The Loebl Conjecture for trees of small diameter
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Abstract

The Loebl Conjecture asks whether any graph on n vertices, at least
half of which have degree 7, contains any tree of order 7 +1 as a subgraph.
We prove the conjecture for trees with diameter < 5.

1 Introduction

The below conjecture, which is also called the (%, %, %)-conjecture, was first
formulated in 1994 in [3].

Conjecture 1 (Loebl Conjecture). Any graph on n vertices of which at least
5 have degree at least 3, contains, as a subgraph, any tree with at most 5 edges.
This conjecture is trivially true for stars. It also holds for dumbbells, i.e. trees
that consist of two stars with adjacent centers, as the set of vertices of large
degree cannot be independent.

Bazgan, Li, and Wozniak [1] have proved the Loebl Conjecture for paths, and
also for trees that are obtained from paths of which one vertex is identified with
the centre of a star.

Zhao claims to have solved the conjecture completely, but a final version of his
proof has not yet appeared.

If true, the Loebl Conjecture implies at once the following conjecture.
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Conjecture 2. The Ramsey number of a tree with n edges is at most 2n.

Haxell, Luczak, and Tingley [2] have solved this latter conjecture for trees of
small maximum degree.

In this paper we prove the Loebl conjecture for trees T = (V, Er) with diameter
max{d(u,v), u,v € Vr} < 5, where d(u,v) is the usual distance between two
vertices in a graph, i.e. the number of edges in the minimal path from u to v.

Theorem 3. Let G be a graph of order n such that at least half of its vertices
have degree at least 3. Then any tree T of order at most 5 + 1 with diameter
at most 5 embeds into G.

2 Proof of Theorem 3

In order to prove Theorem 3, assume that we are given a graph G on n € N

vertices, of which at least 7 have degree at least %, and a tree T' of order

2
< % + 1. Denote the set of the vertices in V(G) that have degree > 2 by
Vi, and set Vo := V(G) \ V1. Observe that we may assume the set V5 to be

independent.

Furthermore, we may assume that exactly [ 3] vertices of G have degree at least
2. Indeed, otherwise we can delete any edge of G, decreasing |V1| by at most
2. Continue in this manner, until we arrive at a subgraph G’ of G which has at
most [ 5]+ 1 vertices of degree > %. Now, if G' has no V1-V; edges, then G'[V1]
in the complete graph, and T embeds without a problem in G', and hence in
G. So assume there is a V1-V> edge e. Then G’ — e has exactly [§] vertices of
degree > Z. If Theorem 3 holds for G, it certainly holds for G.

Let {r1,72} be the central edge of T' (or some edge containing the center, for
the case that the diameter of T is even). Set P := N(ry) \ {r2}, @ := N(r2) \
{r1}, R:=N(P)\{r1}, S:= N(Q)\{r2}. Then Vy = {r; }U{r:}UPUQURUS.
Set P! := N(R) and Q' := N(S).
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Figure 1: The tree T

Let us now refine our partition (V;,V3) of V(G). First, let us divide V; into

the two sets A and B, where A consists of all vertices in ¥} that send less

than 7 edges to the rest of V1, and B = V3 \ A. Then each vertex in A
n

sends at least 1 edges to V2. Next, we divide V5 into sets C and D. Set
C:={veVy:deg(v) >} and D:=V; \C.



Lemma 4. If there is an edge xy € E(G) such that |[N(z)NVi| > 2, [N (y)\D| >
Ty andy € Vi, then T embeds in G.

Proof. Since the union of P U S and R U @ has cardinality < %, one of the
two sets has cardinality < 7, say [RU Q| < 7. Observe that [R| < § — 1, as
otherwise () would be empty, which contradicts {ri,r>} being the central edge
of T.

Now, embed 72 in x and 7; in y, and embed P’ in N(y) \ D. Denote by P the
vertices of P' embedded in C. Then ! := |P'\ P| is the number of vertices of
P' that are embedded in V;.

Next, we want to embed N(P)N R. Since each vertex in P’ \ P has a neighbour
in R, we have [N(P)NR| < |R| -1 < 2 —1—1. So, we can embed N(P)N R
appropriately into V1. Indeed, each vertex of C has at least § neighbours in V1,
of which at most I + 2 were used to embed 71,75 and P’.

Up to now we have embedded at most |R| + 2 vertices in V3. One of these is
x, which by assumption has degree > % in V;. Hence, as [RU Q| < %, we can
embed @ in N(z) NV;. After this, all what is left to embed are leaves of T that
are adjacent to vertices already embedded in V;. This is easy, as the vertices in
V1 have large enough degree. |

Lemma 5. If there is an edge {z,y} such thatx € B, y € V1, and |[N(y)NVy| >
g, then T embeds in G.

Proof. Clearly, each vertex in P' U Q' has degree at least 2. If [P'UQ'| > Z,
then |[E(T)\{rir2}| > %, contradicting the assumption that |E(T)| < §. Hence,
|P'UQ'| < 7. Without loss of generality, assume that |P'| < §. Embed r; in x
and r; in y. Next, embed P’ in N(y) N Vi, then embed the < 7 — |P’| vertices
of Q' in vertices of N(z) NV; not yet used. The rest of the tree are leaves of T,

which are adjacent to vertices embedded in V7, and as such easy to embed. O
Lemma 6. G has an edge {z,y}, so that one of the following holds:

(i) r€ B,ye Vi and [N(y)NV1| >, or

(ii) y € Vo, IN(y) \ D| > & and [N(@) N V3| > 2.

Proof. Suppose otherwise. Now, if B = (), then, since there is no edge satisfy-
ing (ii), we have §7 < |A|} < e(V1,D) < |D|} < 3%, a contradiction. So we
may assume that B # (). Moreover, B is independent, as otherwise it spans an
edge that satifies (i). Hence,

IN(B)NA[ > 7. 1)

|3

As there is no edge for which (i) holds, we have that |N(v) N D| > 32 —|C]| for
all v € N(B) N A. This together with (1) implies that

e(4,D) 2 [AI +IN(B)NAl(g —|C) 2 |47 + T —1C). ()

Now, if there is B-C' edge, then it satisfies (i). Thus, there are no B-C' edges,
and so
e(B,D) > |BJ, 3)



because each b € B sends at least & — |A| = |B| edges to V5.

Observe that the function f(a) = a%+(% —a)? has its only extremum at a = 3.
This is indeed a minimum, which implies that
n 3nn
Al= +|B? > == 4
Al + 132> 204 (B (@

Next, suppose that |C] < §. Then (2), (3), and (4) together imply that

n,n
e(Vi,D )>|A| +5(g —lCh+IBP
3nn  n,n 0
>4 (2 _
> 2R+ G -10) + ()
—gM2_"
=9(3)* - 2(C.
On the other hand, by definition of D,
e (™ iept g™y
e(vi,D) <IDI5 < (5 - 0D =8(5)* - Zic],

a contradiction.

Hence, we may asssume that |C] > §. Since there is no edge satisfying (i), we
have that |[N(v) N D| > % for all v € N(C). So, each vertex of A sends at least
2 edges to D. Together with (3) and (4), this gives

3nn . n _3nn
= < 2 <« =z =z
84+( )? |A| +|B|* <e(W1, )<|D|4 WL
a contradiction. O

Now, Theorem 3 follows directly from Lemmas 4, 5, and 6.
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