
Upper Hamiltonian Numbers and Hamiltonian

Spectra of Graphs

Daniel Král’∗† Li-Da Tong‡ Xuding Zhu§

Abstract

If π is a cyclic order of the vertices of a graph G, the number
h(π) is defined to be the sum of the distances between consecutive
vertices of G in π. For a graph G, the hamiltonian spectrum H(G)
is the set of all numbers h(π). The hamiltonian number h(G) of G is
the minimum number contained in H(G) and the upper hamiltonian
number h+(G) is the maximum number contained in H(G). We de-
termine hamiltonian spectra of cycles. We also show that the upper
hamiltonian number of a graph G of order n and diameter d is at least
n+ dd2/2e − 1. The bound is tight for all pairs n and d.

1 Introduction

A Hamilton cycle is a cycle of a graph that contains all the vertices. A graph
is called hamiltonian if it contains a Hamilton cycle. Hamilton cycles as well
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as necessary and sufficient conditions for their existence form an important
part of graph theory (see [4, 5, 8, 12]). A Hamilton walk is a closed walk
that contains all the vertices of G. Not all graphs contain a Hamilton cycle,
however, every connected graph has a Hamilton walk. It is clear that the
shortest Hamilton walk has length at least |V (G)| and at most 2|V (G)| − 2,
and G has a Hamilton walk of length |V (G)| if and only if G is Hamiltonian.
The hamiltonian number of G, defined as the length of the shortest Hamilton
walk of G, measures how close (far) a graph is to having a Hamilton cycle.
The notion of hamiltonian numbers was introduced [9, 10], and has been
studied in [1, 2, 3, 11].
The hamiltonian numbers can also be defined using cyclic orders. A cyclic

order of the vertices of a graph G is a function π : {1, . . . , |V (G)|} → V (G). If
π−1(v) = π−1(w)+1 (the equality is modulo |V (G)|), then v is the successor
of w and w is the predecessor of v. Two cyclic orders are the same if they differ
only by a rotation and/or a reflection, For a cyclic order π, one may define a
corresponding Hamilton walk Cπ in G as the union of shortest paths between
the vertices consecutive in π. Note that there might be more Hamilton walks
Cπ corresponding to π, but all of them have the same length. This length is
denoted h(π), i.e., h(π) =

∑n
i=1 dG(π(i), π(i + 1)). The hamiltonian number

of a graph G is then equal to the minimum h(π) taken over all the cyclic
orders on the vertices of G
The problem of determining numbers h(π) for all cyclic orders π of the

vertices of a graph G has also been studied. The maximum h(π) is called
the upper hamiltonian number of G and the set H(G) of all the numbers
h(π) is called the hamiltonian spectrum of G. It was proved in [6, 7] that the
upper hamiltonian number of a path Pn is bn

2/2c and that of an odd cycle
C2k+1 is 2k

2 + k. In the case of even cycles, Chartrand et al. [7, Conjecture
4.3] conjectured that h+(C2k) = 2k

2 − 2k + 2. In this paper, we prove this
conjecture. Moreover, we determine the hamiltonian spectra of cycles of all
lengths.
Lower bounds on the upper hamiltonian numbers in terms of the order

and the diameter of a graph was discussed in [6]. It was proved there that
if G is a graph of order n and diameter d, then the following holds:

h+(G) ≥















n+ d− 1 if d = 1 or d = 2,
n+ d+ 1 if d = 3,

n+
(

d
2

)

+ 1 otherwise.

Chartrand et. al. [6] expected the bound not to be tight for d ≥ 4. Indeed, the
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bound can be improved. In Section 5, we show that h+(G) ≥ n+ dd2/2e− 1.
Our bound is tight for all pairs of n and d.
Let us remark that determining the upper hamiltonian number of a graph

is an NP-hard problem: for a graph G of order n, consider the graph G′

obtained from the complement of G by adding a new vertex v and joining v
to all the vertices of G. It is easy to see that h+(G′) = 2(n− 1) + 2 if G has
a Hamilton path, and h+(G′) < 2(n− 1) + 2, otherwise.

2 Upper Hamiltonian Numbers of Even Cy-

cles

In this section, we study the upper hamiltonian numbers of even cycles and
settle Conjecture 4.3 posed in [7].

Theorem 1. The upper hamiltonian number of the cycle C2k, k ≥ 2, is
2k2 − 2k + 2.

Proof. Chartrand et. al. [7] showed that h+(C2k) ≥ 2k
2 − 2k + 2. We focus

on proving that the bound is tight. The proof proceeds by induction on k.
If k = 2, it can be easily verified that h+(C4) = 6. Let us assume that k > 2
in the rest. We show that h(π) ≤ 2k2 − 2k + 2 for each cyclic order π of the
vertices of C2k. The statement of the theorem then follows.
Let v1, . . . , v2k be the vertices of C2k in the order along the cycle. If the

following holds

d(π(i), π(i+ 1)) + d(π(i+ 1), π(i+ 2)) ≤ 2k − 2 (1)

for every i = 1, . . . , 2k (indices are modulo 2k where appropriate), then
summing up (1) over all i = 1, . . . , 2k yields:

2h(π) =
2k
∑

i=1

(d(π(i), π(i+ 1)) + d(π(i+ 1), π(i+ 2))) ≤ 2k(2k − 2).

The bound on h(π) follows.
Thus we assume that the inequality (1) does not hold for some i. By

symmetry, we can assume that it does not hold for i = 1 and that π(1) =
v1, π(2) = vk+1 and π(3) = v2. In particular, d(π(1), π(2)) = k and
d(π(2), π(3)) = k − 1. Let C ′ be the cycle obtained from C2k by deleting v1
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and vk+1 and by adding edges v2kv2 and vkvk+2. Clearly, C
′ is a cycle of length

2(k − 1). Consider the cyclic order π′(i) = π(i+ 2), i = 1, . . . , 2k − 2, of the
vertices of C ′. By the induction hypothesis, h(π′) ≤ 2(k−1)2−2(k−1)+2 =
2k2 − 6k + 6.
In the rest, the vertices v2, v3, . . . , vk are called red and the vertices

vk+2, . . . , v2k blue. The vertices v1 and vk+1 do not have any color. It is
easy to see that the distance between vertices of different colors in C2k is
the distance between them in C ′ increased by one. The distances in C2k and
C ′ between the pairs of vertices of the same color are the same. Hence, the
number h(π) is equal to h(π′) increased by 2k − 1 (because of the missing
terms d(π(1), π(2)) and d(π(2), π(3)) in the sum), increased by the number
of red-blue pairs of consecutive vertices in the sequence π(3), . . . , π(2k) and
increased by one if π(2k) is red. The last adjustment corresponds to the
difference of d(π(2k), π(1)) in C2k and d(π′(2k − 2), π′(1)) in C ′. There are
at most 2k−3 red-blue pairs of consecutive vertices in π(3), . . . , π(2k) and if
there are 2k − 3 such pairs, then since π(3) = v2 is red, π(2k) must be blue.
Therefore,

h(π) ≤ h(π′) + 2k − 1 + 2k − 3 ≤ 2k2 − 6k + 6 + 4k − 4 = 2k2 − 2k + 2.

We combine Theorem 1 with the results from [7] on the upper hamiltonian
numbers of odd cycles to obtain a complete characterization of the upper
hamiltonian numbers of cycles:

Corollary 2. The following equality for the upper hamiltonian number of

cycles Cn, n ≥ 3, holds:

h+(Cn) =

{

n2/2− n+ 2 if n is even,

n2/2− n/2 otherwise.

3 Hamiltonian Spectra of Even Cycles

In this section, we determine the hamiltonian spectra of even cycles. For
convenience, in this and the next sections, the vertices of the cycle Cn are
always denoted by v1, v2, · · · , vn. We introduce several definitions related to
cyclic orders. If π is a cyclic order of the vertices of Cn, then π(i)±1 denotes
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the vertex vj such that vj∓1 = π(i). The (a, b)-reversion of π, a < b, is the
following cyclic order π[a, b]:

π[a, b](i) =

{

π(a+ b− i) if a ≤ i ≤ b,
π(i) otherwise.

If a > b, then the (a, b)-reversion of π is the following cyclic order π[a, b]
(numbers taken modulo the length n of the cycle Cn where appropriate):

π[a, b](i) =

{

π(i) if b < i < a,
π(b+ a− i) otherwise.

Informally, the reversion π[a, b] is obtained by reversing the subsequence
between the a-th and the b-th element in the cyclic order. An (a, b)-reversion
is said to be simple if π(a) and π(b) are joined by an edge in Cn. We state
as a proposition the fact that every two cyclic orders can be obtained from
each other by a sequence of simple reversions:

Proposition 3. Let π and π′ be two cyclic orders. There exists a series of

simple reversions on π such that the final cyclic order is the same as π ′.

Proposition 3 can be verified using its analogue on transpositions of per-
mutations that is better known: for any two permutations σ and σ ′, there
exists a series of transpositions of consecutive elements that changes σ to σ ′.
In order to see this, note that π[a, b][b, a] differs from π by the transposition
of its a-th and the b-th elements and reversing its order.

Lemma 4. For any cyclic order π of the vertices of a cycle C and for any

1 ≤ a < b ≤ n, if π(a) and π(b) are neighbors, then |h(π)− h(π[a, b])| ≤ 2.

Proof. By symmetry, we can assume π(b) = π(a) + 1. Then

h(π[a, b]) = h(π) − d(π(a− 1), π(a))− d(π(b), π(b+ 1))

+ d(π(a− 1), π(b)) + d(π(a), π(b+ 1)) (2)

Since π(b) = π(a)+1, we have |d(π(a− 1), π(b))− d(π(a− 1), π(a))| ≤ 1 and
|d(π(a), π(b+1))−d(π(b), π(b+1))| ≤ 1. Therefore, |h(π)−h(π[a, b])| ≤ 2.

Theorem 5. If n ≥ 4 is an even integer, then

H(Cn) = {n, n+ 2, . . . , n
2/2− n, n2/2− n+ 2}.
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Proof. Since n is even, each closed walk of Cn has an even length. In par-
ticular, H(Cn) contains no odd numbers. Hence, h(π) is even for any π. By
Lemma 4, |h(π)− h(π[a, b])| = 0 or 2 for any simple reversion π[a, b] of π.
Since h(Cn) = n and h+(Cn) = n2/2− n+ 2, there exists cyclic orders π

and π′ of the vertices of Cn such that h(π) = n and h+(π) = n2/2−n+2. By
Proposition 3, π can be changed to π′ through a series of simple reversions.
At each step, the value h(π) is increased or decreased by at most two. Since
H(Cn) contains no odd numbers, it follows that H(Cn) contains all the even
numbers between n and n2/2− n+ 2.

4 Hamiltonian Spectra of Odd Cycles

In the case of odd cycles, the value h(π)−h(π[a, b]) in Lemma 4 can be −1 or
+1. Hence, a more careful analysis is needed to determine the hamiltonian
spectra of odd cycles. We first establish two auxiliary lemmas.

Lemma 6. Let Cn be a cycle of odd length n and π a cyclic order of its

vertices. If h(π) ≤ 2n− 3, then h(π) is odd.

Proof. Since the length of the cycle is odd, there is a unique shortest path
between any two of its vertices. Let Pi, i = 1, . . . , n, be the shortest path
between the vertices π(i) and π(i + 1). For an edge e of Cn, let k(e) be the
number of the paths Pi that contain the edge e.
Let us consider two distinct edges e and f of Cn. Since the edges e and f

form an edge-cut of the cycle Cn and the union of the paths P1, . . . , Pn form
a closed walk in Cn covering all the vertices, the sum of k(e) and k(f) is an
even integer that is at least 2. Therefore, either all the numbers k(e) are
even or all of them are odd. In the former case, at most one of the numbers
k(e) is equal to zero and the remaining ones are at least two. However, it
must then hold that h(π) ≥ 2n− 2. Hence, if h(π) ≤ 2n− 3, all the numbers
k(e) must be odd. Consequently, h(π) is the sum of an odd number of odd
numbers.

Lemma 7. If Cn is a cycle of odd length n, then n2/2− n/2− 1 6∈ H(Cn).

Proof. Let n = 2k+1. Assume to the contrary that h(π) = n2/2−n/2−1 =
k(2k+1)− 1 for a cyclic order π of the vertices of C2k+1. Since the diameter
of C2k+1 is k, the distance between all the pairs of the consecutive vertices
in π except for one is k. By symmetry, we can assume that d(π(1), π(2)) =
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· · · = d(π(2k), π(2k+1)) = k. In addition, we can also assume that π(1) = v1

and π(2) = vk+2. This implies that π(3) = v2, π(4) = vk+3, π(5) = v3, etc. In
particular, π(2k + 1) = vk+1 and thus d(π(2k + 1), π(1)) = k. Consequently,
all the distances d(π(i), π(i+ 1)) are equal to k and h(π) = k(2k + 1).

Next, we show that all the numbers between 2n−2 and n2/2−n/2−2 are
contained in the hamiltonian spectrum of the odd cycle Cn. The argument is
a little bit more complicated. First we introduce some definitions. Suppose
π is a cyclic order of the vertices of Cn. If the shortest path between π(i)
and π(i+1) contains the vertex π(i)+1, then we call the pair (π(i), π(i+1))
a forward pair (with respect to π). Otherwise, the shortest path between
π(i) and π(i + 1) contains the vertex π(i) − 1 and the pair (π(i), π(i + 1))
is called a backward pair. We define the trace t(π) of π to be the vector
(t1, . . . , tn) where tk, k = 1, . . . , n, is the number of indices i = 1, . . . , n such
that d(π(i), π(i + 1)) = k. Note that h(π) =

∑n
k=1 k · tk. The maximum k

such that tk 6= 0 is denoted by tmax(π) and the pairs (π(i), π(i + 1)) with
d(π(i), π(i+ 1)) = tmax(π) are called long pairs. The traces of orders can be
lexicographically ordered: a trace t is smaller than a trace t′ if tk < t′k for
the largest k such that tk 6= t′k.

Lemma 8. Let π be a cyclic order of the vertices of a cycle Cn and let a
and b be two indices such that π(a) = π(b)− 1. The following statements are
true:

• If the pairs (π(a), π(a + 1)) and (π(b − 1), π(b)) of the vertices of Cn

are forward and d(π(a), π(a + 1)) ≥ 2 or d(π(b − 1), π(b)) ≥ 2, then
h(π)− 2 ∈ H(Cn).

• If the pairs (π(a − 1), π(a)) and (π(b), π(b + 1)) of the vertices of Cn

are backward and d(π(a − 1), π(a)) ≥ 2 or d(π(b), π(b + 1)) ≥ 2, then
h(π)− 2 ∈ H(Cn).

Proof. By symmetry, it is enough to prove the first claim of the lemma with
d(π(a), π(a+ 1)) ≥ 2. Consider the cyclic order π ′ = π[b, a]. Since there are
only two different pairs of consecutive vertices in the cyclic orders determined
by π and π′, the following holds:

h(π′) = h(π) − d(π(a), π(a+ 1))− d(π(b− 1), π(b))

+ d(π′(a), π′(a+ 1)) + d(π′(b− 1), π′(b)).
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However, since both the pairs (π(a), π(a+1)) and (π(b−1), π(b)) are forward,
we also have that:

d(π′(a), π′(a+ 1)) = d(π(b), π(a+ 1)) = d(π(a), π(a+ 1))− 1 and
d(π′(b− 1), π′(b)) = d(π(b− 1), π(a)) = d(π(b− 1), π(b))− 1 .

Therefore, h(π′) = h(π)− 2 and h(π)− 2 ∈ H(Cn).

Lemma 9. Let π be a cyclic order of the vertices of Cn whose trace t(π) is
lexicographically minimal among all the cyclic orders π ′ with h(π′) = h(π).
Assume that the pair (π(a), π(a + 1)) is forward and d(π(a), π(a + 1)) ≥ 2.
Let b and b′ be two indices such that π(b) = π(a)+1 and π(b′) = π(a+1)−1.
If h(π)− 2 6∈ H(Cn), then the following holds:

d(π(b− 1), π(b)) ≥ d(π(a), π(a+ 1))− 1 and

d(π(b′), π(b′ + 1)) ≥ d(π(a), π(a+ 1))− 1 .

An analogous statement holds if the pair (π(a), π(a+ 1)) is backward.

Proof. We focus on proving the first inequality. The other one can be proven
in a similar way. By Lemma 8, the pair (π(b−1), π(b)) is backward. Suppose
that d(π(b − 1), π(b)) ≤ d(π(a), π(a + 1)) − 2. Let π ′ = π[b, a]. The pairs
(π(b− 1), π(b)) and (π(a), π(a+1)) are the only pairs of consecutive vertices
in the cyclic order that are affected by the reversion. The former is changed
to the consecutive pair (π(a + 1), π(b)) in π′, whose distance is increased
by 1; the latter is changed to the consecutive pair (π(a), π(b − 1)), whose
distance is decreased by 1. As d(π(b − 1), π(b)) ≤ d(π(a), π(a + 1)) − 2, we
conclude that h(π) = h(π′) but t(π′) is lexicographically smaller than t(π).
This contradicts our assumption that t(π) is lexicographically minimal.

We now prove the key lemma on our way to determine the hamiltonian
spectra of odd cycles.

Lemma 10. Let n be an odd integer. If ` ∈ H(Cn) and ` ≥ 2n, then

`− 2 ∈ H(Cn).

Proof. Let π be a lexicographically minimal cyclic order among all cyclic
orders π′ of the vertices of Cn with h(π) = h(π′) = `. If tmax(π) ≤ 2, then
h(π) ≤ 2n and h(π) = 2n by the assumption of the lemma. Consequently,
d(π(i), π(i + 1)) = 2 for every i = 1, . . . , n, all the pairs (π(i), π(i + 1)) are
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either forward or backward, and `− 2 ∈ H(Cn) by Lemma 8. Hence, we can
assume in the rest that tmax(π) ≥ 3.
We say that a pair (π(i), π(i+1)) of vertices of Cn is strongly long if it is

long and in addition the following holds:

• the pair (π(i), π(i+ 1)) is forward, and both the pairs (π(i′ − 1), π(i′))
and (π(i′′), π(i′′ + 1)) are long where i′ and i′′ are such indices that
π(i′) = π(i) + 1 and π(i′′) = π(i+ 1)− 1, or

• the pair (π(i), π(i+1)) is backward, and both the pairs (π(i′−1), π(i′))
and (π(i′′), π(i′′ + 1)) are long where i′ and i′′ are such indices that
π(i′) = π(i)− 1 and π(i′′) = π(i+ 1) + 1.

If every long pair is strongly long, then all the pairs are long: if the for-
ward pair (v1, vtmax(π)+1) is strongly long, then the pair (π(π

−1(v2) − 1), v2)
is backward by Lemma 8 and it is long (the pair (v1, vtmax(π)+1) is strongly
long). Hence, it must hold that π(π−1(v2) − 1) = vtmax(π)+2. Since this pair
is long, it is also strongly long by our assumption. Similarly, one can infer
that the pair (v3, vtmax(π)+3) is forward, long and thus strongly long. The pair
(vtmax(π)+4, v4) is backward and strongly long, etc. After going once along the
cycle, we conclude that the pair (vtmax(π)+1, v1) is backward that contradicts
our original assumption that it is forward. We conclude that there must exist
a pair that is long but not strongly long.
Without loss of generality, we assume that π(1) = v1, π(2) = vtmax(π)+1,

and the pair (v1, vtmax(π)+1) is forward and long but not strongly long. By
symmetry, we assume that for i such that π(i) = v2, the pair (π(i− 1), π(i))
is not long. By Lemma 9, d(π(i − 1), π(i)) = tmax(π) − 1 ≥ 2. Since the
pair (π(i − 1), π(i)) is backward by Lemma 8, it must hold that π(i − 1) =
tmax(π) + 1 and thus i = 3.
Let s be the largest integer such that the following is true: if i = 2q ≤ s,

then π(i) = vtmax(π)+2−q, and if i = 2q + 1 ≤ s, then π(i) = vq. By our
assumption, s ≥ 3. Observe that d(π(i), π(i + 1)) = tmax(π) + 1 − i for
every i = 1, . . . , s − 1. We now distinguish two cases. The first case is
that s = tmax(π) + 1 ≥ 4. In this case, it is straightforward to verify that
h(π[s− 2, s− 1]) = h(π)− 2 and the lemma readily follows.
The other case is that s ≤ tmax(π). Note that it holds that d(π(s −

1), π(s)) ≥ 2. Assume that the pair (π(s − 1), π(s)) is backward (the other
case is symmetric). By our assumptions, the pair (π(s − 2), π(s − 1)) is
forward.
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Let i1 be the index such that π(i1) = π(s− 1)− 1. By Lemma 8, the pair
(π(i1 − 1), π(i1)) is forward and the pair (π(i1), π(i1 + 1)) is backward. By
Lemma 9,

d(π(i1 − 1), π(i1)) ≥ d(π(s− 1), π(s))− 1 .

However, if d(π(i1 − 1), π(i1)) = d(π(s− 1), π(s))− 1, then π(s) = π(i1 − 1)
that is impossible by our choice of s. Therefore,

d(π(i1 − 1), π(i1)) ≥ d(π(s− 1), π(s)) = d(π(i1), π(s− 2)) ≥ 2 .

On the other hand, by Lemma 9, it also holds the following:

d(π(i1), π(i1 + 1)) ≥ d(π(s− 2), π(s− 1))− 1 = d(π(i1), π(s− 2)) ≥ 2 .

Let i2 be the index such that π(i2) = π(i1) − 1 = π(s − 1) − 2. By
Lemma 8, the pair (π(i2− 1), π(i2)) is forward and the pair (π(i2), π(i2+1))
is backward. Similarly as above, one can infer the following from Lemma 9:

d(π(i2 − 1), π(i2)) ≥ d(π(i1), π(i1 + 1))− 1 ≥ d(π(i2), π(s− 2)) ≥ 2 and
d(π(i2), π(i2 + 1)) ≥ d(π(i1 − 1), π(i1))− 1 ≥ d(π(i2), π(s− 2)) ≥ 2 .

Choose now i3 = π(i2)−2 = π(s−1)−3 and repeat the argument. Continue
until ik = π(s)+1. However, both the pairs (π(s−1), π(s)) and (π(ik), π(ik+
1)) are backward and d(π(ik), π(ik + 1)) ≥ 2. Then, ` − 2 ∈ H(Cn) by
Lemma 8.

An almost immediate consequence of the previous lemma is the following:

Lemma 11. For every k ≥ 1, the hamiltonian spectrum of C2k+1 contains

all the integers between 4k and k(2k + 1)− 2.

Proof. Consider the following cyclic order π of the vertices of C2k+1:

π(i) =































v2k−1 if i = 2,
vk−2 if i = 3,
v2k if i = 4,
vk−1 if i = 5, and

vik mod (2k+1) otherwise.

It is straightforward to verify that h(π) = k(2k + 1) − 3. In particular,
k(2k + 1) − 3 ∈ H(C2k+1). Since h+(C2k+1) = k(2k + 1), we have also
that k(2k + 1) ∈ H(C2k+1). The statement of the lemma now follows from
Lemma 10.
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Figure 1: Examples of graphs Gn,d.

We are now ready to finish the case of odd cycles:

Theorem 12. If n ≥ 3 is odd, then the following holds:

H(Cn) = {n, n+ 2, . . . , 2n− 5, 2n− 3} ∪

{2n− 2, 2n− 1, . . . , n2/2− n/2− 2} ∪

{n2/2− n/2}.

Proof. By Lemma 6, all the numbers contained in H(Cn) that are smaller
or equal to 2n − 3 are odd. Since a single simple reversion changes the
number h(π) of a cyclic order by at most two (by Lemma 4), H(Cn) contains
all odd numbers between n and 2n − 3. By Lemma 11, H(Cn) contains
all the numbers between 2n − 2 and n2/2 − n/2 − 2. It also holds that
n2/2 − n/2 − 1 6∈ H(Cn) by Lemma 7, and h

+(Cn) = n2/2 − n/2 ∈ H(Cn).
Therefore the hamiltonian spectrum of Cn is of the form described in the
statement of the theorem.

5 Upper Hamiltonian Number and Diameter

of a Graph

Suppose d ≥ 2 and n ≥ d+1. Let Gn,d be the graph obtained from a complete
graph of order n − d + 2 by removing an edge uv, adding a path comprised
of bd/2c − 1 edges ending at the vertex u and a path comprised of dd/2e − 1
edges ending at the vertex v. The graph Gn,d has order n and diameter d.
Examples of graphs Gn,d for small values of n and d can be found in Figure 1.

Lemma 13. The upper hamiltonian number of Gn,d, n ≥ d + 1 and d ≥ 2,
is at most n+ dd2/2e − 1.
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Proof. Fix the integers n and d. Let u′ be the other end of the path ending
at the vertex u. Consider a cyclic order π of the vertices of Gn,d and let Pi
be a shortest path between the i-th and (i+1)-th vertex with respect to the
order π. Let us define k(E) for a set E of edges of Gn,d to be the number of
edges of E contained in the paths P1, . . . , Pn (counting multiplicities). Let
Vi, i = 0, . . . , d, be the set of the vertices of Gn,d whose distance from u is i,
let Ei, i = 1, . . . , d, be the edges between the vertices Vi−1 and Vi, and let F
be the edges of the clique induced by Vbd/2c. Since the sets E1, . . . , Ed and F
form a decomposition of the edge-set of Gn,d, we have the following equality:

h(π) = k(E1) + · · ·+ k(Ed) + k(F ) (3)

Next, we bound the terms in the sum (3).
Since each Ei forms an edge-cut of Gn,d and each vertex is the end-vertex

of at most two of the paths Pi, the number k(Ei) does not exceed twice the
order of the smaller component of Gn,d \Ei. Hence, the following inequality
holds:

k(Ei) ≤

{

2i if i ≤ bd/2c,
2d− 2i+ 2 otherwise.

(4)

Finally, we bound k(F ). The vertices of Vbd/2c induce a clique of order n− d
in Gn,d. An edge of F is contained in a path Pi only if the path Pi joins
two vertices of Vbd/2c. Since the union of the paths Pi form a closed walk
visiting every vertex of Gn,d at least once and each vertex is an end-vertex
of precisely two paths Pi, the number of the paths Pi joining two vertices of
Vbd/2c does not exceed n − d − 1 and thus k(F ) ≤ n − d − 1. We now plug
(4) and the upper bound on k(F ) to (3):

h(π) = k(E1) + · · ·+ k(Ed) + k(F )

≤ 2 + · · ·+ 2bd/2c+ 2 + · · ·+ 2dd/2e+ n− d− 1

= bd/2c(bd/2c+ 1) + dd/2e(dd/2e+ 1) + n− d− 1

= bd/2c2 + dd/2e2 + n− 1 = n+ dd2/2e − 1 .

Since the choice of the cyclic order π was arbitrary, the upper hamiltonian
number of Gn,d does not exceed n+ dd

2/2e − 1.

We are now ready to prove our lower bound on the upper hamiltonian
number of a graph in terms of its order and its diameter and show that it is
tight:
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Theorem 14. If G is a connected graph of order n and diameter d, 1 ≤ d ≤
n− 1, then the upper hamiltonian number h+(G) is at least n+ dd2/2e − 1.
Moreover, for every pair n and d, 1 ≤ d ≤ n − 1, there exists a graph G of

order n and diameter d for which the equality holds.

Proof. The existence of graphs that witness the tightness of the bounds on
the upper hamiltonian number follows from Lemma 13 for d ≥ 2. If d = 1,
the bound is attained for complete graphs. We focus on proving the lower
bound in the rest. Consider a graph G of order n and diameter d. Let v0

be a peripheral vertex of G, i.e., a vertex such that there exists a vertex at
distance d from v0 in G.
Let Vi be the set of the vertices of G at distance i from the vertex v0 for

i = 1, . . . , d, and let vi be any vertex contained in Vi. Consider the following
cyclic order π of the vertices of G:

w1 = v0, w2 = vd, w3 = v1, w4 = vd−1, . . . , wd−1 = vd/2−1, wd = vd/2+1,

if d is even, and:

w1 = v0, w2 = vd, w3 = v1, w4 = vd−1, . . . , wd−1 = vd/2+3/2, wd = vd/2−1/2,

if d is odd. The vertices wd+1, . . . , wn are the vertices of G distinct from
w1, . . . , wd, and they are sorted in the increasing order according to their
distance from v0.
We now show that the number h(π) is at least n+dd2/2e−1. Observe that

if v ∈ Vi and v′ ∈ Vj, then d(v, v′) ≥ i. Therefore, the following inequality
holds for all i = 1, . . . , d− 1:

d(π(i), π(i+ 1)) = d(wi, wi+1) ≥ d− i+ 1 (5)

Since the vertex vdd/2e is not among the vertices w1, . . . , wd and the vertices
wd+1, . . . , wn are sorted according to their distance from v0, the distance
between w1 and wn is at least dd/2e. Since the distance between any two
vertices is at least one, we infer from (5) the following:

h(π) =
n
∑

i=1

d(wi, wi+1)

≥ d+ (d− 1) + · · ·+ 2 + n− d+ dd/2e

= n+ (d− 1) + · · ·+ 2 + dd/2e

= n+
(d+ 1)(d− 2)

2
+ dd/2e = n+

⌈

d2

2

⌉

− 1 .

The proof of Theorem 14 is now finished.
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