = 12n — 1 for the second.

It can be easily seen that all sy, ..., u, are distinct and p.(t; —u;) = 8n—2i
forevery 1 =1, 2,...,n. Hence, it is the desired solution of the SRC problem.

Now suppose s, ..., u, satisfy all four conditions of the SRC problem.
As in the prof of the previous lemma, there are only two possible choices for
pairs (t;, u;): as pe(t;,u;) = 8n — 2i > 2i either (¢;,u;) = (4n — i,12n + i)
(indicating x; being assigned false) or (¢;,u;) = (4n + i,12n — i) (z; being
evaluated true). Consequently, for each j = 1,..., m the choice of u; provides
a satisfying literal for the clause Cj: If u; = 4n — i or 12n + ¢ then Cj is
satisfied as x; is assigned true. Analogously, when u; = 4n+¢ or 12n — ¢ then
the literal —z; satisfies the clause Cj. ]

3 L(2,1)-labeling of graphs of treewidth two

This entire section is devoted to the proof of Theorem 1. We will utilize
Lemma 2.1 and reduce from the SRL problem. Suppose we are given integers
n and A\ = 4n + 5, and m subsets Si,...,S, of [2,A — 2] which are all
symmetric within this interval (we may further assume that all of them have
size at most 6, but this is not important for our proof). Our aim is to
construct a graph G’ of treewidth two such that L, 1)(G’) < A if and only if
the given instance of SRL is feasible. The construction of G’ is achieved in
several steps.
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Figure 1: The graph G.

3.1 Reduction to List Labeling Construct the graph G on vertices Vg =
(vo, v5, ..., vs vt ol ok L v¥) where vy is adjacent to all other vertices,

and futhermore (v, v¥) € Eg foralli =1,...,n. (See Fig. 1.) To each vertex
of x € V; we assign a set of admissible labels as follows

e T(vy) ={0,A}

o T'(vi) =S, foralli=1,...,m

o T'(v}) ={2i,A—2i—1}foralli=1,...,n
o T(v¥) ={2i+1L,A—2i}foralli=1,...,n

and we call an L(2,1)-labeling ¢ admissible if ¢(x) € T'(x) for every z € V.
In any admissible L(2, 1)-labeling, any pair of vertices must get distinct labels
since G has diameter two. Moreover, as the vertices vf and v¥ are adjacent,
they must be assigned labels that are at least two apart.

Hence c(vf) = s;, c(vf) = t;, and ¢(v¥) = u; is a one-to-one correspon-
dence between admissible L(2, 1)-labelings of G and systems of special repre-
sentatives for Sy, ..., Sy, (the choice of ¢(vy) = 0 or A does not interfere with
the labels of the remaining vertices). The graph G has clearly treewidth two.
We will further design a collection of gadgets that will force the desired lists
on the vertices of the graph G.

3.2 Labels of neighbors of vertices of large degrees The following
simple observation will be used repeatedly in our arguments. Let v be a
vertex whose two neighbors w and w’ have degree A — 1, and let ¢ be an
L(2, 1)-labeling of span A. Denote S = ¢(N(w)\{v}) the set of labels used on
the neighbors of w other than v. Since w and w' have the maximum possible
degree, they are assigned labels 0 and A, and hence c(v) € [2,\ — 2] \ S.
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Figure 2: Construction of the graph H;.

3.3 The crucial gadget For every i € [1,2;1], we construct the graph H;
with nonadjacent vertices z;, z; of degree one inductively as follows.

1) Hy is the cycle of length four and zg, z; are two nonadjacent vertices
(of degree two).

2) To construct H;,q1, we take the graph H; and
e insert the edge (z;, 2}),
e insert two new vertices z;41, 2j,, and edges (z;, zi+1), (2}, Zi11),
e insert A — 5 new common neighbors of z; and z2;.
(See Fig. 2 for an example.) Then H; is a series-parallel graph whose number

of vertices is polynomial in ¢ and n (precisely, |Vg,| = i(A — 3) +4). It has
the following crucial property.

Lemma 3.1. For every i > 1, in any L(2,1)-labeling of H; of span X, the
vertices z_1, zi, Zi_1, z are assigned (in this order) labels i—1, A\—i, \—i+1,1
or A—i1+1,5,0 — 1, \ — 4.

Proof. We prove the statement by induction on i. Let ¢ be an L(2,1)-labeling
of H; of span .

1) For i = 1, observe that since zy and z{ have degree A — 1, they must
be assigned labels 0 and A, or vice versa. Their A\ — 3 common neigh-
bors are assigned distinct labels forming the interval [2, A — 2] and hence
{c(z1), (1)} = {1, A = 1}

2) By induction hypothesis, {c(z;—1),c(zl_1)} = {i —1,A — i+ 1} and
{c(2;), c(z))} = {i, A —i}. These two vertices have further A — 5 common
neighbors that could be assigned only the labels forming the set [0,7 — 2] U
[i +2,A—1—2]U[X—i+ 2, A]. It is therefore easy to conclude that the
two triples (c(zi—1),c(2}), c(zit1)) and (c(2j_,), (%), c(zi,1)) could be only
the two consecutive triples (i —1,7,i+1) and (A—i+1,A—i,A—i—1). O
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graphs H; for 2 < (<21 [ & §S;

2

Figure 3: Forcing list S; on the vertex v;.

3.4 Forcing T'(vg) Add A —1 —2n —m = 2n + 4 — m new neighbors to the
vertex vg. (We may assume 2n +4 — m > 0 since the SRL problem trivially
has no system of distinct representatives if 2n +m > 2A — 1.) Then v has
degree A — 1 and it can be assigned only labels 0 or A by any L(2, 1)-labeling
of span A.

3.5 Forcing T'(v{) For each vertex i € [1,m], insert a new vertex x; and
make it adjacent to v]. Further for each pair of labels [ and A — in the set
[2, A — 2] \ S;, insert a new copy of the graph H; and make z; adjacent to
the vertices z; and z; of this new copy. Finally, add further new neighbors
to the vertex x; so that it has degree A — 1 (see Fig. 3). It follows from the
observation in 3.2 and Lemma 3.1 that the vertex v is now allowed to be
assigned only a label from the set S; as required.

3.6 Forcing T'(v}) and T (v¥) For each ¢ € [1, n], insert vertices y;, y; adjacent
to vf and v¥, respectively. Further take a copy of the graph Hy;, 1, remove one
common neighbor of z9; and 2}, and make y; adjacent to 2y, 29,41 and y; to
2h;, 2y of this copy. For each label [ € [2, 251]\ {24,2i+ 1}, insert two new
copies of the graph H; (the second copy is denoted by H;) and connect both
vertices z;, 2/ to y; and both 2], z/' to y!. Finally, add three new neighbors to
each vertex y;, y; so that both have degree A — 1 (see Fig. 4).

Suppose ¢ is an L(2,1)-labeling of span A. Since both y;, y. have de-
gree A — 1 and are at distance 2 from vy of the same degree,they are both-
assigned the same label, either 0 or A. It also follows that in the copy
Hy; 1 the vertices zy;, 21, behave as stated in Lemma 3.1, even if we re-
moved one common neighbor (whose role was taken over by y; and y;).

Now according to observation in 3.2, the vertex v! can be assigned only
labels from {2i,2i + 1, A —2i — 1, A — 2i} \ {c(29;), ¢(22i1+1)} and similarly for

11
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graphs H;, Hf for 2 <1 <221 [ 5£24,2i+1

Figure 4: Forcing lists {2i, A — 2i — 1} and {2i + 1, A — 2i} on the vertices

t ,u
vy, U; .

c(vi) € {26,2i +1, A =2 — 1, A — 24} \ {c(25;), c(2;41) }. Since by Lemma 3.1
either {c(z9), c(z2i11)} = {A—2i,2i+ 1} or {2i, A — 20 — 1}, and respectively,
{c(25;), c(2h41)} = {26, A — 20 — 1} or {A — 24,20 + 1}, we get the desired
admissible sets for both v! and v¥ (note here that the entire construction is
symmetric with respect to vertices vf and v).

By the above discussion, any L(2,1)-labeling of the resulting graph G’
forces every vertex x of its subgraph G to be assigned labels from the list T'(x).
During the construction of G’ the distances between the original vertices of
G were not changed, and hence any L(2,1)-labeling of G’ restricted to G is
an admissible L(2, 1)-labeling for the lists T'(z),z € V4.

The proof of the opposite implication (i.e., that any admissible L(2,1)-
labeling of G' can be extended to an L(2,1)-labeling of G') follows from the
construction of all the gadgets and is straightforward.

Finally, observe that the size of G’ is polynomial in the size of G (more
precisely |G'| = O(]G|*), and also that all gadgets were constructed so that
G' maintains treewidth two. This concludes the proof of Theorem 1.

4 (C(p,q)-labelings of trees

Recall the notion of the cyclic metric, which depends on the span of the
channel space. For z,y € [0, A\ — 1], their distance is defined as p.(z,y) =
min{|z — y|, A — |x — y|}. A labeling f : Vg — [0, A — 1] is called a C(p, q)-

12



labeling if p.(f(v), f(v')) > p for any edge (v,v') € Eg, and p.(f(v), f(v')) >
g for any two vertices v, v’ € Vg of distance at most two in G. The minimum
cyclic span A for which a graph G admits a C(p, ¢)-labeling is denoted by
Clpg) (G).

Proposition 2 provides a slightly surprising fact that in the case of cyclic
metric, the C, ;) number of a tree is given by a closed formula and hence
computable in linear time.

Also for the cyclic metric, we prove a dichotomy of the complexity of the
C(2,1)-LABELING problem with respect to the treewidth of the input graph.
However, it is worth noting that though the result is analogous to the case
of L(2,1)-labeling and the idea of the proof is similar (to reduce from the
problem of special distant representatives via list labelings), the gadgets are
constructed in a completely different way (they cannot be based on vertices
of degree A — 1 as in the case of L(2,1)).

Before proving the theorem we first design a suitable gadget:

Lemma 4.1. For any even A and even integer i € [4, %] there exists a series-
parallel graph F; of size O(Ai) with two vertices z;, 2, of degree one, such that
in any C(2,1)-labeling f of F; of span X holds p.(f(z:), f(2})) = i.

?

Proof. These gadgets are defined inductively: let F, be the path of length
two with endvertices zo and z5.
The graph Fj, 5 is constructed from F; by

e inserting the edge (z;, z}),
e inserting two new vertices zj19,2j,, and edges (22, zit2), (2}, 2i12);

e inserting A — 6 new common neighbors of z; and z/. (Consult Fig. 2
with the difference in H; and the numbers of inserted neighbors.)

As the initial vertices z5 and 2z} are of degree A — 5 they must be assigned
labels of cyclic difference 2 and the labels of their A — 5 common neighbors
are uniquely determined as well as the labels of vertices z4 and z;. If w.l.o.g
f(z9) =1 and f(2}) = 3 then f(z4) =4 and f(z}) = 0.

It is straightforward to show by the same arguments as in Lemma 3.1
that for any 4 labels of z;_s, 2;, zivo and z{_,, 2, 2j,5 are consecutive triples
modulo A and get the desired result. ]

For simplicity we call vertices z; and 2} the S (south) and N (north) poles
of F;.

13



Observe that if we iterate the extension described in the lemma % —1
times, we get a graph whose poles allow labels of difference 2, but its size is
O(A?). In the future discussion we will recall this graph as F; instead of that

used in the proof of Lemma 4.1.

Proof of Theorem 3. The proof is analogous to the proof of Theorem 1 and
we show SRC o« C(2,1)-LABELING.

Let n and Sy, ...,S,, be the instance of the SRC problem. Observe that
the transformation z — z' = 4z provides a bijection between the original
SRC problem and its version where the aim is to find a collection of distinct

integers s\, s5,...,s0 1], th, ...t ul,ub, ..., ul such that
e forallj=1,...,m:s; € S}, where all sets contain only multiples of 4,
e foralli=1,...,n:t, € {16n — 4i,16n + 4i},

foralli=1,...,n:u, € {48n — 4i,48n + 4i},
pe(th, ul) = 32n — 8i for every i = 1,2,...,n and A = 64n?

We construct the graph G according to the following plan (consult Fig. 5):

s vt uk vl o where g is

I. We first insert vertices vo, v{,..., v},
adjacent to all others.

IT. Build a chain of 2m copies of the graph Fj,, such that the N pole of
the i-th copy is merged with the S pole of the forthcoming copy and
the resulting vertex is denoted by z;. Identify the S pole of the first
copy with vy and also join x; to vy by an edge.

III. For each j =1,...,m take every possible even k € {2,4,...,32n—2}\
S; and insert two copies of the graph Fj such that both S poles are
identified with z9; and both N poles are made adjacent to the vertex

v

i

IV. For each i = 1,...,n join vertices v} and v} via gadget F3o,_g; such
that v! is merged with the S pole and v¥ with the N pole.

V. Insert a copy of the graph Fig, and for each ¢+ = 1,...,n insert two
copies of the graph Fig,_12; and two copies of Fig,12;. Merge all S
poles with the vertex vy and rename the N poles by vy16,, Y16n+12; and
Yi6n+12i-

VI. For each i =1,...,n join vertices vf and y;6, via gadget F; such that
vl is merged with its S pole and yy6, with the other pole.
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Y16n+12 graphs Fy for k = 16n £+ 124, i € [0, n]

Y16n_12 (added twice when i > 0)

graphs Fj for even k & S}
(each added twice)

Figure 5: The graph G.

VIIL. Finally for each 7 = 1,...,n join v} with the four vertices yig,_12,

/ /
Yien—12i> Y16n+12i> Yien+12i-

Assume first that G allows a C'(2, 1)-labeling f of span A = 64n. Without
loss of generality we may assume f(vg) = 0 and hence f(zy;) = 0 for all
jg=1,....,m (IL).

Each vj have neighbors labeled k, A — k for all even k € {2,4,...,32n —
2} \ S} due to (IIL.). Tts neighbor v is labeled by 0, and it cannot use label
32n since the vertex z; is forced label 32n and is at distance two from vs.
Hence only labels of S remain feasible for v;.

Due to symmetry of a C'(2, 1)-labeling we can further assume w.l.o.g. that
f(y16n) = 16n and from (VI.) follows that only 16n + 44 are feasible labels
for each v?.

As f(yx) = k, f(y,) = A — k or vice-versa, each v} has forbidden labels
16n £ 12¢ and 48n £ 12¢ from (VII). Also due to (IV.,VIL.) holds f(v}) €
f(v}) + (32n — 8i) = {48n + 4i,48n + 123} and altogether only 48n + 4i
remain feasible labels for v}
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Finally due to (I.) all labels of v{,...,v" are distinct, hence sq,...,u, =
1f(W5), ..., 1 f(vY) is a valid solution of the SRC problem.

In the opposite direction from any feasible system of representatives
S1,..., U, we can derive a C(2,1)-labeling of G of span A = 64n. Let the
labels of vertices vy, z;,y;,y; are settled as described above and labels of
v],...,v, are si,...,u,, each multiplied by 4.

To argue that this labeling can be extended to the entire graph GG we note
that as all copies of the graph Fy incident with any fixed vertex (especially vy
and all z5;) have distinct values of k, they invoke distinct odd labels on the
adjoint vertices inside the gadgets F; and cause no conflict with the other
labels.

Finally observe that the resulting graph G is of treewidth 2. ]

5 (2,1)-labelings of graphs of bounded tree-
width

Given graphs G and H, an H(2,1)-labeling of G is a mapping f : Vg —
Vg such that adjacent vertices of G are mapped onto distinct nonadjacent
vertices of H (i.e., distance of the target vertices is at least 2, measured in
the target graph H) and vertices with a common neighbor in G are mapped
onto distinct vertices of H (i.e., the distance of the target vertices is at least
1) [9]. This definition generalizes both the L(2,1)-labelings (when H is a
path whose length equals the span of the labeling) and the C'(2,1)-labelings
(when H is a cycle whose length again equals the span). The computational
complexity of this problem for fixed parameter graphs H was studied and
many particular results were proven in [8]. The case when the span is also
part of the input corresponds to the following decision problem:

(2,1)-LABELING
Input: Graphs G and H.

Question: Does G allow an H(2,1)-labeling?

Of course this problem is NP-complete for graphs G of treewidth two,
since both L(2,1)-LABELING and C(2,1)-LABELING are its special cases. In
this section we give a subtler separation of bounded width classes, namely in
terms of pathwidth. Graphs of pathwidth one are caterpillars (trees obtained
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by pending any number of leaves to vertices of a path), and so the claim that
(2,1)-LABELING is solvable in polynomial time for graphs G of pathwidth
one (and arbitrary H) follows from our Theorem 4.

Proof of Theorem 4. The following algorithm is a straightforward extension
of the algorithm for L(2,1)-labeling of trees of [4].

Given a tree T" with m vertices, choose a leaf r € Vi and regard it as a
root of T. For every edge (u,v) € Ep such that u is a child of v, denote by
T, the subtree of T" rooted in v and containing u and all its descendants.
For every such edge and for every pair of vertices z,y € Vg, we introduce
a Boolean variable ¢(u,v,z,y) which is true if and only if 7, allows an
H(2,1)-labeling f such that f(u) = z and f(v) = y. Then T allows an
H(2,1)-labeling if and only if ¢(u,r, xz,y) = true for some vertices z,y € Vg
(and u being the only child of the root r). The function ¢ can be computed
by the following dynamic programming algorithm:

1. Set the initial values ¢(u,v,z,y) = false for all edges (u,v) € Er and
vertices x,y € V.

2. If u is a leaf of T" adjacent to its parent v, then set ¢(u,v,z,y) = true
for all distinct nonadjacent vertices x,y € V.

3. Suppose that ¢ is already calculated for all edges of T, , except (u,v).

Denote by vq, vg, . .., v; the children of u. For all pairs of distinct nonad-
jacent vertices x,y € Vy, construct the set system {M;, Mo, ..., M},
where

M; ={z: z € Vg, z # y and ¢(v;, u, z,x) = true}

and set ¢(u,v,x,y) = true if the set system {M;, Ms,..., M} has a
system of distinct representatives.

For the time analysis note that the recursive step requires, for each pair
x,y € Vy, time O(nk) to construct the set system and time O(k - nk)
for deciding if it has an SDR (e.g., by using the augmenting paths algo-
rithm for a bipartite graph with at most nk edges and with &k vertices in
one bipartition class). Altogether the recursive step requires time O(n3k?).
If we denote by k, the number of children of a nonleaf vertex u € Vi,
we have ) .\ k, = m — 1 (the number of edges of T'), and hence the
total running time is majorized by O}, 7°kz) = O(n*}7, oy, ki) =

omn3(> k.)?) = O(n®m?). O

ueVyp VU
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A 2-path is a graph constructed from a triangle (say Ag) by consecutive
augmentation of triangles so that each A; shares one edge with the previously
augmented A;_;, while the third vertex of A; is a vertex newly added in this
step. A graph has pathwidth at most two if and only if it is a subgraph of
a 2-path. In particular, a fan of triangles obtained from a path by adding a
vertex adjacent to all vertices of the path, has pathwidth two.

Proof of Theorem 5. We reduce from HAMILTONIAN PATH which is well
known to be NP-complete [13]. Given a graph H' with n vertices, let H
be the disjoint union of the complement of H' and an isolated vertex =x.
Let G be obtained from a path of length n — 1 on vertices vy, vs,...,v, by
adding a vertex w, which is adjacent to all v;’s. Then every H(2,1)-labeling
f of G is an injective mapping from Vg to Vi (since G has diameter two),
and f is necessarily bijective (since |Vg| = |Vg|). Without loss of gener-
ality f(w) = z, and hence f(vy1), f(v2),..., f(v,) is a Hamiltonian path in
H'| since (v;,v;11) € Eg implies that (f(v;), f(viy1)) € Ey. The opposite
implication is straightforward. ]

6 Concluding remarks

We have fully characterized the computational complexity of (2,1)-distance
constrained graph labelings in the case of linear and cyclic metrics in the
channel space, with respect to the treewidth of the input graphs. Our results
prove polynomial /NP-completeness dichotomy separating treewidth one from
treewidth two, which is a rare phenomenon and has so far been known only
for very few problems (namely the CUTWIDTH or MINIMUM LINEAR AR-
RANGEMENT which is polynomial for trees [24] while NP-hardness for graphs
of treewidth two follows from [19]). With distance constrained labelings we
have added a natural and important problem to this short list.

Let us remark that our main result is independent on the NP-completeness
of the CHANNEL ASSIGNMENT problem, though both problems are related
by the motivation in frequency assignment. The CHANNEL ASSIGNMENT
is known NP-complete for graphs of treewidth three, but its complexity for
treewidth two graphs is still open. The core of the NP-hardness of the two
problems lies in different aspects of the problems and one does not straight-
forwardly follow from the other. On one hand, L(2,1)-LABELING relays to
CHANNEL ASSIGNMENT by considering the second (distance) power of the
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input graph and assigning weights 2 to the original edges and 1 to the new
ones. However, the graph constructed in this way will not have bounded tree-
width. On the other hand, L.(2,1)-LABELING involves only weights 2 and 1,
while the NP-hardness of the CHANNEL ASSIGNMENT problem is based on
large weights, the problem is not strongly NP-complete (it can be solved
by dynamic programming algorithm in polynomial time if the weights are
considered in unary encoding).

In the general (2,1)-LABELING problem, when both graphs come as parts
of the input, we prove tight dichotomy with respect to pathwidth of the
input (transmitters) graph. For both special metrics, L(2,1) and C(2,1),
the complexity for graphs of bounded pathwidth is open.

To keep the paper well focused, we have stated most of the results for
the simplest case of distance constraints (2,1). However, most of them can
be extended to (p, ¢)- or at least (p, 1)-labelings, see e.g. Proposition 2. It is
known that L(p,1)-LABELING is polynomial for trees for every p (even the
list and prelabeled versions), but when ¢ does not divide p, the complexity of
L(p, q)-LABELING for trees is open for all ¢ > 1 (the list and prelabeled ver-
sions are known to be NP-complete [10]). To the contrary, C(p, ¢)-LABELING
is polynomial for trees for all p,q as proven in our Theorem 2. Extension
of our Theorem 4 to general (p,1)-LABELING of trees is trivial, since that
follows by replacing H by its p-th distance power. An analog of Theorem 5
for general (p, ¢)-labelings can be proved by a more technical reduction.
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