
Locally Consistent Constraint Satisfaction

Problems with Binary Constraints

Manuel Bodirsky ∗ Daniel Král’† ‡

Abstract

An instance of a constraint satisfaction problem is k-consistent if
any k constraints of it can be simultaneously satisfied. We focus on
constraint languages with a single binary constraint. In this case, the
constraint satisfaction problem is equivalent to the question whether
there is a homomorphism from an input digraph G to a fixed target
digraph H. The instance corresponding to G is k-consistent if every
subgraph of G of size at most k is homomorphic to H. Let ρk(H) be
the largest ρ such that every k-consistent G contains a subgraph G′

of size at least ρ||E(G)|| that is homomorphic to H. The ratio ρk(H)
reflects the fraction of constraints of a k-consistent instance that can
be always satisfied. We determine ρk(H) for all digraphs H that are
not acyclic and show that limk→∞ ρk(H) = 1 ifH has tree duality. For
the latter case we design an efficient algorithm that computes in linear
time for a given input graph G and ε > 0 either a homomorphism from
almost entire graph G to H or a subgraph of G of bounded size that
is not homomorphic to H.

∗Humboldt-Universität zu Berlin, Institut für Informatik, Abteilung Algorith-
men und Komplexität I, Unter den Linden 6, 10099 Berlin, Germany. E-mail:
bodirsky@informatik.hu-berlin.de.

†Institute for Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-
10623 Berlin, Germany. E-mail: kral@math.tu-berlin.de. The author is a postdoctoral
fellow at TU Berlin within the framework of the European training network COMBSTRU.

‡Department of Applied Mathematics and Institute for Theoretical Computer Science
(ITI), Faculty of Mathematics and Physics, Charles University, Malostranské náměst́ı
25, 118 00 Praha 1, Czech Republic. E-mail: kral@kam.mff.cuni.cz. Institute for
Theoretical computer science is supported as project 1M0021620808 by Czech Ministry of
Education.

1

1 Introduction

Constraint satisfaction problems form an important computational model for
problems arising in many areas of computer science. This is witnessed by an
enormous interest in the computational complexity of various variants of con-
straint satisfaction problems [1, 2, 8, 9, 10, 11, 23]. However, sometimes not
all the constraints need to be satisfied but it suffices to satisfy a large fraction
of them. In order to maximize this fraction, the input can usually be pruned
at the beginning by removing small sets of contradictory constraints so that
the input instance is usually “locally” consistent. Formally, an instance of
the constraint satisfaction problem is k-consistent if any k constraints can be
simultaneously satisfied.

A similar notion of local consistency can also be defined in terms of vari-
ables instead of constraints: an instance is k-consistent if the values of any
k variables can be chosen so that any constraint on only these variables is
satisfied. Our results also hold for this version of local consistency.

Both the notions of local consistency mentioned before differ fundamen-
tally from the notion of k-consistency introduced by Freuder [11], and the no-
tion of relational k-consistency studied by Dechter and van Beek [4]. There,
an CSP instance is called k-consistent if every solution for the constraints on
only k− 1 variables can be extended to a solution to another variable in the
instance.

1.1 History of Locally Consistent CSPs

The notion of local consistency considered in this paper can be traced back
to the early 1980’s. Lieberherr and Specker [19, 20] studied the correspond-
ing problem for CNF formulas: they require that any k clauses of a given
formula can be satisfied and asked what fraction of all the clauses of the
formula can be satisfied. In their papers, they settled the case k = 1, 2, 3. A
simpler proof of their results was later found by Yannakakis [24]. The case
k = 4 was settled in [17] (exploring an interesting connection to so-called
Usiskin’s numbers [21]). Locally consistent CNF formulas can also be found
in Chapter 20 of [16].

Huang et al. [14] and Trevisan [22] resolved the asymptotic behavior of
locally consistent CNF formulas as k approaches infinity. Trevisan [22] was
the first to define the notion of local consistency for CSPs with constraints
that can be represented by Boolean predicates. For a set Π of Boolean

2

constraints, let ρk(Π) be the maximum ρ such that a fraction of at least ρ
constraints can be satisfied in any k-consistent input. Note that we now
allow negations in the arguments of the constraints (the domain is not just
a two-element set, but it is the Boolean field). If Π is the set of all the
predicates of arity `, then limk→∞ ρk(Π) = 21−` [22]. The ratios ρk(Π),
k ≥ 1, for a set Π consisting of a single predicate of arity at most three
were determined by Dvořák et al. [6]. The asymptotic behavior for sets Π
of predicates was studied in [18] where limk→∞ ρk(Π) was expressed as the
minimum of a certain functional on a convex set of polynomials derived from
Π. Efficient algorithms for locally consistent CSPs with constraints that are
Boolean predicates were also designed [6, 7, 18].

1.2 Our Contribution

In this paper, we initiate the study of locally consistent CSPs on larger
finite domains. We consider the simplest case in this setting where all the
constraints are of the same binary relation. The relation can be described
by a directed graph H whose vertices correspond to the elements of the
domain and where two vertices are joined by an arc if the ordered pair of
the elements corresponding to them is contained in the relation. Similarly,
the input can also be described by a directed graph G: the vertices of G
correspond to the variables and the arcs to the given constraints. There is
a satisfying assignment for the input if and only if G is homomorphic to H,
i.e., there is a mapping h : V (G) → V (H) such that h(u)h(v) ∈ E(H) for
every uv ∈ E(G).

The notion of local consistency translates to the language of digraph ho-
momorphisms as follows: a graph G corresponds to an k-consistent input if
every subgraph of G of size at most k, i.e., with at most k edges, is homo-
morphic to H. The ratio ρk(H) denotes the largest ρ such that for any G
corresponding to a k-consistent input, there is a mapping h : V (G)→ V (H)
preserving at least ρ||G|| arcs of G. Note that the version of local consistency
defined in terms of variables instead of constraints also easily translates to
the graph terminology: for that we require that each subgraph G′ of order
at most k is homomorphic to H. The corresponding ratios are then denoted
by ρv

k(H).
In our considerations, we can restrict to directed graphs H that are cores.

A core is a directed graph H that does not have a homomorphism to a
proper subgraph of H. It is well-known that any directed graph contains a

3

unique (up to isomorphism) subgraph H ′ such that H ′ is a core and H is
homomorphic to H ′. Obviously, ρk(H) = ρk(H

′) and ρv
k(H) = ρv

k(H
′).

We show that if H contains a directed cycle (or a loop), then ρk(H) and
ρv

k(H) coincide and they are equal to the fractional relative density δ ′rel(H)
of H as defined in Section 2. For such directed graphs H we design a simple
linear time algorithm that finds a mapping h : V (G)→ V (H) that preserves
at least δ′rel(H) · ||G|| arcs of G.

In the rest of the paper we focus on acyclic directed graphs H. Using
the notion of tree duality from [13] we show that limk→∞ ρk(H) = 1 for all
orientations of a path and all acyclic tournaments. In general, the equality
limk→∞ ρk(H) = 1 holds for all directed graphs H that have tree duality.
Unfortunately, there are acyclic directed graphs H that do not have tree du-
ality (there are even examples that are orientations of trees)—we discuss the
cases that we were not able to settle in a satisfactory way in the concluding
Section 5 where we also mention possible generalizations for CSPs with larger
constraint language.

2 Target Graphs with Cycles or Loops

In this section, we focus on the binary relations (constraints) such that the
corresponding target graph H contains a loop or a directed cycle. Note that
this includes the case when the binary relation is symmetric.

For a directed graph H, we define the fractional relative density of H as
follows:

δ′rel(H) = max
x:V (H)→〈0,1〉|

∑

v∈V (H)

x(v)=1

∑

uv∈E(H)

x(u) · x(v)

where the maximum is taken over all functions x : V (H)→ 〈0, 1〉 such that
the sum of x(v) is equal to one. In particular, if H contains a loop, then
δ′rel(H) = 1 (if the loop is incident to a vertex v, set x(v) = 1 and x(v ′) = 0
for v′ 6= v). This notion of density is similar to that of relative density as
used e.g. in [15]:

δrel(H) = max
∅6=H′⊆H

||H ′||

|H ′|2
.

The two notions are different in general. Consider a directed graph H
depicted in Figure 1. The graph H is obtained by replacing each edge

4

Figure 1: A digraph with different relative density and fractional relative
density.

of K5 by a bigon and removing two non-incident arcs. The relative den-
sity of H is δrel(H) = 18/25 = 0.720 but its fractional relative density is
δ′rel(H) = 88/121 ≈ 0.727 (set x(v) = 3/11 or the vertex incident with 8
arcs and x(v) = 2/11 for the remaining vertices). However, the two notions
coincide in the case that H corresponds to a symmetric binary relation [5].
Note that in this case both the target and the input graph can be viewed as
an undirected graph (each bigon is replaced by a single undirected edge).

Proposition 1. If a directed graph H corresponds to a symmetric binary
relation, then its fractional relative density δ ′rel(H) and its relative density
δrel(H) are the same. Moreover, δrel(H) = 1 if H contains a loop and other-
wise δrel(H) = 1− 1/ω(H) where ω(H) denotes the size of the largest subset
A of vertices of H such that any two distinct vertices of A are joined by an
arc.

Proof. If H contains a loop, then δrel(H) = δ′rel(H) = 1. In the rest, we
assume that H has no loops. Let x : V (H) → 〈0, 1〉 be the function such
that δ′rel(H) =

∑

uv∈E(H) x(u) · x(v),
∑

v∈V (H) x(v) = 1 and the support of x
is minimal. We show that uv ∈ E(H) for any two vertices u and v contained
in the support of x.

Assume the opposite and let u and v be two non-adjacent vertices such
that x(u), x(v) > 0. Let Xu = 2

∑

uw∈E(H) x(w) and Xv =
∑

uw∈E(H) x(w).
By symmetry, we can assume that Xu ≤ Xv. Consider the following labeling
x′:

x′(w) =

x(u)−min{x(u), x(v)} if w = u,
x(v) + min{x(u), x(v)} if w = v, and

x(w) otherwise.

5

Since the vertices u and v are non-adjacent in H, the following holds:

∑

uv∈E(H)

x′(u) · x′(v)−
∑

uv∈E(H)

x(u) · x(v) = 2(Xv −Xu)min{x(u), x(v)}.

It follows thatXu = Xv from δ′rel(H) =
∑

uv∈E(H) x(u)·x(v). Hence, δ
′
rel(H) =

∑

uv∈E(H) x
′(u) · x′(v). Since Xu = Xv, the configuration is again symmetric

with respect to u and v and we may assume that x(u) < x(v). Consequently,
x′(u) = 0 and the support of x′ is a subset of the support of x that contradicts
the choice of x. We conclude that the support of x induces a complete graph
in H.

It is an easy exercise in the mathematical analysis to show that if δ ′rel(H) =
∑

uv∈E(H) x(u) ·x(v), then x(u) = 1/k where k is the size of the support of x.
Hence, δ′rel(H) = 1 − 1/ω(H). Since it always holds that δrel(H) ≤ δ′rel(H),
it follows that δrel(H) = δ′rel(H).

We first observe that the fractional relative density δ ′rel(H) of H is a lower
bound on ρk(H) (even if H is acyclic):

Proposition 2. Let H be a directed graph. The following inequality holds
for every k ≥ 1:

ρk(H) ≥ δ′rel(H) .

Moreover, there exists a deterministic algorithm that for any directed graph
G finds a mapping h : V (G) → V (H) that preserves at least δ ′rel(H) · ||G||
arcs of G. The running time of the algorithm is linear in the size of G (if H
is fixed).

Proof. Let x : V (H)→ 〈0, 1〉 be the function such that
∑

v∈V (H) x(v) = 1 and
δ′rel(H) =

∑

uv∈E(H) x(u) · x(v). Consider a mapping h : V (G)→ V (H ′) that
maps each vertex of G to a vertex v ofH with probability x(v). The probabil-
ity that an arc of G is mapped to an arc of H is exactly

∑

uv∈E(H) x(u)·x(v) =
δ′rel(H). Hence, the expected number of arcs of G mapped to the arcs of H is
δ′rel(H)·||G||. The mapping h can be found deterministically using the deran-
domization method based on conditional expectations as described in [24].
The running time of the algorithm remains linear in the size of G.

In the proof of the next theorem, Markov’s inequality and Chernoff’s
inequality are used to bound the probability of large deviations from the
expected value. The reader is referred to [12] for further exposition.

6

Proposition 3. Let X be a non-negative random variable with the expected
value E. Then the following holds for every α ≥ 1:

Prob(X ≥ α) ≤
E

α
.

Proposition 4. If X is a random variable equal to the sum of N indepen-
dent random zero-one variables such that each of them equals one with the
probability p, then the following holds for every 0 < δ ≤ 1:

Prob(X ≥ (1 + δ)pN) ≤ e−
δ2pN

3 and Prob(X ≤ (1− δ)pN) ≤ e−
δ2pN

2 .

The converse inequality of Proposition 2 is true if the target graph H
contains a loop or a directed cycle.

Theorem 1. If H is a directed graph that is not acyclic, then ρk(H) is equal
to δ′rel(H) for every k ≥ 1.

Proof. Fix k ≥ 1 and ε, 0 < ε ≤ 1/2. Let n be a sufficiently large integer.
We construct a directed graph G of order n such that every subgraph of G of
size at most k can be mapped to H, but every mapping h : V (G) → V (H)
preserves at most (δ′rel(H) + ε)||G|| arcs of G.

We first consider a random directed graphG0 and we later prune it to obey
all the constraints that G should satisfy. Let G0 be a random graph of order
n in which the arc from u to v, u 6= v, is included with probability n−1+1/2k.
The arcs are included to G0 mutually independently. G0 contains no loops.
Since the expected number of arcs of G0 is n(n− 1)n−1+1/2k = n1/2k(n− 1),
Proposition 4 implies that the probability that the number of arcs of G0 is
smaller than (1− ε/4)n1+1/2k does not exceed 1/4 if n is sufficiently large.

Next, we estimate the number of (not necessarily consistently oriented)

cycles of G0. The expected number of bigons of G0 is
(

n
2

)

n−2+2/2k ≤ n1/k.
The expected number of cycles of G0 of length `, 3 ≤ ` ≤ k, is at most
n`2`(n−1+1/2k)` ≤ 2`n1/2. By Proposition 3, the number of such bigons and
cycles of length at most k does not exceed 4 ·k2kn1/2 with probability at least
1/4. Hence, if n is sufficiently large (recall that k is fixed), the number of
arcs contained in bigons and cycles of length at most k is bounded by εn/4
with probability at least 3/4.

Let us now consider a mapping h : V (G0) → V (H). Set x(v) :=
|h−1(v)|/n for v ∈ V (H). By the definition of δ ′rel(H), the following holds:

∑

uv∈E(H)

x(u)x(v) ≤ δ′rel(H) (1)

7

The expected number of arcs of G0 preserved by h can be estimated using
(1) as follows:

∑

uv∈E(H)

|h−1(u)|·|h−1(v)|n−1+1/2k =
∑

uv∈E(H)

x(u)x(v)n1+1/2k ≤ δ′rel(H)n1+1/2k.

By Proposition 4, the probability that the number of arcs preserved by h

exceeds (1 + ε/4)δ′rel(H)n1+1/2k is at most e−
ε2δ′

rel
(H)n1+1/2k

48 . Since there are
|V (H)|n possible choices of the mapping h, and since the target graph H, the
integer k and the real ε are fixed, the probability that there exists a mapping
h : V (G0)→ V (H) that preserves more than (1 + ε/4)δ′rel(H)n1+1/2k arcs of
G0 does not exceed 1/4 if n is sufficiently large.

We conclude based on the discussions in the previous paragraphs that the
following holds with a positive probability:

1. G0 contains at least (1− ε/4)n1+1/2k arcs,

2. the size of the set E of the arcs contained in bigons or cycles of length
at most k in G0 does not exceed εn/4, and

3. every mapping h : V (G0)→ V (H) preserves at most

(1 + ε/4) δ′rel(H)n1+1/2k

arcs of G0.

Therefore, there exists a graph G0 with the above three properties. The final
graph G is obtained from G0 by removing the arcs contained in the set E.

We argue that every mapping h : V (G) → V (H) preserves at most
(δ′rel(H)+ε)||G|| arcs ofG: the size ||G|| ofG is at least (1−ε/2)n1+1/2k. Since
every mapping h : V (G0)→ V (H) preserves at most (1 + ε/4)δ′rel(H)n1+1/2k

arcs of G0 and G is a subgraph of G0, every mapping h : V (G)→ V (H) also
preserves at most (1+ ε/4)δ′rel(H)n1+1/2k arcs. We infer the following bound
on the fraction of arcs of G preserved by h (recall that ε ≤ 1/2):

(1 + ε/4)δ′rel(H)n1+1/2k

||G||
≤

1 + ε/4

1− ε/2
δ′rel(H) ≤ (1 + ε)δ′rel(H) .

Next, we show that any subgraph of G of size at most k is homomorphic
to H. Let G′ be such a subgraph of G. Since the size of G′ is at most k,

8

G′ is an orientation of a forest. Hence, there is a homomorphism from G′ to
any directed cycle. In particular, there is a homomorphism from G′ to H,
because H contains a loop or a directed cycle,

Since we constructed for every ε > 0 a graph G that corresponds to an
instance of CSP that is k-consistent and the fraction of arcs preserved by
any mapping h : V (G) → V (H) does not exceed δ′rel(H) + ε, it follows that
ρk(H) ≤ δ′rel(H). The opposite inequality follows from Proposition 2.

By Proposition 1 and Theorem 1, the following holds for symmetric binary
relations:

Corollary 2. Let H be a directed graph corresponding to a symmetric binary
relation R on a set X. The following holds for every k ≥ 1:

ρk(H) =

{

1 if there exists a ∈ X such that [a, a] ∈ R, and
1− 1/` otherwise,

where ` is the size of the largest set A ⊆ X such that [a, a′] ∈ R for any two
distinct elements a and a′ of A.

Since every subgraph of order at most k of the graph G obtained in the
proof of Theorem 1 is an orientation of a forest, it can be mapped to H and
thus we can conclude the following:

Corollary 3. If H is a directed graph that is not acyclic, then ρv
k(H) is equal

to δ′rel(H) for every k ≥ 1.

3 Graph Homomorphisms and Tree Duality

A key ingredient to our algorithm in the next section is the notion of tree
duality. A directed graph H has tree duality if a graph G is homomorphic to
H if and only if every directed tree homomorphic to G is also homomorphic
to H. It is not hard to see that every orientation of a simple path or every
acyclic tournament has tree duality. Feder and Vardi [10] and Hell, Nešetřil
and Zhu [13] observed that if H has tree duality, then the H-coloring problem
(the decision problem whether a given graph is homomorphic to H) can be
solved in polynomial time by a simple procedure called arc-consistency. We
explain their approach in more detail.

An equivalent definition of having tree duality uses the notion of set
graphs. For a directed graph H, let 2H be the graph whose vertices are all

9

{1, 2}

{3, 4}

{1, 2, 4}

{1, 3, 4}

{3}

{2, 3}

{2}

{1}

{4}

{2, 3, 4} {2, 4}

{1, 3}{1, 2, 3}
2

3

4

1

{1, 4}

{1, 2, 3, 4}

Figure 2: An example of a digraph H with tree duality and its set graph.

the 2|H|− 1 non-empty subsets of vertices of H and two subsets U and V are
joined by an arc if the following holds: for every vertex u ∈ U , there exists a
vertex v ∈ V such that uv is an arc of H, and for every vertex v ∈ V , there
exists a vertex u ∈ U such that uv is an arc of H. The graph 2H is called
the set graph of H. It can be shown that H has tree duality if and only if
the graph 2H is homomorphic to H [3, 10]. An example of a set graph can
be found in Figure 2.

We now describe the arc-consistency procedure studied already in [11].
At the beginning, each vertex v of an input graph G is assigned the set of
all the vertices of the target graph H. The set assigned to v after i steps of
the algorithm is denoted by `i(v) and the initial sets are denoted by `0(v),
i.e., `0(v) = V (H) for each v ∈ V (G). At the i-th step, a vertex w of H is
removed from the set assigned to v if G contains an arc vv′ such that H does
not contain an arc ww′ for any w′ ∈ `i−1(v

′) or G contains an arc v′v such
that H does not contain an arc w′w for any w′ ∈ `i−1(v

′). We say such an
arc vv′ was violated at the i-th step. The procedure terminates when there
are no further changes in the sets assigned to the vertices of G. The number
of steps of the procedure never exceeds |G| · |H|. The entire procedure can be
implemented so that its running time is linear in |G|+ ||G|| when the target
graph H is fixed (and when the assignments `i at each step are implicitly
represented).

Let `(v) be the final set of the vertices of H assigned to a vertex v of
the input graph G. If there exists a vertex v of G such that `(v) = ∅, then
there is no homomorphism from G to H. On the other hand, if `(v) 6= ∅ for
all v ∈ V (G), then the mapping h : V (G) → V (2H) such that h(v) := `(v)

10

is a homomorphism from G to the set graph of H. If H has tree duality,
then the set graph 2H is homomorphic to H. Consequently, in this case G is
homomorphic to H. It is well-known that that if H has tree duality, then the
arc-consistency procedure is a polynomial-time algorithm for the H-coloring
problem [3, 10, 13].

4 Target Graphs with Tree Duality

In this section, we focus on binary relations such that the corresponding
directed graph H has tree duality. Though the decision problem whether all
the constraints can be satisfied can be solved in polynomial time if H has
tree duality, the corresponding problem to maximize the number of satisfied
constraints can be hard: consider a graph H consisting of a single oriented
edge. The problem whether a graph G is homomorphic to H can be solved
in polynomial time. On the other hand, if G is the directed graph obtained
from an undirected graph G0 by replacing each edge by a bigon, then the
maximum number of arcs that can be preserved by a mapping from G to
H is equal to the size of the maximum cut of G0. Hence, the problem to
maximize the number of preserved arcs (constraints) is NP-hard.

In this section, we show that ifH has tree duality, then limk→∞ ρk(H) = 1,
and we design an algorithm that either finds a good mapping from G to H
or detects a subgraph of G of bounded size that is not homomorphic to H.

Theorem 4. If H is a directed graph that has tree duality, then the following
holds:

lim
k→∞

ρk(H) = 1.

Moreover, there exists an algorithm that given an input graph G and ε > 0
either finds a mapping h : V (G)→ V (H) that preserves at least (1− ε) · ||G||
arcs of G or detects a subgraph of G of size at most |H|d2|H|/εe that is not
homomorphic to H. The running time of the algorithm is linear in |G|+ ||G||
if the target graph H is fixed.

Proof. We first describe the algorithm from the statement of the theorem.
The algorithm invokes the arc-consistency procedure for the first d2|H|/εe
steps and constructs the assignments `i for i = 0, . . . , d2|H|/εe. It then
distinguishes two cases. The first case is that there exists a vertex v of G
and i = 0, . . . , d2|H|/εe such that `i(v) = ∅. Let i be the smallest index with

11

this property. For every w ∈ V (H), there exists a step of the algorithm when
w was removed from the set assigned to v because an edge incident to v was
violated. For w ∈ V (H), consider such an edge vwv and the corresponding
step iw. Note that iw < i. Now, for every w′ ∈ V (H) missing in `iw(vw),
consider the step when w′ was removed from the sets assigned to vw. At
this point note that `iw(vw) 6= ∅ by the choice of i. We obtain new sets of
arcs of G that were violated before the iw-th step and that caused vertices
w′ to be removed from the set assigned to vw. Continue in this way unless
the considered sets assigned to the vertices of G are equal to V (H). The
procedure terminates because the numbers iw of steps decrease. Since i ≤
d2|H|/εe, the number of violated arcs obtained in this way does not exceed
the following:

|H|+ |H|(|H|−1)+ |H|(|H|−1)2 + · · ·+ |H|(|H|−1)d2|H|/εe−1 ≤ |H|d2|H|/εe .

This set of arcs contains a subgraph of G that is not homomorphic to H.
The remaining case is that `i(v) 6= ∅ for every v ∈ V (G) and i =

0, . . . , d2|H|/εe. Let Ei be the set of the arcs of G violated at the i-th
step, i = 1, . . . , d2|H|/εe. Since each edge can be violated at most 2|H|
times (at each step when the edge is violated, the size of the set assigned
to one of its end-vertices decreases), the sum |E1| + · · · + |Ed2|H|/εe| does
not exceed 2|H| · ||G||. In particular, there exists i = 1, . . . , d2|H|/εe such
that |Ei| ≤ ε||G||. Consider now a mapping h′ : V (G) → V (2H) defined
as h′(v) := `i−1(v). All the arcs that might not be preserved by h′ are con-
tained in Ei. Since 2H is homomorphic to H, there is a homomorphism
h : V (G) → V (H) that preserves all the arcs of G except for those of Ei.
This finishes the description and the analysis of the algorithm. The bound on
the running time of our algorithm follows from the discussions in Section 3.

Since the algorithm finds for a |H|d2|H|/εe-consistent input a mapping that
preserves a fraction of at least (1 − ε) arcs, ρ|H|d2|H|/εe(H) ≥ 1 − ε. Hence,
limk→∞ ρk(H) = 1.

Since ρv
2k(H) ≥ ρk(H) and ρ(H) is non-decreasing in k, Theorem 4 implies

the following:

Corollary 5. If H is a directed graph that has tree duality, then the following
holds:

lim
k→∞

ρv
k(H) = 1.

12

Figure 3: The three smallest digraphsH for which limk→∞ ρk(H) is unknown.

Moreover, there exists an algorithm that given an input graph G and ε > 0
either finds a mapping h : V (G)→ V (H) that preserves at least (1− ε) · ||G||
arcs of G or detects a subgraph of G of order at most 1 + |H|d2|H|/εe that
is not homomorphic to H. The running time of the algorithm is linear in
|G|+ ||G|| if the target graph H is fixed.

5 Directions for Future Research

The main interest in locally consistent CSPs comes from the question how
much it helps that the input is locally consistent. This is reflected by the
behavior of ρk(H) as a function of k for a fixed directed graph H. In case
that the corresponding graph H contains a loop or a directed cycle, we have
seen that the assumption on local consistency does not help at all. On the
other hand, if H has tree duality, this assumption helps a lot. We were not
able to settle the case when H is acyclic but does not have tree duality. In
Figure 3, the reader can find the three smallest directed graphs H for which
we were not able to compute the limit limk→∞ ρk(H).

In the papers on locally consistent CSPs with constraints being Boolean
predicates [6, 7, 18], the authors also addressed the weighted versions of the
problems. Let us mention that all our results, in particular Theorems 1
and 4, Corollaries 2, 3 and 5, hold for the weighted versions of the problems,
too. The reader is welcome to check him/her/itself that the proofs translate
to this setting.

The ultimate goal is to settle the behavior of locally consistent CSPs
with more types of constraints and with constraints of arbitrary arity. The
approach to CSPs for binary constraints based on graphs with tree duality
applies to all constraint languages that admit a set function, even if the

13

constraint language contains several constraint types. Note that this class of
computational problems contains many previously known tractable families
of problems including Horn, constant, and ACI problems [3]. However, we
have little knowledge of the behavior for constraint languages without tree
duality.

Acknowledgement

The authors are indebted to Zdeněk Dvořák for discussions on relative density
of graphs and to Pavol Hell for his comments on tree duality.

References

[1] A. Bulatov, A. Krokhin, P. Jeavons: The Complexity of Maximal Con-
straint Languages. In: Proc. of the 33rd Symposium on the Theory of
Computation, STOC (2001) 667–674.

[2] S. Cook, D. Mitchell: Finding Hard Instances of the Satisfiability Prob-
lem: A Survey. In: Satisfiability Problem: Theory and Applications.
DIMACS Series in DMTCS Vol. 35 AMS (1997).

[3] V. Dalmau, J. Pearson: Closure Functions and Width 1 Problems. In:
Proc. of 5th International Conferences on Principles and Practice of
Constraint Programming, CP, LNCS Vol. 1713, Springer-Verlag Berlin
(1999) 159–173.

[4] R. Dechter, P. van Beek: Local and Global Relational Consistency.
Theor. Comput. Sci. 173 (1997) 283–308.

[5] Z. Dvořák, personal communication.

[6] Z. Dvořák, D. Král’, O. Pangrác: Locally Consistent Constraint Satis-
faction Problems. In: Proc. of the 31st International Colloquium on
Automata, Languages and Programming, ICALP, LNCS Vol. 3142,
Springer-Verlag Berlin (2004) 469–480.

[7] Z. Dvořák, D. Král’, O. Pangrác: Locally Consistent Constraint Satis-
faction Problems, to appear in Theor. Comput. Sci.

14

[8] D. Eppstein: Improved Algorithms for 3-coloring, 3-edge-coloring and
Constraint Satisfaction. In: Proc. of the 12th ACM-SIAM Symposium
on Discrete Algorithms, SODA (2001) 329–337.

[9] T. Feder, R. Motwani: Worst-case Time Bounds for Coloring and Sat-
isfiability Problems. J. Algorithms 45(2) (2002) 192-201.

[10] T. Feder, M. Vardi: Monotone monadic SNP and constraint satisfaction.
In: Proc. of the 25th Symposium on the Theory of Computation, STOC
(1993) 612–622.

[11] E. C. Freuder: A sufficient condition for backtrack-free search. J. ACM
29 (1982) 24–32.

[12] T. Hagerup, Ch. Rüb: A guided tour Chernoff bounds. Inform. Process.
Letters 33 (1989) 305–308.

[13] P. Hell, J. Nešetřil, X. Zhu: Duality and polynomial testing of tree
homomorphisms. Trans. Amer. Math. Soc. 348(4) (1996) 1281–1297.

[14] M. A. Huang, K. Lieberherr: Implications of Forbidden Structures for
Extremal Algorithmic Problems. Theor. Comput. Sci. 40 (1985) 195–
210.

[15] S. Janson, T. ÃLuczak, A. Ruciński: Random Graphs. Wiley & Sons,
New York (2000).

[16] S. Jukna: Extremal Combinatorics with Applications in Computer Sci-
ence. Springer, Heidelberg (2001).

[17] D. Král’: Locally Satisfiable Formulas. In: Proc. of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM (2004)
323-332.

[18] D. Král’, O. Pangrác: An Asymptotically Optimal Linear-Time Algo-
rithm for Locally Consistent Constraint Satisfaction Problems, submit-
ted.

[19] K. Lieberherr, E. Specker: Complexity of Partial Satisfaction. J. of the
ACM, 28(2) (1981) 411–422.

15

[20] K. Lieberherr, E. Specker: Complexity of Partial Satisfaction II. Tech-
nical Report 293, Dept. of EECS, Princeton University (1982).

[21] Z. Usiskin: Max-min Probabilities in the Voting Paradox. Ann. Math.
Stat. 35 (1963) 857–862.

[22] L. Trevisan: On Local versus Global Satisfiability, to appear in SIAM J.
Disc. Math. A preliminary version available as ECCC report TR97-12.

[23] G. J. Woeginger: Exact Algorithms for NP-hard Problems: A Survey.
In: Proc. 5th International Workshop Combinatorial Optimization—
Eureka, You Shrink. LNCS Vol. 2570. Springer-Verlag Berlin (2003) 185-
207.

[24] M. Yannakakis: On the Approximation of Maximum Satisfiability. J. Al-
gorithms 17 (1994) 475–502. A preliminary version appeared in Proc. of
the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
(1992) 1–9.

16

