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1 Introduction

In finite combinatorics there are many proofs of the existence of certain
combinatorial structures which do not provide us with any explicit example
of such structures. To give an explicit construction is not only a mathematical
challenge, but often it is the only way to determine the extremal structures
for a particular question.

One of such problems is to give an explicit construction of a two-coloring
of the complete bipartite graphKN,N such that no subgraphKr,r is monochro-
matic for some small r. It is well-known that there exist such colorings for
r = (2 + o(1)) log2 N , but until recently explicit constructions were only
known for r ≈

√
N . In 2004 Barak, Kindler, Shaltiel, Sudakov and Wigder-

son [1] found a polynomial construction of two-colorings of KN,N which leave
no Kr,r monochromatic for r = N ε, where ε can be chosen arbitrarily small.
Their result was a breakthrough not only in the field of Ramsey graphs, but
they also succeeded in constructing extractors and other gadgets needed in
derandomization with much better parameters.

However, their construction is very complicated and uses derandomiza-
tion. Thus it seems reasonable to look for more explicit constructions even
if they have worse parameters. In this paper we give a very explicit con-
struction of a three-coloring of KN,N in which no Kr,r is monochromatic for
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r = N 1/2−ε, and some constant ε > 0. We present some evidence why a
similar construction should give a two-coloring with r of the same form. Our
result is an application of the recently proved bounds on the number of sums
and products in finite fields of Bourgain, Katz and Tao [2]. That result is
also used in the main building block of the construction of Barak et al., but
it is used in a different way.

Our construction possess a symmetry property which implies a slightly
stronger result than stated above. We construct a three-coloring of KN such
that for some ε > 0 independent of N the coloring has the following property.
There are no two subsets of vertices X and Y of size at least N 1/2−ε (disjoint
or not disjoint) such that all edges between X and Y have the same color.

2 The result

Let F be a field. Let S ⊆ F n. We define a coloring γ of the complete bipartite
graph S ′ × S ′′, where S ′ = {1} × S and S ′′ = {2} × S by the formula

γ((1, u), (2, v)) = 〈u, v〉,

where 〈u, v〉 = ∑n
i=1 uivi is the scalar product in F . Thus if N = |S| and

c = |F |, γ is a coloring of KN,N by c colors. In [5] we proved the following
simple proposition only for the two-element field, but the proof is completely
general.

Proposition 1 Suppose every vector space V ⊆ F n of dimension b(n+1)/2c
intersects S in less than r elements, then no complete bipartite subgraph Kr,r

is monochromatic with respect to γ, ie., for no two subsets A ⊆ S1, B ⊆ S2,

|A| = |B| = r the value of γ(a, b) is the same for all a ∈ A and b ∈ B.

We shall consider the following construction of S. Let p > 2 be a prime
and n = 2q. Put

Sp,q = {(x, x2); x ∈ Fpq}.
In order to define the coloring γp,q, think of Fpq as a q-dimensional vector
space over Fp. Thus Sp,q ⊆ F

n
p and we can define γp,q using the scalar product

in Fp. Thus γp,q is a coloring of KN,N , N = pq, by p colors.
Our main result is the following theorem.
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Theorem 2 For every prime p > 2 there exists ε > 0 such that for every
sufficiently large prime q, the coloring γp,q of KN,N has no monochromatic

subgraph Kr,r for r > N 1/2−ε.

Let the field Fp be fixed for the proof of this theorem. The following is a
finite field version of Theorem 1 of Elekes, Nathanson and Ruzsa [3] originally
proved for the real numbers and every strictly convex function in place of x2.

Lemma 3 For every α > 0 there exist ε0, ε1 > 0 such that for every suf-
ficiently large prime q, every subset S ⊆ Sp,q and every set T ⊆ F

2q
p , if

pαq ≤ |T | ≤ p(2−α)q then

|S + T | ≥ ε0|S| · |T |1/2+ε1 .

We shall first prove the theorem using this lemma. Let V be a vector
subspace of F

2q
p of dimension q + 1. Put S = Sp,q ∩ V and T = S + S.

Then |T | ≥
(

|S|+1
2

)

, since the pair (x + y, x2 + y2) uniquely determines the
set {x, y}. We can apply the previous lemma to T , since T ⊆ V , hence
|T | ≤ pq+1. According to the lemma we thus have

|S + S + S| ≥ |S| ·
(|S|+ 1

2

)1/2+ε1

≥ |S|2+ε1/2.

Hence the dimension of the vector space spanned by S is at least logp(|S|2+ε1/2).
This must be at most the dimension of V , hence

logp(|S|2+ε1/2) ≤ q + 1,

from which we get

|S| ≤
(

2pq+1
)

1

2+ε1 ≤ p( 1

2
−ε)q

for some ε > 0.

To prove Lemma 3 we shall use the following an estimate on the number
of incidences of points and lines in a finite plane proved by Bourgain, Katz
and Tao in [2] as Theorem 6.2.

Theorem 4 Let 0 < α < 2, 0 < β < α/2. Then there exist constants ε2 > 0
and C such that for every finite field F , set of points P and set of lines L in
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the projective plane over F , if |P |, |L| ≤ N = |F |α and F does not contain a
subfield of size bigger than |F |β, then

IP,L ≤ CN 3/2−ε2 ,

where IP,L = |{(p, l) ∈ P × L; p ∈ l}| denotes the number of incidences.

In [2] the theorem is proven only for prime fields and a stronger statement
which implies the theorem above is stated without a proof. However it is easy
to verify the stronger statement by inspecting the proof in [2].

We shall need an estimate for the case when the number of lines and the
number of points is different.

Corollary 5 Let F, P, L be as above and 2β < α′ < α. If |F |α′

< |L| ≤ |P |,
then

IP,L ≤ C ′|P | · |L| 12−ε3 ,
where ε3 > 0 and C ′ depend only on α, α′ and β.

Proof. Let P ′ ⊆ P be a random subset of P of size |L|. Then the expected
value of the number of incidences IP ′,L is IP,L|L|/|P |. Thus there exists P ′

such that IP ′,L ≥ IP,L|P ′|/|P | = IP,L|L|/|P |. Applying the theorem to P ′

and L, we get
IP,L|L|/|P | ≤ IP ′,L ≤ C ′|L|3/2−ε3 ,

for some ε3 > 0 and C ′, whence we get the statement of the corollary.

Now we shall prove Lemma 3. Let S ⊆ Sp,q and T ⊆ F
2q
p be given. Put

Q = {Sp,q + t; t ∈ T}. We think of Sp,q as a parabola in the afine plane and
Q as the set of all shifts of this parabola by vectors t ∈ T . Put P = S + T .
So P is a set of points on parabolas Q. We want to use the estimate on the
number of incidences in Corollary 5. The corollary speaks only about sets of
lines, but we can show that a suitable one-to-one transformation maps our
parabolas on lines. This mapping is defined by (u, v) 7→ (u, v − u2), and it
maps the parabola Sp,q + (a, b) onto the line

{(x+ a, 2ax− a2 + b); x ∈ Fpq}.
The number of incidences is |S| · |T |, since we have |T | parabolas in Q,

and on each parabola Q + t we have |S| points, namely the points S + t.
Thus by Corollary 5, we have

|S| · |T | = IP,Q ≤ C ′|P | · |Q| 12−ε3 = C ′|S + T | · |T | 12−ε3 ,
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whence Lemma 3 follows.

Proposition 6 For p > 2 prime and q arbitrary positive integer, KN,N col-

ored by γp,q contains a monochromatic subgraph Kr,r for r = ε4N
1/4, for some

ε4 > 0.

Proof. Represent the elements of Fpq as polynomials modulo an irreducible
polynomial of degree q over Fp. Let A be the set of all polynomials of degree
less than q/4 and let B be the set of all polynomials that have nonzero coef-
ficients only at terms of degree n for q/4 ≤ n < q/2. Then the polynomials
that represent the squares of elements of A are the polynomials of degree less
than q/2 and the polynomials that represent the squares of elements of B
are the polynomials that have nonzero coefficients at terms of degree n for
q/2 ≤ n < q. Hence the scalar product of every pair a ∈ A and b ∈ B is
zero.

We do not know other monochromatic subgraphs Kr,r.

3 Conclusions

The most interesting open problem related to our result is whether we can
get a two-coloring in such a way. If p = 2, then we cannot use Sp,q, because x2

is a linear function in fields of characteristic 2, thus Sp,q is a linear subspace
and γ2,q is 0 for all edges. In [5] we proposed to use

{(x, x−1); x ∈ F2q}, and {(x, x3); x ∈ F2q}.

We conjecture that the same statement as our Theorem 2 holds for p = 2 and
the sets above. One could prove it in the same way if we had a generalization
of the bound on the number of incidences of points and lines (Theorem 4)
to hyperbolas and cubics. The corresponding result has been proven in the
Euclidean plane for a much broader class of curves. Let us note that the
graphs defined using the curve y = x3 contain a monochromatic Kr,r for
r = ε5N

1/6, for some ε5 > 0 (the proof is the same as in Proposition 6). For
y = x−1 we do not have any such result and we conjecture that they do not
contain KNε,Nε for any ε > 0.
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The bound on the number of incidences in a finite plane is an application
of the lower bound on the number of sums and products

|A+ A| · |A · A| ≥ δ|A|2+ε

for some constants δ, ε > 0, provided that A is not too small or too big in the
finite field. (The first restriction has been removed in a paper of Konyagin
[4] at least for prime fields.) This does not seem to be sufficient for proving
the bound on the number of incidences with hyperbolas and cubics. For
hyperbolas we rather need a bound

|A+ A| · |{x−1 + y−1; x, y ∈ A}| ≥ δ|A|2+ε,

and similarly for cubics.
We only note that for primes p > 2 one can prove the corresponding

statement for x2.

Proposition 7 Let p > 2 be a prime, let 0 < β < α < 1. Then there exists
an δ, ε > 0 such that for every sufficiently large prime q and every A ⊆ Fpq ,

if pβq ≤ |A| ≤ pαq, then

|A+ A| · |A2 + A2| ≥ δ|A|2+ε.

where A2 + A2 = {x2 + y2; x, y ∈ A}.

Proof. We shall apply Corollary 3 in the same manner as we did in the
proof of Theorem 2. Let P = (A + A) × (A2 + A2) be a set of points. Let
Q = {(x + a, x2 + b2); a, b ∈ A} be a set of parabolas. If |P | is close to
p2q, then we are done. Otherwise we can apply Corollary 3. Notice that
1
2
|A|2 ≤ |Q| ≤ |A|2, and the number of incidences between P and Q is
|A| · |Q|, since every parabola meets P in |A| points. Thus

1

2
|A|3 ≤ IP,Q ≤ C ′|P | · |Q|1/2−ε3 ≤ C ′|A+ A| · |A2 + A2| · (|A|2)1/2−ε3 ,

and we get the statement of the proposition.

Acknowledgment. I would like to thank to Jǐŕı Matoušek for explaining
me a proof of Elekes and to Jǐŕı Sgall for suggesting an idea for Proposition 6.
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