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Abstract. For a fixed countable homogeneous relational structure Γ we
study the computational problem whether a given finite structure of the
same signature homomorphically maps to Γ . This problem is known as
the constraint satisfaction problem CSP(Γ ) for the template Γ and was
intensively studied for finite Γ . We show that – as in the case of finite Γ
– the computational complexity of CSP(Γ ) for countable homogeneous
Γ is determinded by the clone of polymorphisms of Γ . To this end we
prove the following theorem, which is of independent interest: The prim-
itive positive definable relations over an ω-categorical structure Γ are
precisely the relations that are preserved by the polymorphisms of Γ .
If the age of Γ is given by a finite number of finite forbidden induced
substructures, then CSP(Γ ) is in NP. We use a classification result by
Cherlin and prove that in this case every constraint satisfaction problem
for a countable homogeneous digraph is either tractable or NP-complete.
Keywords: complexity of constraint satisfaction, homogeneous

digraphs, graph homomorphisms, ω-categorical structures, poly-

morphism preservation theorem

1 Introduction

For a fixed relational structure Γ (called the template), the con-
straint satisfaction problem CSP(Γ ) is the following computational
problem: Given a finite structure S of the same signature as Γ , is
there a homomorphism from S to Γ?

Constraint satisfaction problems frequently occur in theoretical
computer science, and have attracted much attention for finite tem-
plates Γ . It is conjectured that CSP(Γ ) has a dichotomy in the sense
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that every constraint satisfaction problem CSP(Γ ) for finite struc-
ture Γ is either tractable or NP-complete. This is true for templates
that are undirected graphs [25], for two element templates [39], and
three element templates [8]. It is known that every constraint satis-
faction problem with a finite template is polynomial time equivalent
to a digraph homomorphism problem [20]. There are powerful classes
of algorithms solving the known tractable constraint satisfaction
problems, namely group theoretic algorithms and local-consistency
based algorithms [17,20,27,30].

But many constraint satisfaction problems in the literature can
not be formulated as a constraint satisfaction problem with a finite
template. One example is Allen’s interval algebra [1] that has appli-
cations in temporal reasoning in artificial intelligence. The classifi-
cation of the tractable and hard subalgebras of Allen’s algebra was
completed only recently [31, 35], and they also exhibit a complex-
ity dichotomy. Other examples are tree description languages that
were introduced in computational linguistics [3,4,15], and problems
from phylogenetic analysis [7, 36, 41]. Even digraph acyclicity can
not be formulated as a constraint satisfaction problem with a finite
template.

It was already remarked in [20] that arbitrary infinite templates
allow to describe all queries that are closed under disjoint unions and
whose inverse is closed under homomorphisms. However, it turns out
that many constraint satisfaction problems that can not be formu-
lated with a finite template can be formulated with an infinite well-
behaved template. We propose to study constraint satisfaction with
countable templates that are homogeneous, a well-studied concept
in model theory. Constraint satisfaction with such templates is a
strict generalization of constraint satisfaction with finite templates,
since every constraint satisfaction problem with a finite template is
polynomial-time equivalent to a constraint satisfaction problem with
a homogeneous template (see Section 3).

Countable homogeneous structures are intensively studied by mo-
del theorists, and they have many remarkable properties, for instance
they allow quantifier elimination. If the signature contains only fi-
nitely many relation symbols for each arity they are ω-categorical,
i.e., their first-order theories have only one countable model up to iso-
morphism. Countable homogeneous structures have been classified
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for all digraphs [14]. We use this result to determine the complex-
ity of the constraint satisfaction problems where the template is a
countable homogeneous digraph, and prove a dichotomy for the case
that the structure is described by a finite number of finite forbidden
induced subgraphs.

Adding primitive positive definable relations to a template Γ does
not change the computational complexity of CSP(Γ ). An equivalent
characterization of primitive positive definable relations was inde-
pendently found by [23] and [6]. They proved that a relation is prim-
itive positive definable over a finite relational structure Γ if and only
if it is preserved by the polymorphisms of Γ . This was first used in
the context of constraint satisfaction by Jeavons et al. [30], and ini-
tiated the algebraic approach to constraint satisfaction, which has
successfully been carried further e.g. in [9,10,16]. We generalize this
result to ω-categorical structures Γ , and prove that a relation is p.p.-
definable in Γ if and only if it is preserved by the polymorphisms of
Γ .

Outline. We first give some background on relational homogeneous
structures. In Section 3 we explain the rôle of primitive positive de-
finability in constraint satisfaction. We give a characterization of
primitive positive definability on countably categorical structures in
Section 5 after introducing the necessary tools from universal algebra
in Section 4. We close with a catalog of homogeneous digraphs and
a discussion of their constraint satisfaction problems. An extended
abstract of this paper appeared in [5].

2 Background

A relational signature τ is a (in this paper always at most count-
able) set of relation symbols Ri, each associated with an arity ki.
A (relational) structure Γ over relational signature τ (also called τ -
structure) is a setDΓ (the domain) together with a relation Ri ⊆ Dki

Γ

for each relation symbol of arity ki. For simplicity we denote both a
relation symbol and its corresponding relation with the same sym-
bol. For a τ -structure Γ and R ∈ τ it will also be convenient to say
that R(u1, . . . , uk) holds in Γ if (u1, . . . , uk) ∈ R. We sometimes use
the shortened notation x for a vector x1, . . . , xn of any length.
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Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to Γ ′

is a function f from DΓ to DΓ ′ such that for each n-ary relation
symbol in τ and each n-tuple a, if a ∈ RΓ , then (f(a1), . . . , f(an)) ∈
RΓ ′

. In this case we say that the map f preserves the relation R.
A strong homomorphism f satisfies the stronger condition that for
each n-ary relation symbol in τ and each n-tuple a, a ∈ RΓ if and
only if (f(a1), . . . , f(an)) ∈ RΓ ′

. An embedding of a Γ in Γ ′ is an
injective strong homomorphism, and an isomorphism is a surjective
embedding. Isomorphisms from Γ to Γ are called automorphisms.
The set of all automorphisms of a structure Γ is a group with respect
to composition, and denoted by Aut(Γ ).

A first-order formula ϕ over the signature τ is said to be primitive
positive (we say ϕ is a p.p.-formula, for short) if it is of the form

∃x(ϕ1(x) ∧ · · · ∧ ϕk(x)) .

where ϕ1, . . . , ϕk are atomic formulas. (For an introduction to first-
order logic and model theory see [29].) Let Γ be a relational structure
of signature τ . Then a p.p.-formula ϕ over τ with k free variables
defines a k-ary relation R ⊆ Dk

Γ : the relation R is the set of all tuples
satisfying the formula ϕ in Γ . Equivalently, there is a p.p.-formula
defining a relation R if and only if there exists a finite relational
τ -structure S containing k designated vertices x1, . . . , xk such that

R =
{(

f(x1), . . . , f(xk)
) ∣

∣ f : S → Γ homomorphism
}

.

We call these relations p.p.-definable, and denote the relational struc-
ture that contains all such relations for a given Γ by 〈Γ 〉pp.

A relational structure Γ is called homogeneous (in the literature
sometimes ultrahomogeneous) if every isomorphism between two fi-
nite induced substructures can be extended to an automorphism of
Γ . Prominent examples of countable homogeneous structures are the
Rado graph R and the dense linear order (Q, <). The Rado graph can
be defined as the unique (up to isomorphism) model of the almost-
sure theory of finite graphs. Homogeneous structures have been clas-
sified for graphs [33], tournaments [32], posets [40], and finally for
digraphs [14] (there are continuum many homogeneous digraphs).
For homogeneous structures with arbitrary relational signatures a
classification is not yet known; even for signatures that consist of a
single ternary relation this is open.
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The age of a relational τ -structure Γ , denoted by Age(Γ ), is
the set of all finite induced substructures of Γ , i.e., the set of fi-
nite τ -structures that isomorphically embed in Γ . For a set of finite
τ -structures N, the class of all finite τ -structures without a substruc-
ture from N is denoted by Forb(N).

An important property of countable homogeneous structures is
their characterization by their age. A class of finite structures C is
an amalgamation class if C is nonempty, closed under isomorphism
and taking induced substructures, and has the amalgamation prop-
erty. The amalgamation property says that for all A,B1, B2 ∈ C and
embeddings e : A → B1 and f : A → B2 there exists C ∈ C and
embeddings g : B1 → C and h : B2 → C such that ge = hf .

Theorem 1 (Fräıssé [21]). A countable class C of finite relational
structures with countable signature is the age of a countable homoge-
neous structure if and only if C is an amalgamation class. If this is
the case, the countable structure is unique up to isomorphism, and
called the Fräıssé-limit of C.

If the signature τ of a countable homogeneous structure Γ con-
tains only finitely many relation symbols of each arity, then Γ is
ω-categorical, i.e., every countable structure satisfying the same first-
order formulas as Γ is isomorphic to Γ . On the other hand, every
ω-categorical structure can be made homogeneous by expanding the
signature by first-order definable relations. A permutation group over
an infinite set D is called oligomorphic iff there is only a finite num-
ber of orbits on the set of n-tuples of D. The following theorem is
essential (see e.g. [29]):

Theorem 2 (Engeler, Ryll-Nardzewski, Svenonius). A count-
able structure Γ is ω-categorical if and only if Aut(Γ ) is oligomor-
phic.

3 Combinatorial Constraint Satisfaction

Let Γ be an arbitrary structure with relational signature τ - also
called the template. Then the constraint satisfaction problem CSP(Γ )
is the following computational problem:
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CSP(Γ )
INSTANCE: A finite τ -structure S.
QUESTION: Is there some homomorphism from S to Γ?

Formally, we denote by CSP(Γ ) the set of all finite τ -structures
that homomorphically map to Γ . All constraint satisfaction problems
with finite Γ are clearly contained in NP.

Sometimes the age of a countable τ -structure Γ can be described
by a finite set of forbidden induced substructures, i.e., Age(Γ ) =
Forb(N) for a finite set N of finite τ -structures. We call such tem-
plates Γ finitely constrained. For finitely constrained Γ the constraint
satisfaction problem CSP(Γ ) is contained in NP. To see that, suppose
we are given an instance S of CSP(Γ ). A nondeterministic algorithm
can then guess the image of S under a homomorphism, and verify in
polynomial time that the image belongs to the age of Γ by checking
the absence of a structure from N.

Proposition 1. Let Γ be a finitely constrained countable homoge-
neous relational structure. Then CSP(Γ ) is in NP.

Note that if Γ is not finitely constrained CSP(Γ ) might be un-
decidable, see Section 7. In analogy with the dichotomy conjecture
of Feder and Vardi [20], we ask the following.

Question [Dichotomy]. Let Γ be a finitely constrained countable
homogeneous relational structure. Is CSP(Γ ) either NP-complete or
tractable?

For finite Γ we can assume without loss of generality that Γ is a
core, i.e., all endomorphisms of Γ are embeddings [24]. The reason
is that every finite relational structure has an endomorphism e such
that the image of e induces a structure that is a core (one can prove
that this core is unique up to isomorphism). This fact is not true
in general for infinite structures, but remains valid for ω-categorical
structures [2]. If Γ is a core, adding a singleton relation to the sig-
nature of Γ does not change the complexity of CSP(Γ ) (due to [11];
see [2] for a different proof that works for ω-categorical structures
as well). If Γ is a finite core, then we can add a singleton relation
for every element in Γ , with the effect that the resulting structure
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is clearly homogeneous. Therefore constraint satisfaction with ho-
mogeneous templates can be seen as a generalization of constraint
satisfaction with finite templates.

For both finite and infinite Γ , the following lemma explains the
relevance of p.p.-definable relations in constraint satisfaction [30].
Suppose we extend a relational structure Γ by a p.p.-definable rela-
tion R. This does not change the computational complexity of the
corresponding constraint satisfaction problem, since we can replace
every occurrence of R in an instance of CSP(Γ ) by the τ -structure
that defines R.

Lemma 1. Let Γ be a τ -structure and let Γ ′ be the extension of this
structure by a relation R that is p.p.-definable over Γ . Then CSP(Γ )
is polynomial-time equivalent to CSP(Γ ′).

In the next section we introduce the algebraic notions needed to
characterize p.p.-definability.

4 The Clone of Polymorphisms

Let D be a countable set, and O be the set of finitary operations
on D, i.e., functions from Dk to D for finite k. We say that f ∈ O
preserves an m-ary relation R ⊆ Dm if R is a subalgebra of the
product algebra (D, f)m. An operation that preserves all relations
of a relational structure Γ is called a polymorphism of Γ . The set
of all k-ary polymorphisms of Γ is denoted by Pol(k)(Γ ), and we
write Pol(Γ ) for the set of all finitary polymorphisms Pol(Γ ) =
⋃

i=1 Pol
(i)(Γ ).

The notion of a product of relational structures allows an equiv-
alent definition of polymorphisms, relating polymorphisms to ho-
momorphisms. The (categorical- or cross-) product Γ1 × Γ2 of two
relational τ -structures Γ1 and Γ2 is a τ -structure on the domain
DΓ1

× DΓ2
. For all m-ary relations R ∈ τ the relation R

(

(x1, y2),
. . . , (xm, ym)

)

holds in Γ1 × Γ2 iff R(x1, . . . , xm) holds in Γ1 and
R(y1, . . . , ym) holds in Γ2. Then a k-ary polymorphism f of a re-
lational structure corresponds to a homomorphism from Γ k = Γ ×
. . .×Γ to Γ , i.e., for an m-ary relation R in τ , if R(x1, . . . , xm) holds
in Γ k then R

(

f(x1), . . . , f(xm)
)

holds in Γ .
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An operation π is a projection (or a trivial polymorphism) if for
all n-tuples, π(x1, . . . , xn) = xi for some fixed i ∈ {1, . . . , n}. The
composition of a k-ary operation f and k operations g1, . . . , gk of
arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(

g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)
)

.

A clone F is a set of operations from O that is closed under compo-
sition and that contains all projections. We write DF for the domain
D of the clone F . For a set of operations F from O we write 〈F 〉 for
the smallest clone containing all operations in F (the clone generated
by F ). Observe that Pol(Γ ) is a clone with the domain DΓ .

Moreover, Pol(Γ ) is also closed under interpolation: We say that
an operation f ∈ O is interpolated by a set F ⊆ O if for every finite
subset B of D there is some operation g ∈ 〈F 〉 such that f |B = g|B
(f restricted to B equals g restricted to B, i.e., f(a) = g(a) for every
a ∈ Bk). The set of operations that are interpolated by F is called
the local closure of F . The following is a well-known fact.

Proposition 2. A set F ⊆ O of operations is locally closed if and
only if F is the set of polymorphisms of Γ for some relational struc-
ture Γ .

We now define several important concepts for operations and
clones. A k-ary operation f is idempotent iff f(x, . . . , x) = x for all
x ∈ D. An operation f is called essentially unary iff there is a unary
operation f0 such that f(x1, . . . , xk) = f0(xi) for some i ∈ {1, . . . , k}.
A relational structure Γ is called projective, iff all idempotent poly-
morphisms of Γ are projections, and strongly projective, iff all poly-
morphisms of Γ are projections [38].

Let F be a clone with domain D. Then R ⊆ Dm is invariant
under F , if every f ∈ F preserves R. We denote by Inv(F ) the
relational structure containing the set of all relations that are invari-
ant under F . A fundamental result that was independently found by
Bodnarčuk et al. [6] and Geiger [23] (also see [37]) says that for ar-
bitrary finite relational structures Γ the p.p.-definable relations are
precisely the relations preserved by the polymorphisms of Γ .
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Theorem 3 (Geiger [23], Bodnarčuk et al. [6]). Let Γ be a
finite relational structure. Then

〈Γ 〉pp = Inv(Pol(Γ )) .

To demonstrate the power of this theorem we prove that almost
all constraint satisfaction problems are NP-complete. Nešetřil and
ÃLuczak [34] showed that almost all structures with a fixed finite
signature, chosen uniformly at at random, are strongly projective.
Theorem 3 then implies that almost all such structures have a p.p.-
definition of every relation, and in particular a p.p.-definition of the
inequality relation. Therefore, and using Lemma 1, their constraint
satisfaction problem is NP-hard on a domain of size k ≥ 3, by re-
duction of k-colorability.

For arbitrary infinite structures, in general only one inclusion of
Theorem 3 stays valid, which is easy to prove.

Proposition 3 (see e.g. [37]). Let Γ be a relational structure.
Then

〈Γ 〉pp ⊆ Inv(Pol(Γ )) .

We present an example that shows that the inclusion of Propo-
sition 3 might be strict, communicated to the authors by Ferdinand
Börner. Consider the relational structure Γ := (N; R1, R2, R3) on
the natural numbers, where

R1 := {(a, b, c, d) | a = b or c = d, a, b, c, d ∈ N}

R2 := {(0)}

R3 := {(a, a+ 1) | a ∈ N}

Every function preserving R1 is essentially unary [37]. If f is unary
and preserves R2 then f(0) = 0. Furthermore, if f preserves R3 we
have f(a+ 1) = f(a) + 1 for all a, and inductively follows f(a) = a.
Therefore Pol(Γ ) only contains the projections. Every projection
preserves all relations. There are uncountably many relations over N,
but only countably many p.p.-formulas. Thus, Inv(Pol(Γ )) contains
relations that are not p.p.-definable. A concrete example for such a
relation is the predicate Odd that holds on all odd natural numbers.
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The reason is that for every p.p.-definable k-ary relation R in Γ the
diagonal set R∗ := R∩ {(x, . . . , x)|x ∈ Γ} is either finite or cofinite,
i.e., either R∗ or Γ − R∗ contains finitely many elements. We call
this property of a relation (∗), and observe that the relations R1,
R2, and R3 have property (∗), since the diagonal sets are full, of size
1, and empty, respectively. Any projection and all finite intersections
preserve the property (∗). Since the relation Odd is neither finite nor
cofinite, it cannot have a primitive positive definition in Γ .

For ω-categorical structures Γ the first-order definable relations
are precisely the relations that are preserved by the automorphisms
of Γ , i.e. 〈Γ 〉fo = Inv(Aut(Γ )) (see e.g. [12, 29]). We prove a cor-
responding theorem for primitive positive definability in the next
section.

5 A Characterization of Primitive Positive
Definability

We characterize the primitive positive first-order definable relations
over an ω-categorical structure Γ by the polymorphisms of Γ .

Theorem 4. Let Γ be an ω-categorical structure with relational sig-
nature τ . Then a relation R on Γ is preserved by the polymophisms
of Γ if and only if R is p.p.-definable, i.e.,

〈Γ 〉pp = Inv(Pol(Γ )).

Proof. We already stated in Proposition 3 that the p.p.-definable
relations over Γ are invariant under the polymophisms of Γ .

For the converse, let R be a k-ary relation from Inv(Pol(Γ )).
Note that R is first-order definable in Γ : By ω-categoricity and The-
orem 2, and since Γ and Inv(Pol(Γ )) have the same automorphism
group, the relation R is a union of finitely many orbits of the auto-
morphism group of Γ , and it can be defined by a disjunction ϕ of
τ -formulas that define these orbits. LetM1, . . . ,Mw be the satisfiable
monomials in this disjunction, and let x1, . . . , xk be the variables of
these monomials. We have to construct a finite τ -structure Q with
designated vertices v1, . . . , vk such that

R =
{(

f(v1), . . . , f(vk)
) ∣

∣ f : Q→ Γ homomorphism
}

.
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The idea is to first consider an infinite τ -structure, namely the cat-
egorical product Γw, and then to apply a compactness argument to
prove the existence of a suitable finite substructure.

For each monomialMj ∈M1, . . . ,Mw of ϕ we find a substructure
aj1, . . . , a

j
k of Γ , such that aj1, . . . , a

j
k satisfiesMj in Γ . Let b1, b2, . . . be

an enumeration of the w-tuples inDw
Γ , starting with bi = (ai1, . . . , a

i
w)

for 1 ≤ i ≤ k. Let us call a partial mapping from Γ w to Γ a bad
mapping if it maps b1, . . . , bk to a tuple not satisfying ϕ. Since R is
preserved by all polymorphisms, no homomorphism from Γ w to Γ is
bad.

We now claim that there is a finite substructure Q of Γ w such
that no homomorphism from Q to Γ is bad. Assume for contradic-
tion that all finite substructures of Γ w containing b1, . . . , bk have a
homomorphism to Γ mapping b1, . . . , bk to a tuple not satisfying
ϕ. We shall construct a bad homomorphism from Γ w to Γ , i.e. the
images of b1, . . . , bk do not satisfy ϕ. This will contradict the fact
that R is preserved by all polymorphisms. To this end, consider the
following infinite but finitely branching tree. The nodes on level n
in the tree are the equivalence classes of the bad homomorphisms
from Γw restricted to {b1, . . . , bn} to Γ , where two homomorphisms
f1 and f2 are equivalent if f1 = gf2 for some g ∈ Aut(Γ ). Adja-
cency between nodes on consecutive levels is defined by restriction.
By our assumption, for each finite substructure of Γ w there is a bad
homomorphism, and thus the tree contains a node on each level. By
Theorem 2, there are only finitely many nodes on each level. Hence,
König’s Lemma asserts the existence of an infinite path in the tree.
This path defines a bad homomorphism from Γw to Γ .

We proved by contradiction that there must be a finite sub-
structure Q containing the vertices b1, . . . , bk of Γw such that all
homomorphisms from Q to Γ map b1, . . . , bk to a tuple satisfying
ϕ. Conversely, every mapping f : Q → Γ such that the tuple
(f(b1), . . . , f(bk)) satisfies in Γ the monomial Mj can be extended to
a homomorphism f : Γw → Γ . To see this note that both aj1, . . . , a

j
k

and (f(b1), . . . , f(bk)) satisfy Mj and thus both lie in the same orbit
of Aut(Γ ). Thus we can choose f to be the jth projection combined
with the automorphism sending (aj1, . . . , a

j
k) to (f(b1), . . . , f(bk)).

This completes the proof. ut
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6 Examples of Countably Categorical
Templates

In this section we demonstrate that several problems and classes of
problems studied in the literature can be formulated as constraint
satisfaction problems with ω-categorical templates. In fact, in all
cases the templates can be expanded by a finite number of first-order
definable relations, such that the resulting structure is homogeneous.
Moreover, in all cases this homogeneous expansion is described by a
finite number of finite forbidden induced substructures.

6.1 Tree Descriptions

We start with a computational problem that was first posed in [15],
and that is motivated by questions in computational linguistics.
There is a polynomial time graph-theoretic algorithm solving this
problem [4]. We remark that this algorithm is neither group-theoretic
nor uses Datalog or local consistency methods, in contrast to all effi-
cient algorithms that are known for constraint satisfaction with finite
templates [20].

PARTIAL-TREE-DESCRIPTION
INSTANCE: A finite structure S over the signature τ = {−→,⊥}
containing two binary relation symbols.
QUESTION: Can we find a rooted forest F on the vertices of S such
that every edge from −→ lies in the transitive closure of F , and ev-
ery edge ⊥ does not?

Using a countable semi-linear order (see [18]) we can formu-
late this problem (and related problems) as a constraint satisfac-
tion problem CSP(Λ). In fact, we can find an ω-categorical struc-
ture Λ such that CSP(Λ) contains precisely the solvable instances.
The signature of the structure Λ is {−→,⊥}, and the domain is
the set of all non-empty finite sequences of rational numbers. For
a = (q1, q1, . . . , qn), b = (q′1, q

′
1, . . . , q

′
m), n ≤ m, we write a −→ b if

one of the following conditions holds:

– a is a proper initial subsequence of b, i.e., qi = q′i for 1 ≤ i ≤ n;
– qi = q′i for 1 ≤ i < n, and qn < q′n.
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The relation ⊥ is the set of all unordered pairs of distinct points not
in the relation −→. We already mentioned that every ω-categorical
structure can be made homogeneous by expanding the signature by
some first-order definable relations. In the case of Λ this is possible
with a single ternary relation [19], namely the relation x:yz defined
by the following primitive positive formula.

∃u. y ⊥ z ∧ u −→ y ∧ u −→ z ∧ u ⊥ x

It is also easy to find a finite list of forbidden induced substructures
that characterizes the age of this structure.

6.2 Allen’s Interval Algebra and its Fragments

We briefly introduce Allen’s interval algebra [1], which is a famous
framework for reasoning about temporal constraints. The satisfiabil-
ity problem for all subclasses of Allen’s interval algebra can be for-
mulated as a constraint satisfaction problem with an ω-categorical
template.

Consider as a base set D the closed intervals on the rational
numbers, and the following binary relations on these intervals: Let
x = [x−, x+] and y = [y−, y+] be closed intervals. We define

– The interval x precedes y, x p y, iff x+ < y−.
– The interval x overlaps y, x o y, iff x− < y− < x+ and x+ < y+.
– The interval x is during y, x d y, iff y− < x− and x+ < y+.
– The interval x starts y, x s y, iff x− = y− and x+ > y−.
– The interval x finishes y, x f y, iff x+ = y+ and x− > y−.
– The interval x meets y, x m y, iff x+ = y−.
– The interval x equals y, x ≡ y, iff x− = y− and x+ = y+.

For any set of relations derived from p, o, d, s,m, f and ≡ by union
and complementation the corresponding countable relational struc-
ture is ω-categorical. The constraint satisfaction problems for these
structures have a dichotomy [31,35]. In contrast to constraint satis-
faction with finite templates, where the problem one-in-three-sat is
usually the most natural candidate to prove NP-hardness, here it is
natural to use the problem Betweennness [22] to prove hardness.

BETWEENNESS
INSTANCE: A finite set V , and a collection C of ordered triples
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(x, y, z) of distinct elements from V .
QUESTION: Is there a one-to-one function f : V → {1, . . . , |V |}
such that, for each (a, b, c) ∈ C, we have either f(a) < f(b) < f(c)
or f(a) < f(c) < f(b).

This problem can itself be formulated as a constraint satisfaction
problem with an ω-categorical template. The domain is again the
set of all rational numbers, and we have one relation symbol in the
signature for the ternary relation {(x, y, z) ⊆ Q3 | x < y < z or z <
y < x}.

7 A Catalog of Homogeneous Templates

In this section we study the constraint satisfaction problems for ho-
mogeneous digraphs. We start with the homogeneous tournaments,
which have been classified by Lachlan [32]. Up to isomorphism there
are only five: the isolated vertex, which we denote byK1, the oriented
cycle C3, the dense linear order (Q, <), the dense local order S(2),
and the generic tournament for the set of all finite tournaments.

The problem CSP(K1) is trivial; and CSP(C3) is known to be
tractable (see e.g. [26]). The constraint satisfaction problem of the
dense linear order (Q, <) is computationally equivalent to the prob-
lem whether a given digraph D is acyclic. Clearly, this tractable
problem can not be formulated as a constraint satisfaction problem
with a finite template. Note that the relational structure (Q, <) is
not projective, e.g. the map x, y 7→ max(x, y) is a polymorphism.
The homogeneous tournament that is the Fräıssé-limit of all finite
tournaments has a trivial constraint satisfaction problem: Every ori-
ented graph maps to it. Thus the only interesting remaining case is
the dense local order S(2) (see [14]).

To define S(2), consider a partition of the rational numbers Q in
two disjoint dense subsetsX and Y of (i.e., for every rational number
a we can find sequences in X and in Y that converge against this
number a). Then the relation ≺ of S(2) is defined as the dense linear
order of Q on X ∪Y , where the edges between the sets X and Y are
reversed. Formally, we define u ≺ v iff either u < v and u, v ∈ X,
u < v and u, v ∈ Y , v < u and u ∈ X, v ∈ Y , or v < u and v ∈ Y ,
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Fig. 1. The forbidden induced subgraphs [I1, C3] and [C3, I1] of S(2).

u ∈ Y . The tournament S(2) is finitely constrained, and the two
forbidden induced subtournaments are shown in Figure 1.

Proposition 4. CSP(S(2)) is NP-complete.

Proof. Proposition 1 shows that CSP(S(2)) is contained in NP, be-
cause S(2) is finitely constrained. To prove hardness we reduce the
problem Betweenness to CSP(S(2)). Let (V ;C) be an instance of
Betweenness. We define a polynomial size instance S of CSP(S(2))
that is satisfiable if and only if (V ;C) is a yes-instance of Between-
ness. The vertices of S consist of the vertices V and some additional
vertices. We first introduce a new vertex u, and add u < x to S for all
x ∈ V . Then introduce for each triple x, y, z from C two new vertices
v, w and add the constraints v > x, v > y, v < z, w < x,w > y,w > z
to the instance S of CSP(S(2)). Also see Figure 2.

If there is a solution to the Betweenness instance (V ;C), there is
also a homomorphism from S to S(2): We map the vertex u ∈ S to
some vertex f(u) in S(2). Then the linearly ordered set {w | f(u) <
w} is isomorphic to the linear order of the rational numbers, and we
map the vertices in V to this set in the same way as the solution
of the Betweenness instance maps them to the rational line. Finally,
we can map the existentially quantified variables to S(2) in either
of the two ways displayed in Figure 2: this is, if x < y < z in the
solution to the Betweenness instance we let x < v, v < y, v < z,
z < w, y < w, w < x. Otherwise, if z < y < x we let z < w, y < w,
w < x, y < v, x < v, v < z.

Conversely, if there is a homomorphism f from S to S(2), we also
have a solution to the Betweenness instance (V ;C). The homomor-
phism f maps all vertices in V except u to the linearly ordered set
{w | f(u) < w}. We claim that in the corresponding linear order of
the vertices V , for each triple in C either x < y < z or z < y < x.
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Assume otherwise that y < x and y < z. Since x and y have to be
comparable, either x > z or x < z. In the first case we find the ori-
ented three-cycle x, v, z, x, in the second the cycle x, z, w, x. In both
cases there are arcs from y towards the vertices of that cycle, and
we found the subgraph [I1, C3], which is forbidden in S(2). The case
where y > x and y > z is analogous with the forbidden constellation
[C3, I1]. Thus we have a contradiction to the assumption that f is a
homomorphism from S to S(2). ut

x

w

w

z

y
v

x

y
w

x

v

z

v

z

y

Fig. 2. On the left we find the gadget to simulate with CSP(S(2)) the betweenness
relation on x, y, z, where an arc from a to b means that there is the constraint a < b.
On the right we find two possible ways to map these vertices homomorphically to S(2),
where the cross marks the origin in the plane.

Countable Homogeneous Digraphs. There are uncountably many
countable homogeneous digraphs. But they have been classified by
Cherlin [14]; the classification shows that the age of all but a count-
able number of well-understood homogeneous digraphs Γ has the
property, that all subgraphs of Γ are also induced subgraphs of Γ .
Henson showed that the set of isomorphism types of finite tourna-
ments, partially ordered by embeddability, contains an infinite an-
tichain [28]. For all distinct subsets T of tournaments in this an-
tichain the classes Forb(T) are distinct amalgamation classes. Thus,
there is an uncountable number of such classes, and by Fräıssé’s theo-
rem there is an uncountable number of non-isomorphic homogeneous
digraphs.
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Proposition 5. There is a homogeneous digraph Γ such that CSP(Γ )
is undecidable.

Proof. Each of the uncountably many homogeneous digraphs from
Henson’s construction has a different constraint satisfaction problem,
because the sets CSP(Γ ) and Age(Γ ) are equal for the constructed
digraphs. Since there is a countable number of algorithms, undecid-
able constraint satisfaction problems exist, with templates that are
countable homogeneous digraphs. ut

However, if the age is described by a finite set N of finite forbidden
induced subgraphs, then the constraint satisfaction problem for these
templates is simple, since CSP(Γ ) = Age(Γ ) = Forb(N). Hence it
suffices to check whether the input contains a forbidden induced
subgraph, which can be done in polynomial time. If not, the input
digraph is in the age of the template and is a yes-instance.

As in [14], we divide the remaining homogeneous digraphs into
three classes. The first class contains the countable homogenous tour-
naments that we already know from the last paragraph in this sec-
tion, and the empty graph on a countable number of vertices.

The second class contains imprimitive structures, i.e., structures
that have a first-order definable nontrivial equivalence relation. In all
cases except the first the definable equivalence relation corresponds
to the pairs of vertices that are not connected. There are four types,
classified in [13]. We use Cherlin’s notation; G[H] denotes the com-
position or wreath product of G and H: each vertex of G is replaced
by a copy of H, and arcs between distinct copies of H are controlled
by the edges of G.

1. “Wreathed (Composite)”: In[S(2)], In[Q], In[T
∞] and S(2)[In],

Q[In], T
∞[In], C3[I∞], where n might be infinite.

2. “Twisted”: Q̂, T̂∞. The digraph Q̂ is a variant of S(2) where
every point has an unconnected antipodal. The digraph T̂∞ is
universal for the class of all digraphs where the pairs of discon-
nected vertices form an equivalence relation with classes of size
two, and the union of two such classes is a copy of C4.

3. “Generified n-partite” (denoted by n ∗ I∞ in [13]): Starting from
Kn[I∞] we orient the undirected edges randomly.
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4. “Semigeneric” (denoted by ∞ ∗ I∞ in [13]): Starting from the
undirected homogeneous digraph K∞[I∞] we orient the edges ar-
bitrarily such that for two distinct parts U and V and distinct
vertices u1, u2 ∈ U and v1, v2 ∈ V the number of edges from u1

or u2 to v1 or v2 is even.

Finally we have the exceptional class containing the digraphs
S(3), P, and P (3). The digraph S(3) denotes the set of points lying
at a rational angle φ on the unit circle, and two points a, b are joined
by and arc a→ b iff the angle from a to b is in the range (0, 2π/3).
Equivalently we can produce the digraph similarly to S(2), starting
from a partition of Q into three dense sets Q1, Q2, Q3. We identify
the two possible orientations of an edge with +1 and −1, and 0
represents the absence of an edge. We then cyclically shift the edges
between Qi and Qj by j − i (the indices are integers modulo 3).

Fig. 3. The forbidden induced subgraphs of P (3).

The countable homogeneous partial order P is the Fräıssé-limit
of the class of all finite partial orders P. We call a subset P of P



19

dense, if for any pair a, b in P with a→ b we have an element c ∈ P
such that a→ c→ b. P (3) is the analog of S(3), based on P instead
of Q. Let P0, P1, P2 be three dense subsets of P. The structure P (3)
is defined on P0 ] P1 ] P2. The relation → on P (3) restricted to Pi
is defined as in P. Again we identify the complete 2-types between
elements of distinct parts with {−1, 0,+1}, and cyclically shift these
types between Pi and Pj by j − i. Cherlin specified the age of P (3)
by the forbidden induced substructures shown in Figure 3 (their
description can be extracted from the proof of Proposition 24 on
page 126f in [14]).

Since S(2) naturally embeds into Q̂, and Q̂ homomorphically
maps to S(2), these problems have the same constraint satisfaction
problem. For the hardness of CSP(S(3)) we can use the same gad-
get as above to simulate Betweenness on a suitable subset of ver-
tices. Similarly to Proposition 4 we can prove the NP-hardness of
CSP(P (3)). Before we present a hardness proof, we reformulate the
computational problem CSP(P (3)); in this form we call the problem
switching-trigraph-transitivity.

SWITCHING-TRIGRAPH-TRANSITIVITY
INSTANCE: A digraph D = (V ;E).
QUESTION: Can we partition the vertices V into three parts P1,
P2, P3, such that the digraph that arises from D by the following
three operations is transitive?
i) deleting the edges from P1 to P2, P2 to P3, or P3 to P1;
ii) reversing the arcs from P2 to P1, P3 to P2, or P1 to P3;
iiii) adding arcs between unconnected pairs from P2 to P1, P3 to P2,
or P1 to P3.

Proposition 6. CSP(P (3)) is NP-complete.

Proof. As in the proof of Proposition 4 we use Proposition 1 to
observe that CSP(P (3)) is contained in NP, because P (3) is finitely
constrained. Again we prove hardness by reducing Betweenness to
CSP(P (3)), and we construct an instance S of CSP(P (3)) from an
instance (V ;C) of Betweenness in the same way as in the proof of
Proposition 4. Now, we additionally introduce new vertices a, b for
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all pairs of vertices x, y ∈ V , and impose the constraint a < b, x >
b, b > y, y > a, a > x; see Figure 4.

First we show that given a solution to the Betweenness instance
(V ;C), we can construct a homomorphism from S to P (3). Note
that P (3) contains copies of S(2) as subgraphs; fix such a copy C of
S(2). We map the vertex u ∈ S to some vertex f(u) in C. The set
{x ∈ C | f(u) < x} induces the linear order of the rational numbers
in P (3). To construct a solution for S, we map the vertices in V to
this set in the same way as the solution of the Betweenness instance
maps them to the rational line. As in the proof of Proposition 4,
we can map the remaining existentially quantified variables to C in
either of the two ways displayed in Figure 2.

x

b

y

a

Fig. 4. We use this gadget to ensure that the vertices x and y are mapped to comparable
vertices in P (3).

Conversely, if there is a homomorphism f from the constructed
instance S to P (3), we also have a solution to the Betweenness in-
stance (V ;C). Every solution to S maps pairs of distinct vertices
x, y ∈ V to comparable vertices in P (3). To see that, consider the
corresponding subgraph x, y, a, b in S. Since this structure is a for-
bidden induced subgraph of P (3) (see Figure 3 on page 18), any
homomorphism of this structure to P (3) has to map x and y to
comparable vertices in P (3). Hence, the set f(V ) induces in P (3) a
tournament. Because f(u) < x for all x in f(V ), and because [I1, C3]
is a forbidden induced subgraph in P (3), the set f(V ) is linearly or-
dered. We claim for each triple in C either x < y < z or z < y < x.
This can be shown exactly as in the proof of Proposition 4. ut
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Combining all the above results we get that if a countable homo-
geneous digraph is finitely constrained, then its constraint satisfac-
tion problem is NP-complete or tractable.
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25. P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial

Theory, Series B, 48:92–110, 1990.
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