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Abstract

We prove that dual graphs and relational structures are connected.

Moreover, these exponential structures have a linear diameter, which

we determine up to a constant.

1 Introduction

How do local properties of graphs influence their global properties? The
local-global phenomena were studied extensively and, in general, this is an
area of negative results. See the seminal work of Erdős on high chromatic
sparse graphs [1] (extended in this setting by [8]). However there are positive
aspects of this local-global paradigm. For example for proper minor closed
classes we can characterize optimal instances (see [4]) and for oriented graphs
(and more generally for relational structures) one obtains a rich spectrum of
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global properties which are defined locally. The present paper is devoted to
one such area — homomorphism dualities.

Our simplest model are oriented graphs. Recall that for oriented graphs
G = (V,E) and G′ = (V ′, E ′), a homomorphism f : G→ G′ is any mapping
f : V → V ′ satisfying (x, y) ∈ E ⇒ (f(x), f(y)) ∈ E ′. (See [2] for an
introduction to graphs and their homomorphisms.) Let G → G′ denote the
existence of a homomorphism. A homomorphism duality (see [6], [2]) is any
statement of the following type:

for every graph G holds: F 6→ G iff G→ H (1)

(thus G is H-colorable iff G is F -free). The pair (F,H) is called a dual pair
and H is the dual of F . This will be denoted by H = DF . (The dual is
uniquely determined up to homomorphism equivalence.) The following is a
consequence of the main result of [6]:

Theorem 1. The dual DF exists iff F is homomorphically equivalent to an
oriented tree.

The original construction of duals was an indirect one, however recently [5]
introduced a explicit and easy construction of dual DF . Besides having the
useful property (1), this construction (of size 2n logn for a tree with n ver-
tices) is an interesting combinatorial structure in itself. However, due to its
exponential size, not much is known about its properties. The construction
is reviewed and analyzed in Section 2 where we prove the following:

Theorem 2. After removing isolated vertices, DF is a connected graph of
diameter at most |V (F )|+ 3 for every tree F .

Although we can prove indirectly that the core of the dual is always a
connected graph (see Theorem 5), for Theorem 2 we need a careful analysis
of the explicit construction of DF . For a fixed tree F , the vertices of DF

are (neighborly) mappings V (F ) → V (F ) with arcs defined by means of
“switching”. This result should be compared with a connectivity and diam-
eter result for trees and their rotations (see [9]). Proof of Theorem 2 is given
in Section 2.

It is important that the duality theorem holds for all finite relational
structures. Let ∆ = (δi; i ∈ I) be a finite sequence of positive integers. A
relational structure S of type ∆ (shortly ∆-structure) is a pair (X, (Ri; i ∈ I))
when Ri ⊆ Xδi for all i ∈ I. Its base set X is sometimes denoted by S.
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We use Ri(S) instead of Ri when necessary and call its elements edges. A
homomorphism S → S ′ of ∆-structures is defined as mapping which preserves
the relations Ri for all i ∈ I. We have

Theorem 3. ∆-structure admits a dual iff it is homomorphically equivalent
to a ∆-tree.

(See [6] and Section 3 for definition of ∆-tree). We prove the connectivity
even in this case:

Theorem 4. For any ∆-tree F , its dual DF is connected after removing
isolated vertices.

By isolated vertices we mean vertices which do not belong to any edge
or those that belong only to edges in Ri(A) with δi = 1. This result will be
proved in Section 3. Section 4 contains some remarks and open problems.

2 Oriented graphs

Let T be an arbitrary oriented tree. Although we can construct many dual
graphs (graphs DT such that T 6→ G ⇔ G → DT holds for every G), any
two duals D and D′ are homomorphically equivalent, meaning that we have
D → D′ and D′ → D. Thus, up to an isomorphism, only one of the duals is
a core (it has no proper retracts). This is why we often speak about the dual.
In this section, DT will denote a dual obtained by construction described in
Definition 1, whereas Core(DT ) will be the dual that is a core. As a warm-up
we prove that Core(DT ) is a connected graph.

Theorem 5. Core(DT ) is a connected graph.

Proof. For contradiction, suppose that there exist two graphs, D1 and D2,
such that Core(DT ) = D1 + D2 (there is no edge uv for u ∈ V (D1) and
v ∈ V (D2)). Each of the two graphs contains at least one edge, other-
wise Core(DT ) would not be a core. Choose arbitrarily u1u2 ∈ E(D1) and
v1v2 ∈ E(D2) and pick some odd k such that k > |V (T )|. Next, build a
new graph D′ from Core(DT ) by inserting new vertices w1, . . . , wk and edges
wjwj−1 and wjwj+1 for all even j as well as u1w1 and v1wk. This D′, con-
trary to Core(DT ), contains a path with alternating directions of edges with
endpoints in D1 and D2. Clearly D1 6→ D2 and D2 6→ D1 (as D1 + D2 is
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a core). It follows that D′ 6→ D1 + D2. On the other hand T 6→ D′ as
if φ : T → D′ is a homomorphism, then φ[V (T )] ∩ V (Di) = ∅ for some
i = 1, 2, because T is connected and the length of the path which con-
nects D1 and D2 is greater than |V (T )|. Without loss of generality i = 2.
The subgraph induced by vertices φ[V (T )] consists of some vertices of D1

and some vertices that belong to the path between D1 and D2. Formally,
φ[V (T )] ⊆ (V (D1) ∪ {w1, . . . , wk}). However, the subgraph induced by ver-
tices V (D1) ∪ {w1, . . . , wk} is homomorphically equivalent to D1: consider
homomorphism ψ such that ψ ¹ V (D1) is the identity, ψ(wj) = u1 for j even
and ψ(wj) = u2 for j odd. Then ψφ is a homomorphism mapping T to D1,
which is a contradiction with T 6→ D1 +D2. Thus we indeed have T 6→ D′

which together with D′ 6→ D1 +D2 contradicts the assumption that D1 +D2

is a dual of T .

As a corollary of Theorem 8 we obtain that Core(DT ) has diameter at
most n+3 for T with n vertices. Let us remark that [3] contains example of
trees T for which Core(DT ) has diameter at least

⌊
n−1

2

⌋
.

In [5], Nešetřil and Tardif introduced the following explicit construction
of DT :

Definition 1. DT is the graph defined the following way: V (DT ) = {f :
V (T ) → V (T ); for all u ∈ V (T ) we have (u, f(u)) ∈ E(T ) or (f(u), u) ∈
E(T )},

E(DT ) = {(f, g); for all (u, v) ∈ E(T ) we have f(u) 6= v or g(v) 6= u}.

Theorem 6. DT defined above is a dual of T .

We have shown (Theorem 5) that Core(DT ) is a connected graph, i.e. for
every u, v ∈ V (Core(DT )) there exists an oriented path starting with u and
finishing with v. But the above proof of Theorem 5 does not construct such
a path and does not provide an information about its length. In particular,
we would like to estimate the diameter of DT . We will prove a stronger state-
ment: not only the core of DT is connected, but DT itself is connected after
removing isolated vertices. Moreover, its diameter is linear in the number
of vertices of T , which is perhaps surprising considering that the number of
vertices of DT can be exponential in |V (T )| (see [7]).

To prove this, we first characterize the isolated vertices of DT .

Definition 2. Vertex u ∈ V (T ) is a source if its indegree is zero. It is a
problematic source for f ∈ V (DT ) if for all its neighbors w we have f(w) = u.
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Similarly, u is a sink if its outdegree is zero and it is a problematic sink for
f ∈ V (DT ) if f(w) = u for all vertices w adjacent to u.

The proof of the next lemma follows directly from Definition 1.

Lemma 7 (Characterization of isolated vertices of dual). Outdegree of f in
DT is zero if and only if there exists a problematic sink for f in T . Indegree
of f in DT is zero if and only if there exists a problematic source for f in T .

Theorem 8. Let T be oriented tree with n vertices and DT its dual con-
structed in Definition 1. Let f and g be two vertices of DT which are not
isolated. Then there exists an oriented path between f and g of length at
most n+ 3.

Proof. First, let f and g be vertices with outdegree greater than zero. Let
Z be the set of sources of T and let S be its sinks. Define a mapping f ∗ :
V (T )→ V (T ) as follows: if w ∈ V (T ) is a source, then we put f ∗(w) = f(w),
and if is not a source, then we pick (an arbitrary) u such that uw is an edge
and we put f ∗(w) = u. The mapping f ∗ has the following property: for every
edge (f, h) there exists an edge (f ∗, h). We will define g∗ analogously, only
now we require also that g∗ coincide with f ∗ on the set V (T ) \Z. The set of
the sources for which f ∗ and g∗ differ will be denoted by Y .

Claim 9. There exists a path of length at most 2|Y | which connects f ∗ and g∗.

Proof. The proof of Claim proceeds by induction on |Y |.
If |Y | = 0, then we have f ∗ = g∗ and the statement is true.
Let |Y | = 1. We have Y = {y}, f ∗(y) = z1 and g∗(y) = z2 6= z1. We

want to find some h such that (f ∗, h) and (g∗, h) are edges. Choose hf such
that (f, hf ) is an edge and define h(x) = hf (x) for all x ∈ S \ {z1, z2}. For
every u that is not a sink, pick an arbitrary w such that uw is an edge and
put h(u) = w. Now we are left with at most two vertices for which h is not
defined yet, namely z1 and z2 (if one or both of them are sinks - otherwise
h is already defined). If z1 is a sink, then (since the outdegree of f ∗ is not
zero, see Lemma 7), it has a neighbor u 6= y such that f ∗(u) 6= z1 (thus
also g∗(u) 6= z1) and put h(z1) = u. Similarly, if z2 is a sink, then it has a
neighbor v 6= y such that g∗(v) 6= z2 and we may define h(z2) = v.

Finally, let |Y | = m > 1. Let V ∗ be the set of all vertices f with nonzero
outdegree such that the corresponding mapping goes against the directions
of edges whenever possible, i.e. we have f(w) = z for an edge wz only if w is
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a source. Suppose that for each pair f ∗, g∗ ∈ V ∗ of mappings that differ on
m−1 sources and coincide on V (T )\Z there exists a path of length 2(m−1)
connecting f ∗ and g∗ . Let f ∗, g∗ ∈ V ∗ be mappings that differ on the set
Y ⊆ Z such that |Y | = m (and again, they coincide on the rest of vertices).
Choose an arbitrary u ∈ Y .

(i) If we can redefine g∗ on u according to f ∗ and no problematic sink
arise in this process, then we do it. This way we get a mapping g∗ such
that g∗(u) = f ∗(u), g∗(v) = g∗(v) for v ∈ V (DT ) \ {u}.

(ii) Suppose (i) is not possible: by redefining g∗ on the vertex u we
would get a problematic sink v1. But this sink is not problematic for
f ∗. So v1 has a neighbor w1 6= u which is a source and for which
g∗(w1) = v1 but f ∗(w1) = v2 6= v1 and w1 also belongs to Y . If we can
redefine g∗ on w1 without obtaining problematic sinks, then we do it.
If not, find w2 ∈ Y in a similar manner. The sequence {wi, i ∈ N} is
not infinite, since vertices never repeat in it. Thus there exists at least
one vertex y ∈ Y (the last element of sequence {wi, i ∈ N}) such that
we can redefine g∗(y) according to f ∗(y) without creating problematic
sinks; again, we call this redefined mapping g∗.

Now we have g∗ which differs from f ∗ on the set of m − 1 sources. By
induction hypothesis there exists a path at most 2(m−1) long which connects
f ∗ and g∗. Meanwhile, g∗ differs from g∗ only on one vertex in Z and thus
these two vertices are connected by a path of length at most 2. Consequently,
there exists a path of length at most 2m = 2|Y | between f ∗ and g∗. This
finishes the proof of the Claim.

Now we need to compare |Y | with the number of vertices of T . Let
Y = {y1, . . . , ym}. Let R be the subgraph of T induced by the set {y1, f

∗(y1),
g∗(y1), y2, f

∗(y2), g
∗(y2), . . . , ym, f

∗(ym), g
∗(ym)}. This is either a tree or

a forest, in any case we have |V (R)| ≥ |E(R)| + 1. Each of the vertices
y1, . . . , ym has degree at least 2 (there are edges from yi to f

∗(yi) and g
∗(yi))

and no two of these vertices share an edge (all of them are sources), so
|E(R)| ≥ 2m. We get:

n = |V (T )| ≥ |V (R)| ≥ |E(R)|+ 1 ≥ 2m+ 1

So m ≤ (n − 1)/2; and thus there is a path connecting f ∗ and g∗ of length
at most 2m ≤ n − 1. The distance of f and f ∗ is at most 2, as well as the
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distance of g and g∗. Thus any two vertices f and g with outdegree greater
than zero are at most n− 1 + 4 = n+ 3 apart.

If f ′ is a sink (but is not isolated), then we consider its neighbor f and
find the corresponding f ∗. The distance of f ′ and f ∗ is 1, so in this case the
distance of f ′ from other vertices is even less than n+ 3. Consequently, any
two non-isolated vertices of DT are at most n+ 3 apart.

This bound can be improved to n + 2. We do not include the proof
because it is merely a tedious case analysis based on the ideas presented in
the above proof.

3 Relational structures

Let A be a relational structure of type ∆ = (δi; i ∈ I). Its incidence graph
Inc(A) is the bipartite graph with parts A and Block(A) = {(i, (a1, . . . , aδi

));
i ∈ I, (a1, . . . , aδi

) ∈ Ri(A)}. The edges are all pairs [a, (i, (a1, . . . , aδi
))] such

that a ∈ (a1, . . . , aδi
) (i.e. there exists an index k such that a = ak). A is

called a ∆-tree when Inc(A) is a tree.
As we mentioned in Section 1, A admits a dual iff it is a ∆-tree. A

simple construction of duals for relational structures similar to the one in
Definition 1 appeared in [7]:

Definition 3. Let A be a ∆-tree. Let DA be relational structure with the
base set DA = {f : A→ Block(A); [a, f(a)] ∈ E(Inc(A)) for all a ∈ A}. The
δi-tuple (f1, . . . , fδi

) belongs to Ri(DA) if and only if for every (x1, . . . , xδi
) ∈

Ri(A) there exists j ∈ {1, . . . , δi} such that fj(xj) 6= (i, (x1, . . . , xδi
)).

Theorem 10. [7] Let A be a ∆-tree. The structure DA defined above is a
dual of A.

Analogously as in Theorem 5 we can prove easily that the core of DA is
a connected ∆-structure. But again we shall prove that even the structure
DA is connected after deleting all isolated vertices.

Throughout this section, we will use the following notation. Let Ã be
∆-tree, D̃A its dual and let D̃A = {f̃1, . . . , f̃j}. A will denote the ∆-tree
obtained by inserting a new edge b ∈ Ri′(A) which has a common vertex bk
with some a ∈ Ri(Ã) (if bk belongs to more edges, select one of them and
call it a). Let DA be the dual of A. It is not hard to see that DA has vertices
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{f1, . . . , fj, f
′
1, . . . , f

′
j}, such that the mappings ft and f

′
t for t = 1, . . . , j are

both derived from f̃t and they differ only on the vertex bk. More precisely, ft
and f ′t coincide with f̃t on vertices of Ã, they are defined in the only possible
way on vertices of b different from bk (that is, ft(u) = f ′t(u) = (i′, b) for u ∈ b,
u 6= bk), and ft(bk) = (i, a), while f ′t(bk) = (i′, b). Notice that the elements
f ′1, . . . , f

′
j are not necessarily distinct.

Also, cl will denote the l-th vertex of the edge c and R(A) will be the set
of all edges of the ∆-system A, i.e. R(A) =

⋃
j∈I Rj(A).

The next lemma reveals a close relationship between DA and D̃A: if we
delete the vertices f ′1, . . . , f

′
j in DA and all edges containing them, we get

exactly a copy of D̃A. Proof follows immediately from Definition 3.

Lemma 11. Let i ∈ I. (f̃1, . . . , f̃δi
) is an edge of D̃A if and only if (f1, . . . , fδi

)
is an edge of DA.

Sinks and sources together with the sets of their neighbors played a crucial
role in characterizing the isolated vertices of duals of graphs. The classes of
the equivalence defined below play similar role in characterizing the isolated
vertices of duals of relational structures.

Definition 4. For every i ∈ I and k ∈ {1, . . . , δi} we will define equivalence
≈(i,k) on Ri(A): a ≈(i,k) b if there exists an integer m ≥ 1 and a sequence
of edges a = c1, c2m, . . . , cm = b with c1, . . . , cm ∈ Ri(A) which satisfies the
following: for every j = 1, . . . ,m − 1 there is an index lj 6= k such that the
edges cj and cj+1 share a vertex v, and v occupies the lj-th position in both
edges (that is, cjlj = cj+1

lj
).

The relation ≈(i,k) is clearly an equivalence. [x]≈(i,k)
will denote the class

of the equivalence ≈(i,k) containing the edge x.

Thus if two edges of a tree A share a vertex and they belong to the same
equivalence class, then the shared vertex occupies the same position in both
edges and moreover this position is different from k.

Theorem 12 (Characterization of isolated vertices of duals). Let f be a
vertex of DA, i ∈ I and k ∈ {1, . . . , δi}. f 6= fk holds for every (f1, . . . , fδi

) ∈
Ri(DA) if and only if there exists an edge x ∈ Ri(A) satisfying the following
two conditions:

(1) If two edges y and z share a vertex v and y is an element of [x]≈(i,k)

while z is not, then v is the k-th coordinate of y.)
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(2) f(ak) = (i, (a1, . . . , aδi
)) for every (a1, . . . , aδi

) ∈ [x]≈(i,k)
.

We will call the class [x]≈(i,k)
containing such edge x problematic class for

f and k.

Proof. First suppose that there exists an edge x ∈ Ri(A) satisfying both
conditions. Suppose for contradiction that f = fk for some (f1, . . . , fδi

) ∈
Ri(DA). By definition of edges of DA there exists some vertex xj in the edge
x such that fj(xj) = (i′, y) 6= (i, x) for some i′ ∈ I and y ∈ Ri′(A). y shares a
vertex with x and if y 6∈ [x]≈(i,k)

, then by (1) this vertex occupies k-th position
in x. Thus fk(xk) = (i′, y) 6= (i, x), which is contradicts the condition (2). So
we have y ∈ [x]≈(i,k)

. We will denote x1 = x, x2 = y and continue constructing
the sequence {xm;m ∈ N}. Suppose xm ∈ [x]≈(i,k)

is already known for some
m. Find j ∈ {1, . . . , δi} such that fj(x

m
j ) = (i′, z) 6= (i, xm) (such j exists

for all xm ∈ Ri(A) because (f1, . . . , fδi
) is an element of Ri(DA)) and denote

xm+1 = z. Since xm ∈ [x]≈(i,k)
and the two conditions hold, we again have

i = i′ and z ∈ [x]≈(i,k)
. This way we obtain an infinite sequence of edges

from [x]≈(i,k)
such that every two consecutive edges are different and have a

vertex in common. Can some elements repeat in this sequence? Suppose that
xm = xm+l for somem, l ∈ N. If this is true for more than one pairm,l, choose
the pair with the smallest value of l. Two subsequent edges are different, so
l ≥ 2. For every t, xt

jt
will denote the common vertex of xt and xt+1. If l ≥ 3,

then (i, xm), xm
jm
, (i, xm+1), xm+1

jm+1
, . . . , (i, xm+l−1), xm+l−1

jm+l−1
, (i, xm+l) = (i, xm) is

a sequence of vertices of Inc(A) joined by edges such that no two of them are
the same except for the first and the last. In other words, it is a cycle, which
contradicts the definition of ∆-tree. The only remaining case is l = 2. Since
xm+1 follows after xm in our sequence, we have fjm

(xm
jm
) = (i, xm+1). Also

xm+2 = xm follows after xm+1, so fjm+1(x
m+1
jm+1

) = (i, xm). But since both xm

and xm+1 are elements of [x]≈(i,k)
and thus jm = jm+1, we get (i, xm+1) =

fjm
(xm

jm
) = fjm+1(x

m+1
jm+1

) = (i, xm), which contradicts our assumption. So
there is no such l and the elements of our sequence never repeat. We obtained
an infinite branch in a finite ∆-system, which is a contradiction.

To prove the other implication, suppose that the right side does not hold;
for every equivalence class [x]≈(i,k)

either

• exists a ∈ [x]≈(i,k)
such that the common vertex of a and the rest of A

is j-th in a for j 6= k

or
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• exists a ∈ [x]≈(i,k)
such that f(ak) 6= (i, a).

We will define mappings f1, . . . , fk−1, fk+1, . . . , fδi
such that (f1, . . . , fδi

) is an
edge of DA for fk = f . First we define fl(cl) with l = 1, . . . , δi for all edges
c ∈ Ri(A): for every class [x]≈(i,k)

of the equivalence ≈(i,k) we construct set S
of edges c such that fl(cl) is already known for every l. We use the following
algorithm:

(1) If the first conditions holds (there exists a ∈ [x]≈(i,k)
such that for

some j 6= k aj belongs to some edge y ∈ Ri′(A) and y 6∈ [x]≈(i,k)
), we

put fj(aj) = (i′, y). We can always do this. It would be impossible only
if fj(aj) was already defined while using the algorithm for some edge
z in a different class of equivalence ≈(i,k). But this algorithm defines
ft(as) only for t = s. Therefore if fj is defined for some vertex zl = aj,
then l = j and z ∈ Ri(A) and thus z is in the same equivalence class
as a. Next put fl(al) = (i, a) for all l = 1, . . . , δi such that fl(al) is not
defined yet and let S = {a}.

If the second condition holds, the situation is even simpler: we put
fl(al) = (i, a) for l 6= k and again S = {a}.

(2) If there is some edge b ∈ [x]≈(i,k)
\ S which has a common vertex

with some edge in S, then for all l such that fl(bl) is undefined put
fl(bl) = (i, b) and add b to S. Repeat this step if possible.

We claim that after this algorithm has finished, we have [x]≈(i,k)
= S. Suppose

contrary: there is some y ∈ [x]≈(i,k)
which does not belong to S. Take the

shortest sequence a = c0, c1, . . . , cm = y of edges from [x]≈(i,k)
such that each

of them shares a vertex with its successor. Let p ∈ {1, . . . ,m} be the smallest
index such that cp 6∈ S. cp shares a vertex cpjp−1

with the edge cp−1 ∈ S, so
we can define fl(c

p
l ) = (i, cp) for l 6= jp−1 and add cp to S. Thus indeed

[x]≈(i,k)
= S.

Also for every y ∈ [x]≈(i,k)
there exists j such that fj(yj) 6= (i, y). Again,

consider y for which this is not true and the shortest sequence a = c0, c1, . . . ,
cm = y such that ct and ct+1 share vertex ctjt

. For t = 0, . . . ,m − 1 we have

jt 6= jt+1 (the sequence is shortest possible) and thus ft(c
t
jt
) = ft(c

t+1
jt

) =
(i, ct) holds for every t, particularly for t+ 1 = m, which is a contradiction.

After we use the algorithm for all classes of equivalence ≈(i,k), we define
the mappings arbitrarily on the rest of the vertices. The edges that are not
in Ri(A) will not prevent the existence of the edge (f1, . . . , fδi

) and all edges
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in Ri(A) satisfy the condition for the existence of such edge. Thus we have
(f1, . . . , fδi

) ∈ Ri(DA).

Corollary 13. Let g be a vertex of DA. If g is the k-th coordinate of some
edge (g1, . . . , gδi

) ∈ Ri(DA) but g̃ is isolated in D̃A, then there exists single

problematic class [x]≈(i,k)
for g̃ and k in D̃A (i.e. a class satisfying the con-

ditions (1) and (2) from Theorem 12), and this class is not problematic any
more (for g and k) after inserting the edge b.

DA can contain vertices that do not belong to any edge (isolated vertices)
and also vertices that are only in unary relations. To simplify notation, we
will extend the definition of isolated vertex so that it includes also the latter
kind of vertices: from now on, a vertex u will be isolated if and only if for
every i ∈ I with δi > 1 and for every a ∈ Ri(A) we have u 6∈ a. We will prove
that after removing such isolated vertices, DA is a connected ∆-system.

The proof of connectedness of duals for graphs (Theorem 8) can be gener-
alized for relational structures. However, we chose a different approach, one
that shows how the dual changes when we modify the original tree, and thus
provides additional insight into its structure. This proof gives an alternative
proof of Theorem 8 (without the bound on diameter).

We will need the following lemma. Recall that if we insert a new edge
b into a ∆-tree Ã with D̃A = {f̃1, . . . , f̃j}, we obtain a new ∆-tree A with
DA = {f1, . . . , fj, f

′
1, . . . , f

′
j}.

Lemma 14. If B is a component of DA which contains more than one vertex,
then some of the vertices f1, . . . , fj belong to B (that is, B does not contain
only f ′1, . . . , f

′
j).

Proof. Suppose that we inserted a new edge b ∈ Ri′(A) and it has a common
vertex aj1 = bj2 with some a ∈ Ri(A). Let δl > 1 and let (f ′1, . . . , f

′
δl
) be

an edge that does not contain any of the vertices f1, . . . , fj. One can easily
see that this can happen only if l 6= i′. If a 6∈ Rl(A), then we can define
g(bj2) = (i, a), g(u) = f ′1(u) for u 6= bj2 . (g, f

′
2, . . . , f

′
δl
) is an edge: if for every

c ∈ Rl(A) there exists index j such that f ′j(cj) 6= (l, c), then such j exists for
every c ∈ Rl(A) for this new set of mappings as well. If a ∈ Rl(A), then we
will choose m 6= j1 (we can do this because δl > 1) and define g(bj2) = (i, a),
g(u) = f ′m(u) for u 6= bj2 . Then (f ′1, . . . , f

′
m−1, g, f

′
m+1, . . . , f

′
δl
) is also an edge

in Rl(DA). Moreover, in both cases g ∈ {f1, . . . , fj}.

11



So called “zigzag paths”, i.e. paths with alternating directions of edges,
play an important role in the proof of Theorem 8. The equivalence classes
defined below are analogues of zigzag paths for relational structures.

Definition 5. For every i we will define an equivalence ∼i on Ri(A): a ∼i b
if there exists a sequence a = c1, c2, . . . , cm = b of edges from Ri(A) such that
for every j there exists index lj ∈ {1, . . . , δi} such that cjlj = cj+1

lj
.

Contrary to the definition of ≈(i,k), now the index lj can be arbitrary. For
every x and k we have [x]≈(i,k)

⊆ [x]∼i
.

Theorem 15. If the ∆-system obtained from D̃A by removing isolated ver-
tices is connected, then DA is also connected after removing isolated vertices.

Proof. By deleting the vertices f ′1, . . . , f
′
j from DA (and all edges incident

with them) we get a copy of D̃A (Lemma 11). By assumption, this copy has
at most one nontrivial connected component (i.e. connected component with
more than one vertex), say C. For contradiction suppose that there exists
some nontrivial component C ′ in DA such that C ′ ∩ C = ∅. Necessarily,
some of the vertices f ′1, . . . , f

′
j belong to C ′. But C ′ also contains some

g ∈ {f1, . . . , fj} (Lemma 14) and since g 6∈ C, g̃ was isolated in D̃A. Thus,
to prove the theorem, it suffices to find a path in Inc(DA) beginning with g

and ending in C for every g ∈ {f1, . . . , fj} such that g̃ is isolated in D̃A but
g = gk for some k, some i ∈ I with δi > 1 and some (g1, . . . , gδi

) ∈ Ri(DA).
This will contradict the existence of C ′.

Let g be such vertex. By Corollary 13 there was only one problematic class
[x]≈(i,k)

for g̃ in Ã and after adding the edge b this class is not problematic
any more. This could happen only if a ∈ [x]≈(i,k)

and thus a ∈ Ri(A). In this
situation we distinguish two cases.

(1) [a]∼i
6= R(Ã). Then there is an edge y ∈ Ri′(Ã) (for i

′ not necessarily
distinct from i) such that y 6∈ [a]∼i

and y has a common vertex with
some edge in [a]∼i

. Let y = c1, c2, . . . , cm = a be the shortest sequence
of edges such that ct and ct+1 have a common vertex for t = 1, . . . ,m−1.
Let G1 denote the edge (g1, . . . , gδi

) and let c2 share its s-th vertex
with y = c1. We will define g∗s : g∗s(c

2
s) = (i′, c1), g∗s(u) = gs(u) for

u ∈ A \ {c2s}. Then G
2 = (g1, . . . , gs−1, g

∗
s , gs+1, . . . , gδi

) is also an edge
in Ri(DA) because:

12



• if y 6∈ Ri(A), then the newly defined mappings coincide with the
original ones on Ri(A) (except for c

2) and nothing changed about
the fact that (∀x ∈ Ri(A))(∃l ∈ {1, . . . , δi})(G

2
l (xl) 6= (i, x)) and

• if y ∈ Ri(A), then the common vertex of y and c2 is s-th in c2 and
s′-th in y, s 6= s′ and again, the condition still holds.

Next we will define edges G3, . . . , Gm: suppose Gt−1 is already known
and the edges ct−1 and ct share their s-th vertex, then Gt

l = Gt−1
l for

l 6= s, Gt
s(c

t
s) = (i, ct−1) and Gt

s(v) = Gt−1
s (v) for v ∈ A \ {cts}. There

can only be one edge in Ri(A) that violates the condition for Gt being
an edge of DA, and that is the edge ct−1. But we have Gt−1

s′ (ct−1
s′ ) =

ct−2 for the vertex ct−1
s′ shared by ct−1 and ct−2. And because s 6= s′

(we selected the shortest path from a to y), we have also Gt
s′(c

t−1
s′ ) =

(i, ct−2). Thus this edge is also harmless, and Gt ∈ Ri(DA). Last,
let us define Gm+1

s (as) = (i, a) (where as is the common vertex of
a and the newly inserted edge b), Gm+1

s = Gm
s for the rest of the

vertices and Gm+1
s′ = Gm

s′ for s 6= s′. Gm+1 is an edge (for reasons
similar to those above), so all δi-tuples G

1, . . . , Gm+1 are elements of
Ri(DA). Every two subsequent edges in this sequence differ only in
one coordinate and since δi > 1, they share at least one vertex. Let
Gm+1 = (h1, . . . , hδi

) and let us define Gm+2 = (h∗1, . . . , h
∗
δi
) by putting

h∗t (v) = ht(v) for v ∈ A\{as} (again, as is the common vertex of a and
b) and h∗t (as) = (i, a) for t = 1, . . . , δi. Obviously Gm+2 ∈ Ri(DA) and
Gm+2 has a common vertex h∗s = hs with G

m+1. Mappings h∗t coincide
with h̃t on all vertices of A except for the new vertices b\{as} and thus,

by Lemma 11, (h̃1, . . . , h̃δi
) is an edge of D̃A. So we found a sequence

that begins with the original edge G1 and ends with some edge Gm+2

belonging to the component C.

(2) [a]∼i
= R(Ã). In this case if b ∈ Ri(A) and as = bs holds for some

s (that is, the common vertex of a and b occupies the same position in
both edges), then Ri(DA) = ∅. This is because A is homomorphically
equivalent to the ∆-system B with B = {b1, . . . , bδi

} and Ri(B) =
R(B) = {b} and clearly Ri(DB) = ∅. If there exists some i′ 6= i
such that δi′ > 1, then for any δi′-tuple f1, . . . , fδ′i ∈ DA we have
(f1, . . . , fδ′i) ∈ Ri′(DA) (since Ri′(A) = ∅, nothing can prevent the
existence of such edge), otherwise all vertices of DA are isolated.

If b ∈ Ri(A), but bs = as′ for s 6= s′ (the common vertex occupies dif-
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ferent positions in the two edges) or b 6∈ Ri(A), then describing Ri(DA)
is also relatively easy. First, let us label the edges of A recursively ac-
cording to their distance from b and let c(x) denote the label given to
the edge x. This way we get c(b) = 0, c(a) = 1, c(y) = 2 for edges that
have a common vertex with a etc. Since A is a ∆-tree, such labeling
exists and is unique. Now define sets Hk ⊆ DA for k = 1, . . . , δi: f
will belong to Hk if and only if it maps every xk that is k-th in some
edge x ∈ Ri(A) \ {b} to the edge with the smallest label of all edges
containing xk. Formally Hk = {f ; (∀x ∈ Ri(A) \ {b})(∀d ∈ R(A))(xk ∈
d ⇒ c(f(xk)) ≤ c(d))}. Plus, we have an additional requirement for
f in Hs: f(bs) = (i, a) (bs is the vertex shared by a and b). We will
prove that Ri(DA) = H1 × H2 × · · · × Hδi

. The inclusion ⊇ is obvi-
ous. Let’s prove the other inclusion. For contradiction suppose that
(g1, . . . , gδi

) ∈ Ri(DA) but gk 6∈ Hk for some k. This means that there
is some x0 ∈ Ri(A) such that gk(x

0
k) = (i, x0) but there exists some

y ∈ Ri(A), x
0
k ∈ y, which is closer to b than x0. Since (g1, . . . , gδi

) is an
edge, there is some l0 6= k for which gl0(x

0
l0
) = (i, x1) for x1 6= x0. Since

A is a ∆-tree, y is the only edge incident to x0 such that c(y) < c(x0),
and therefore c(x1) > c(x0). Analogously there exists l1 6= l0 for which
gl1(x

1
l1
) = (i, x2) for x2 6= x1. Again c(x2) > c(x1). The sequence

x1, x2, . . . can finish only if it reaches b at some point. However, con-
sidering that c(x1) < c(x2) < . . . , this will never happen. The system
A is finite, thus we obtain contradiction. If there exists an i′ 6= i with
δi′ > 1, then again all vertices of DA belong to a single nontrivial con-
nected component (if b ∈ Ri′(A), then (f1, . . . , fδi′

) is an edge whenever
fs(bs) = (i, a), and if b 6∈ Ri′(A), then all δi′-tuples are edges). If there
is no such i′, then the nontrivial connected component contains exactly
the elements of Ri(A), and H1×H2×· · ·×Hδi

has only one connected
component.

Proof of Theorem 4. Any ∆-tree can be built in a finite number of steps
from the empty ∆-tree (i.e. a ∆-tree B with B = ∅) by inserting leaves in
such a way that the ∆-systems obtained in each step are ∆-trees. Thus we
can proceed by induction, with the inductive step being the essence of the
previous theorem.

Distance d(u, v) of vertices u and v in a relational structure is defined
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as the smallest k for which there exists a sequence u = u0, . . . , uk = v such
that ui and ui+1 belong to the same edge. A closer look at the proof of
Theorem 15 gives a polynomial upper bound on diameter of A.

Lemma 16. If A is a ∆-tree with n vertices, then the diameter of DA, after
removing isolated vertices, is at most O(n2).

Proof. In the proof of Theorem 15 we constructed a sequence G1, . . . , Gm+1

such that G1 contains g and Gm+1 contains a vertex in C. The distance of g
from C is therefore at most m+ 1. This holds for every non-isolated g that
is not in C. If f and h are non-isolated vertices of DA, d denotes distance
and diam(C) is the diameter of C, then

d(f, h) ≤ d(f, C) + diam(C) + d(h,C) ≤ diam(C) + 2(m+ 1) (2)

We can strengthen the definition of m and let it be the shortest distance of
a from some y 6∈ [a]∼i

. Then m − 1 is bounded by the number of edges in
[a]∼i

, which cannot exceed the number of all non-unary edges of A (i.e. those
with δi > 1). Hence m + 1 ≤ |

⋃
δi>1Ri(A)| + 2. A ∆-tree with n vertices

can have at most n− 1 non-unary edges. Now, let A be such ∆-tree. As in
the proof of Theorem 4, we can build A by inserting non-unary edges one
by one in at most n− 1 steps so that in each step the resulting ∆-structure
is a ∆-tree, and concluding with adding all unary edges. The presence of
unary edges cannot increase the diameter, so we only need to estimate the
diameter before performing the last step (of equivalently we may without
loss of generality assume that A has no unary edges). Using (2) repeatedly,
we get

diam(DA) ≤ 1 +
n−2∑

k=1

2(k + 2) ≤ 1 + 4(n− 2) + (n− 1)(n− 2) = O(n2). (3)

4 Concluding remarks

The linearity of diameter suggests the existence of fast algorithms for DT .
The above proof of the connectivity of DT yields an algorithm which finds a
path from f to g in at most 2∆(T )n2 steps. Is there a linear algorithm?

Knowing that DT is connected, one might also try to determine its con-
nectivity. Are there always vertices of small degree in DT ? How does the
minimal degree in DT depend on the height of T?
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