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Abstract

Let M, N be two matchings on [2n] (possibly M = N) and for an
integer l ≥ 0 let T (M, l) be the set of those matchings on [2n + 2l]
which can be obtained from M by successively adding l times in all
ways the first edge, and similarly for T (N, l). Let s, t ∈ {cr, ne} where
cr is the statistic of the number of crossings (in a matching) and ne is
the statistic of the number of nestings (possibly s = t). We prove that
if the statistics s and t coincide on the sets of matchings T (M, l) and
T (N, l) for l = 0, 1, they must coincide on these sets for every l ≥ 0;
similar identities hold for the joint statistic of cr and ne. These results
are instances of a general identity in which crossings and nestings are
weighted by elements from an abelian group.

1 Introduction and formulation of the main

result

In this article we investigate distributions of the numbers of crossings and
nestings of two edges in matchings. For example, it is known that for each k
and n there are as many matchings M on {1, 2, . . . , 2n} with k crossings as
those with k nestings. All matchings form an infinite tree T rooted in the
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Figure 1: Matching with 3 crossings and 2 nestings.

empty matching ∅, in which the children of M are the matchings obtained
from M by adding to M in all possible ways new first edge. The problem we
address is this: Given two (not necessarily distinct) matchings M and N on
{1, 2, . . . , 2n}, when is it the case that the numbers of crossings (or nestings,
or crossings versus nestings) have the same distributions on the levels of the
two subtrees of T rooted in M and N . Our main result is Theorem 1.1
that determines when this happens, in fact in a more general setting. Before
formulating it we give definitions and fix notation.

We denote the set {1, 2, 3, . . . } by N, the set N ∪ {0} by N0, and (for
n ∈ N) the set {1, 2, . . . , n} by [n]. The cardinality of a set A is denoted
|A|. By a multiset we understand a “set” in which repetitions of elements are
allowed. This can be modeled by a pair H = (X,m) where X is a set, the
groundset of the multiset H, and the mapping m : X → N determines the
multiplicities of the elements in H. However, we will not need this formalism
and will record multiplicities by repetitions. A matching M on [2n] is a set
partition of [2n] in n two-element blocks which we also call edges. The set of
all matchings on [2n] is denotedM(n); we defineM(0) = {∅}. Two distinct
blocks A and B of M form a crossing (they cross) if minA < minB <
maxA < maxB or minB < minA < maxB < maxA. Similarly, they
form a nesting (they are nested) if minA < minB < maxB < maxA or
minB < minA < maxA < maxB. We draw a diagram of M in which
we put the elements 1, 2, . . . , 2n as points on a line, from left to right, and
connect by a semicircular arc lying above the line the two points of each block.
For two crossing blocks the corresponding arcs intersect and for two nested
blocks one of the arcs covers the other, see Figure 1. By cr(M), respectively
ne(M), we denote the number of crossings, respectively nestings, in M . The
n edges of M ∈M(n) are naturally ordered by their first elements. The first
edge of M is {1, x} and the last edge is the one whose first vertex is the last
one among the n first vertices.

We investigate distribution of the numbers cr(M) and ne(M) on M(n)
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and on the subsets of M(n) defined by prescribing the matching formed by
the last k edges of M . The total number of matchings in M(n) is

|M(n)| = (2n− 1)!! = 1 · 3 · 5 · · · · · (2n− 1).

It is known that the number of matchings on [2n] with no crossing equals the
number of matchings with no nesting and that it is the n-th Catalan number,
see Stanley [9, Problems 6.19o and 6.19ww]:

|{M ∈M(n) : cr(M) = 0}| = |{M ∈M(n) : ne(M) = 0}| = 1

n+ 1

(

2n

n

)

.

The more general result that for each k and n

|{M ∈M(n) : cr(M) = k}| = |{M ∈M(n) : ne(M) = k}|

was derived by M. de Sainte-Catherine in [7]. Even more is true because the
joint statistic is symmetric:

|{M ∈M(n) : cr(M) = k, ne(M) = l}| =
= |{M ∈M(n) : cr(M) = l, ne(M) = k}|

for every k, l ∈ N0 and n ∈ N. A simple proof for this symmetry can be given
by adapting the Touchard-Riordan method ([10], [6]) that encodes matchings
and their numbers of crossings by weighted Dyck paths, see Klazar and Noy
[5]. Here we put these results in a more general framework.

By the tree of matchings T = (M, E, r) we understand the infinite rooted
tree with the vertex set

M =
∞
⋃

n=0

M(n),

which is rooted in the empty matching r = ∅ and in which directed edges
in E are the pairs (M,N) such that M ∈ M(n), N ∈ M(n + 1), and N
arises from M by adding a new first edge, that is, we relabel the vertices of
M as {2, 3, . . . , 2n + 2}\{x} for some x ∈ {2, 3, . . . , 2n + 2} and add to M
the block {1, x}, see Figure 2. Each vertex N ∈ M(n) has 2n + 1 children
and, if n > 0, is a child of a unique vertex M ∈ M(n − 1). A level in a
rooted tree is the set of vertices with the same distance from the root. In T
the levels are the sets M(n). The subtree T (M) of T rooted in M ∈ M(n)
is the rooted subtree on the vertex set N ⊂ M consisting of M and all
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Figure 2: Tree of matchings T .

its descendants, that is, N contains M and all matchings obtained from M
by successively adding new first edge. In other words, T (M) consists of all
N ∈ M in which the last n edges form a matching (order-isomorphic to)
M . Clearly, T (∅) = T . We denote the l-th level of T (M) by T (M, l). For
M ∈ M(n) we have T (M, 0) = {M} and T (M, 1) is the set of children of
M in T . Also, |T (M, l)| = (2n+ 1)(2n+ 3) . . . (2n+ 2l − 1).

Besides the statistics cr(M) ∈ N0 and ne(M) ∈ N0 on M we con-
sider the joint statistics cn(M) = (cr(M), ne(M)) ∈ N2

0 and nc(M) =
(ne(M), cr(M)) ∈ N2

0. Two statistics s, u on two subsets N1,N2 ⊂ M
coincide (have the same distribution) if s(N1) = u(N2) as multisets, that is,
if for every element e we have

|{M ∈ N1 : s(M) = e}| = |{M ∈ N2 : u(M) = e}|.

Notational convention. If f : X → Y is a mapping and Z ⊂ Y , the
symbol f(Z) usually denotes the image Im(f |Z) = {f(z) : z ∈ Z}. In
this article we use f(Z) to denote the multiset whose ground set is Im(F |Z)
and in which each element y = f(z), z ∈ Z, appears with the multiplicity
|f−1(y) ∩ Z|. So in our f(Z) each element y has the proper multiplicity in
which it is attained as a value of f on Z.

Let A = (A,+) be an abelian group and α, β ∈ A be its two elements.
The most general statistic on matchings that we consider is sα,β : M→ A
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given by
sα,β(M) = cr(M)α+ ne(M)β.

Our main result is the next theorem.

Theorem 1.1 LetM,N ∈M(n) be two (not necessarily distinct) matchings
and, for α, β ∈ A, sα,β be the above statistic.

1. If sα,β(T (M, l)) = sα,β(T (N, l)) for l = 0, 1 then sα,β(T (M, l)) =
sα,β(T (N, l)) for all l ≥ 0.

2. If sα,β(T (M, l)) = sβ,α(T (N, l)) for l = 0, 1 then sα,β(T (M, l)) =
sβ,α(T (N, l)) for all l ≥ 0.

In words, for the statistic sα,β to coincide level by level on the subtrees T (M)
and T (N) it suffices if it coincides on the first two levels, and similarly for
the pair of statistics sα,β, sβ,α.

Specializing, we obtain identities for the statistics cr, ne, cn, and nc.

Theorem 1.2 LetM,N ∈M(n) be two (not necessarily distinct) matchings
and s, t ∈ {cr, ne}, u, v ∈ {cn, nc} be statistics on matchings (we allow s = t
and u = v).

1. If s(T (M, l)) = t(T (N, l)) for l = 0, 1 then s(T (M, l)) = t(T (N, l)) for
all l ≥ 0.

2. If u(T (M, l)) = v(T (N, l)) for l = 0, 1 then u(T (M, l)) = v(T (N, l))
for all l ≥ 0.

Proof. 1. Let A = (Z,+). Setting α = 1, β = 0 and α = 0, β = 1 and using
1 and 2 of Theorem 1.1, we obtain the identities for cr and ne.

2. Let A = (Z2,+). Setting α = (1, 0), β = (0, 1) and α = (0, 1), β =
(1, 0) and using 1 and 2 of Theorem 1.1, we obtain the identities for cn and
nc. 2

We illustrate the last theorem by four examples. We mentioned the first two
already, it is the result of de Sainte-Catherine and the symmetry cn = nc.

Corollary 1.3 For every k ∈ N0 and n ∈ N there are as many matchings
on [2n] with k crossings as those with k nestings.
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Proof. Set M = N = ∅ and s = cr, t = ne. The assumption of the theorem
is satisfied because cr(∅) = ne(∅) = 0 and cr(M(1)) = ne(M(1)) = {0}. 2

Corollary 1.4 For every k, l ∈ N0 and n ∈ N there are as many matchings
on [2n] with k crossings and l nestings, as those with l crossings and k
nestings; the joint statistic is symmetric.

Proof. Set M = N = ∅ and s = cn, t = nc. The assumption of the theorem
is satisfied because cn(∅) = nc(∅) = (0, 0) and cn(M(1)) = nc(M(1)) =
{(0, 0)}. 2

Corollary 1.5 For every k ∈ N0 and n ∈ N there are as many matchings
on [2n] which have k crossings and have the last two edges nested, as those
which have k nestings and have the last two edges separated (neither crossing
nor nested).

Proof. Set M = {{1, 4}, {2, 3}}, N = {{1, 2}, {3, 4}}, s = cr, and t = ne.
The assumption of the theorem is satisfied because cr(M) = ne(N) = 0 and
the values of cr on the five children of M are 0, 0, 1, 1, 2, which coincides with
the values of ne on the five children of N . 2

Corollary 1.6 LetM={{1, 2},{3, 5},{4, 6}} and N={{1, 3},{2, 4},{5, 6}}.
For every k, n ∈ N there are as many matchings on [2n] with k crossings in
which the last three edges form a matching order-isomorphic to M , as those
in which the last three edges form a matching order-isomorphic to N .

Proof. Set the matchings M,N as given and s = t = cr. Then cr(M) =
cr(N) = 1 and cr(T (M, 1)) = cr(T (N, 1)) = {1, 1, 1, 2, 2, 2, 3}. 2

We call two matchingsM,N ∈M(n) crossing-similar and writeM ∼cr N
if cr(T (M, l)) = cr(T (N, l)) for all l ≥ 0. Similarly we define the nesting-
similarity ∼ne. These two relations are equivalences and partition M(n) in
equivalence classes. We use Theorem 1.2 to characterize these classes and to
count them. In Theorems 3.3 and 3.5 we prove that the numbers of classes
in M(n)/∼cr and M(n)/∼ne are, respectively,

2n−2

((

n

2

)

+ 2

)

and 2 · 4n−1 − 3n− 1

2n+ 2

(

2n

n

)

.
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These two numbers differ, the latter is roughly a square of the former. On
the first level of description of the enumerative complexity of crossings and
nestings, that of the numbers cr(M) and ne(M), symmetry reigns as shown
in Corollaries 1.3 and 1.4. On the next level of description, that of the
similarity classes, symmetry is broken because |M(n)/∼ne | is much bigger
than |M(n)/ ∼cr |. From this point of view nestings are definitely more
complicated than crossings, see also Theorem 4.4.

We prove Theorem 1.1 in Section 2. The method we employ is induction
on the number of edges. In Section 3 we prove Theorems 3.3 and 3.5 enu-
merating the crossing-similarity and nesting-similarity classes. In the last
Section 4 we give further applications of the main theorem in Proposition 4.1
that characterizes the matchings M,N such that cr(T (M, l)) = ne(T (N, l))
for every l ≥ 0, in Corollary 4.3 that concerns the statistic of pairs of sep-
arated edges, and in Theorem 4.4 that enumerates the classes of mod 2
crossing-similarity and mod 2 nesting-similarity. We also give some conclud-
ing comments.

2 The proof of Theorem 1.1

For a set X let S(X) be the set of all finite multisets with elements in X.
By the sum

X1 +X2 + · · ·+Xr =
r
∑

1

Xi

of the multisets X1, X2, . . . , Xr ∈ S(X) we mean the union of their ground-
sets with multiplicities of the elements added. Any function f : X → S(Y )
naturally extends to

f : S(X)→ S(Y ) by f(U) =
∑

x∈U

f(x)

where the summand f(x) appears with the multiplicity of x in U . Now if
Z ⊂ X, we can understand the symbol f(Z) in two ways—as the image of
f |Z or as the value of the extended f on Z. Due to the convention on image
we get in both cases the same result.

In this section A shall denote an abelian group (A,+) and A∗ will be
the set of finite sequences over A. We shall work with functions from A∗ to
S(A) or to S(A∗) which we will extend in the mentioned way, often without
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explicit notice, to functions defined on S(A∗). If u = x1x2 . . . xt ∈ A∗ and
y ∈ A, by x1x2 . . . xt + y we denote the sequence (x1 + y)(x2 + y) . . . (xt + y)
obtained by adding y to each term of u.

Definition 2.1 For α, β ∈ A and i ∈ N we define the mapping Rα,β,i :
⋃

l≥iA
l → ⋃

l≥i+2 A
l by

Rα,β,i(x1x2 . . . xl) = xi(x1x2 . . . xi + xi − x1 + α)(xixi+1 . . . xl + xi − x1 + β)

and the mapping Rα,β : A∗ → S(A∗) by

Rα,β(x1x2 . . . xl) = {Rα,β,i(x1x2 . . . xl) : 1 ≤ i ≤ l}.

So Rα,β(x1x2 . . . xl) is an l-element multiset of sequences which have length
l + 2.

Let M ∈ M(n) be a matching. The gaps of M are the first gap before
[2n], the 2n− 1 gaps between the elements in [2n], and the last (2n + 1)-th
gap after [2n]; M has 2n+1 gaps. For α, β ∈ A we assign to every matching
N ∈M(n), n ∈ N0, a sequence seqα,β(N) ∈ A∗ with length 2n+1. If n = 0,
we set seqα,β(∅) = 0 = 0A. Let n ≥ 1 and (M,N) ∈ E(T ), M ∈ M(n − 1),
which means that N is obtained fromM by adding a new first edge e = {1, x}
where x is inserted in the i-th gap ofM for some i lying between 1 and 2n−1.
We set

seqα,β(N) = Rα,β,i(seqα,β(M)).

For example, if M = {{1, 3}, {2, 4}} then seqα,β(M) = α, 2α, 3α, 2α+ β, α+
2β.

For u ∈ A∗ we denote by Rl
α,β(u) = Rα,β(Rα,β(. . . (Rα,β(u)) . . . )) the l-th

iteration of the mapping Rα,β (which we extend to S(A∗)). The next lemma
is immediate from the definitions.

Lemma 2.2 For every α, β ∈ A, M ∈M, and l ∈ N0 we have

Rl
α,β(seqα,β(M)) = seqα,β(T (M, l)).

The next lemma relates the sequences seqα,β(M) and the statistic sα,β on
M.

Lemma 2.3 For every α, β ∈ A and N ∈ M(n) the first term of the se-
quence seqα,β(N) equals sα,β(N) = cr(N)α+ ne(N)β.
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Proof. For n = 0 this holds. For n ≥ 1 we proceed by induction on
n. Suppose that (M,N) ∈ E(T ) and that N arises by adding new first
edge {1, x} to M , where x is inserted in the i-th gap. Let seqα,β(M) =
a1a2 . . . a2n−1.

We claim that in
aj − a1 = ujα + vjβ

the number uj counts the edges in M covering the j-th gap and vj counts
the edges in M lying to the left of the j-th gap.

Suppose that this claim holds. Then cr(N) = cr(M) + ui and ne(N) =
ne(M) + vi. Since cr(M)α + ne(M)β = a1 (by induction), the first term of
seqα,β(N) is ai = ai − a1 + a1 = uiα+ viβ + cr(M)α+ ne(M)β = cr(N)α+
ne(N)β, as we wanted to show.

It suffices to prove by induction on n the claim. For n = 0 it holds
trivially. We assume that it holds for seqα,β(M) and deduce it for seqα,β(N);
M , N , and i are as before. Let seqα,β(N) = b1b2 . . . b2n+1. We first describe
the changes in gaps caused by the addition of {1, x} to M . A new first gap
appears; it is of course covered by no edge and has no edge to its left. For
1 ≤ j ≤ i the j-th gap turns in the (j + 1)-th one; these gaps get covered by
one more edge and have the same numbers of edges to their left as before.
The i-th gap is split in two which creates a new gap, the (i+ 2)-th one; it is
covered by as many edges as the i-th gap in M but it has one more edge to
its left. For i+1 ≤ j ≤ 2n− 1 the j-th gap turns in the (j+2)-th one; these
gaps are covered by as may edges as before but they have one more edge to
their left.

By the definition of Rα,β,i, b1 = ai, bj = aj−1+ai−a1+α for 2 ≤ j ≤ i+1,
and bj = aj−2 + ai − a1 + β for i + 2 ≤ j ≤ 2n + 1. Thus b1 − b1 = 0,
bj − b1 = aj−1 − a1 + α = (uj−1 + 1)α + vj−1β for 2 ≤ j ≤ i + 1, and
bj − b1 = aj−2 − a1 + β = uj−2α + (vj−2 + 1)β for i + 2 ≤ j ≤ 2n + 1.
This agrees with the described changes in gaps and so the claim holds for
seqα,β(N). 2

Let us denote by f 0
0 : A∗ → A the function taking the first term of

a sequence and by f 1
0 : A∗ → S(A) the function creating the multiset

of all terms of a sequence. By the definitions and Lemmas 2.2 and 2.3, if
seqα,β(M) = a1a2 . . . a2n+1 then

sα,β(T (M, 1)) = f 0
0 (Rα,β(seqα,β(M))) = {a1, a2, . . . , a2n+1} = f 1

0 (seqα,β(M)).
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For the induction argument we will need more complicated functions besides
f 0

0 and f 1
0 . For an integer r ≥ 0 and γ ∈ A we define the function f r

γ : A
∗ →

S(A) by

f rγ (x1x2 . . . xl)={xa1
+xa2

+· · ·+xar
−(r−1)x1+γ : 1≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ l}.

So f 0
0 (x1x2 . . . xl) = {x1} and f 1

γ (x1x2 . . . xl) is the multiset {x1 + γ, x2 +
γ, . . . , xl + γ}.

Lemma 2.4 Let X,Y ∈ S(A∗) (possibly X = Y ) be two multisets such that
f rγ (X) = f rγ (Y ) for every r ≥ 0 and γ ∈ A. Then for every mapping Rα,β of
Definition 2.1 we have

1. f rγ (Rα,β(X)) = f rγ (Rα,β(Y ))

2. f rγ (Rα,β(X)) = f rγ (Rβ,α(Y ))

for every r ≥ 0 and γ ∈ A.

Proof. We prove only the second identity with Rα,β and Rβ,α; the proof of
the first one is similar and easier. We proceed by induction on r. The case
r = 0 is clear since f 0

γ (Rα,β(X)) = f 1
γ (X) for every X ∈ S(A∗) and γ ∈ A.

We assume that r ≥ 1 and that for every s, 0 ≤ s < r, and γ ∈ A we have
f sγ(Rα,β(X)) = f sγ(Rβ,α(Y )). We consider only the function f r

0 , the proof for
general γ is similar.

We split the multisets U = f r
0 (Rα,β(X)) and V = f r

0 (Rβ,α(Y )), which
arise by summation, in several contributions and show that after rearranging,
the corresponding contributions to U and V are equal. U is the multiset of
elements ya1

+ ya2
+ · · ·+ yar

− (r − 1)y1 where the sequence y1y2 . . . yl runs
through Rα,β(X) and the indices ai run through the r-tuples 1 ≤ a1 ≤ a2 ≤
· · · ≤ ar ≤ l, and similarly for V . The first contribution C is defined by the
condition a1 = 1. C contributes to U the elements

y1 + ya2
+ · · ·+ yar

− (r − 1)y1 = ya2
+ · · ·+ yar

− (r − 2)y1,

where y1y2 . . . yl runs through Rα,β(X) and the indices ai run through the
(r−1)-tuples 1 ≤ a2 ≤ a3 ≤ · · · ≤ ar ≤ l. Thus C contributes f r−1

0 (Rα,β(X)).
To V it contributes f r−1

0 (Rβ,α(Y )). Hence C contributes equally to U and V
because f r−1

0 (Rα,β(X)) = f r−1
0 (Rβ,α(Y )) by the inductive assumption.
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Each v = y1y2 . . . yl ∈ Rα,β(X) is in Rα,β(u) for some u = x1x2 . . . xl−2 ∈
X and (by the definition of Rα,β) consists of three segments: it starts with
a term xi of u, then it comes x1 . . . xi termwise incremented by xi − x1 + α,
and the third segment of v is xi . . . xl−2 termwise incremented by xi−x1 +β;
similarly for v ∈ Rβ,α(Y ). We split the rest of U and V (in which a1 > 1,
i.e., every yai

lies in the second or in the third segment) in r + 1 disjoint
contributions Ct according to the number t, 0 ≤ t ≤ r, of the yai

’s lying
in the second segment. By the definition of Rα,β, Ct contributes to U the
elements

xb1 + · · ·+ xbr
+ t(xi − x1 + α) + (r − t)(xi − x1 + β)− (r − 1)xi

= xb1 + · · ·+ xbr
+ xi − rx1 + tα + (r − t)β

where u = x1x2 . . . xl−2 runs through X, the indices bj run through the r-
tuples satisfying 1 ≤ b1 ≤ · · · ≤ bt ≤ i ≤ bt+1 ≤ · · · ≤ br ≤ l − 2, and i runs
through 1 ≤ i ≤ l−2. (The length l−2 depends on u.) Effectively the indices
bj and i run through all weakly increasing (r + 1)-tuples of numbers from
[l−2]. Thus Ct contributes to U the elements f r+1

γ (X) where γ = tα+(r−t)β.
By the definition of Rβ,α, Ct contributes to V the elements f r+1

γ′ (Y ) where
γ′ = tβ + (r − t)α. So Ct contributes to U and V in general differently but
(by the assumption on X and Y ) the contributions of Ct to U and Cr−t to V
are equal. By symmetry,

∑r
0 Ci contributes the same amount to U and V .

Since U and V are covered by equal and disjoint contributions C and
∑r

0 Ci,
we conclude that U = V , i.e., f r

0 (Rα,β(X)) = f r0 (Rβ,α(Y )).
The proof of 1 is similar and easier, because now Ct contributes equally

to U = f r0 (Rα,β(X)) and V = f r
0 (Rα,β(Y )). 2

Next we show that for the equality of all functions f r
γ on two one-element

sets it in fact suffices that f 0
0 and f 1

0 are equal. We prove it in two lemmas.
Let gr : A∗ → S(A) be defined by

gr(x1x2 . . . xl) = {xa1
+ xa2

+ · · ·+ xar
: 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ l}.

Lemma 2.5 If u, v ∈ A∗ are such that g1(u) = g1(v) then gr(u) = gr(v) for
all r ≥ 1.

Proof. Let g1(u) = g1(v) and r ∈ N. For ā = (a1, . . . , as) ∈ As we denote
(ā) the multiset {a1, . . . , as} and if n̄ = (n1, . . . , ns) ∈ Ns then n̄ · ā =
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n1a1 + · · · + nsas ∈ A. For s ∈ N, X ∈ S(A), and u = x1x2 . . . xl ∈ A∗ we
denote

S(s,X, u) = {x̄ = (xa1
, . . . , xas

) : 1 ≤ a1 < a2 < · · · < as ≤ l, (x̄) = X}.

For r, s ∈ N we denote

N(r, s) = {(n1, . . . , ns) ∈ Ns : n1 + · · ·+ ns = r}.

Now we can rewrite gr(u) and gr(v) as

gr(u) = {n̄ · ā : s ∈ [r], X ∈ S(A), n̄ ∈ N(r, s), ā ∈ S(s,X, u)}
gr(v) = {n̄ · ā : s ∈ [r], X ∈ S(A), n̄ ∈ N(r, s), ā ∈ S(s,X, v)}.

We claim that (i) for every fixed s ∈ [r] and X ∈ S(A) the multiset

m(ā) = {n̄ · ā : n̄ ∈ N(r, s)}

is the same for all ā ∈ As with (ā) = X and that (ii) for every fixed s ∈ [r]
and X ∈ S(A) we have |S(s,X, u)| = |S(s,X, v)|. This will prove that
gr(u) = gr(v).

To show (i), we take ā, b̄ ∈ As with (ā) = (b̄) = X. Then ā can be obtained
from b̄ by permuting coordinates: ā = π(b̄) for some π ∈ Ss, and n̄·b̄ = π(n̄)·ā.
If n̄ runs through N(r, s), so does π(n̄). Hencem(ā) = m(b̄). To show (ii), we
suppose that X consists of the distinct elements x1, . . . , xt with multiplicities
n1, . . . , nt where n1 + · · · + nt = s (else |S(s,X, u)| = |S(s,X, v)| = 0) and
denote by ma(u) and ma(v) the numbers of occurrences of a ∈ A in u and v.
Because ma(u) = ma(v) for every a ∈ A, we have indeed

|S(s,X, u)| =
t
∏

i=1

(

mxi
(u)

ni

)

=
t
∏

i=1

(

mxi
(v)

ni

)

= |S(s,X, v)|.

2

Lemma 2.6 If X,Y ∈ S(A∗) are one-element sets such that f 0
0 (X) = f 0

0 (Y )
and f 1

0 (X) = f 1
0 (Y ), then f rγ (X) = f rγ (Y ) for every r ≥ 0 and γ ∈ A.

Proof. We need to prove that if u, v ∈ A∗ are two sequences beginning with
the same term and having equal numbers of occurrences of each a ∈ A, then

12



f rγ (u) = f rγ (v) for every r ≥ 0 and γ ∈ A. It suffices to consider functions f r
0 ,

the proof with general γ is similar. Since u and v start with the same term,
by the definition of f r

0 it suffices to prove that gr(u) = gr(v) for every r ≥ 1.
This is true by Lemma 2.5. 2

Proof of Theorem 1.1. We prove only 2, the proof of 1 is very similar and
easier. Let sα,β(T (M, l)) = sβ,α(T (N, l)) for l = 0, 1. By Lemma 2.3 and
the following remark, this means that f 0

0 (seqα,β(M)) = f 0
0 (seqβ,α(N)) and

f 1
0 (seqα,β(M)) = f 1

0 (seqβ,α(N)). By Lemma 2.6,

f rγ (seqα,β(M)) = f rγ (seqβ,α(N))

for every r ∈ N0 and γ ∈ A. By repeated application of 2 of Lemma 2.4 we
get

f rγ (R
l
α,β(seqα,β(M))) = f rγ (R

l
β,α(seqβ,α(N)))

for every l, r ∈ N0 and γ ∈ A. In particular,

f 0
0 (R

l
α,β(seqα,β(M))) = f 0

0 (R
l
β,α(seqβ,α(N))).

But by Lemma 2.2 we have

Rl
α,β(seqα,β(M)) = seqα,β(T (M, l)) and Rl

β,α(seqβ,α(N)) = seqβ,α(T (N, l)).

Thus, by Lemma 2.3,

sα,β(T (M, l)) = sβ,α(T (N, l))

for every l ≥ 0, which we wanted to prove. 2

We give a formulation of Theorem 1.1 in terms of the sequences seqα,β(M).

Theorem 2.7 LetM,N ∈M(n) be two (not necessarily distinct) matchings
and α, β ∈ A be two elements of the abelian groups.

1. We have sα,β(T (M, l)) = sα,β(T (N, l)) for all l ≥ 0 iff sα,β(M) =
sα,β(N) and the sequences seqα,β(M) and seqα,β(N) are equal as mul-
tisets (when order is neglected).

2. We have sα,β(T (M, l)) = sβ,α(T (N, l)) for all l ≥ 0 iff sα,β(M) =
sβ,α(N) and the sequences seqα,β(M) and seqβ,α(N) are equal as mul-
tisets.

13



3 The numbers of similarity classes

In this section we determine the cardinalities |M(n)/∼cr | and |M(n)/∼ne |.
Let A = (Z,+). For M ∈ M we define its crossing sequence crs(M) by
crs(M) = seq1,0(M) − a1, where a1 is the first term of seq1,0(M), and its
nesting sequence nes(M) by nes(M) = seq0,1(M) − b1, where b1 is the first
term of seq0,1(M). Recall that (by the proof of Lemma 2.3) the i-th term
of crs(M) is the number of edges in M covering the i-th gap and the i-th
term of nes(M) is the number of edges lying to the left of the i-th gap.
For example, M = {{1, 4}, {2, 5}, {3, 6}} has crs(M) = (0, 1, 2, 3, 2, 1, 0)
and nes(M) = (0, 0, 0, 1, 2, 3). By Theorems 1.2 and 2.7, M ∼cr N ⇐⇒
cr(M) = cr(N) & f 1

0 (crs(M)) = f 1
0 (crs(N)), that is, M and N are crossing-

similar iff they have the same numbers of crossings and their crossing se-
quences are equal as multisets; an analogous result holds for the nesting-
similarity.

Let e = {a, d}, f = {b, c} ∈ M , 1 ≤ a < b < c < d ≤ 2n, be a nesting in
M ∈M(n). We define its width as min(b− a, d− c). We define the width of
a crossing in the same way, only {a, d} is replaced with {a, c} and {b, c} with
{b, d}. Suppose the nesting e, f has the minimum width among all nestings
in M and its width is realized by b − a. Switching the first vertices of the
edges e and f , we obtain another matching N . If the width of e, f is realized
by d − c, we switch the second vertices of e and f . This transformation
M ; N is called the n-c transformation. In the same way, by switching the
first or the second vertices of the edges in a crossing with minimum width,
we define the c-n transformation.

Lemma 3.1 Let M,N ∈ M(n) where N is obtained from M by the n-c
(c-n) transformation. Then N has the same sets of first and second vertices
of the edges as M and ne(N) = ne(M) − 1, cr(N) = cr(M) + 1 (ne(N) =
ne(M) + 1, cr(N) = cr(M)− 1).

Proof. The first claim about N is obvious. Let e = {a, c}, f = {b, d} ∈ M ,
1 ≤ a < b < c < d ≤ 2n, be a crossing in M with the minimum width which
is equal to b − a (if it is equal to d − c, the argument is similar). The c-n
transformation replaces e by e′ = {b, d} and f by f ′ = {a, d}. Because of
the minimality of the width, every edge of M that has one endpoint between
a and b must have the other endpoint between a and b as well. It follows
that e′ crosses the same edges distinct from f as e does and similarly for f ′

14



and f . The edge e′ is covered by the same edges different from f ′ as e and
similarly for f ′ and f . The edge e′ does not cover the edges lying between a
and b which were covered by e but these are now covered by f ′ and were not
covered by f . If we do not consider the pairs e, f and e′, f ′, M and N have
the same numbers of crossings and the same numbers of nestings. Since e, f
is a crossing and e′, f ′ is a nesting, in total N has one less crossing and one
more nesting than M . The argument for the n-c transformation is similar
and is left to the reader. 2

We use Dyck paths to encode crs(M) and nes(M). Recall that a Dyck
path D with semilength n ∈ N is a lattice path D = (d0, d1, . . . , d2n), where
di ∈ Z2, from d0 = (0, 0) to d2n = (2n, 0) that makes n up-steps di − di−1 =
(1, 1), n down-steps di − di−1 = (1,−1), and never gets below the x axis
(so in fact di ∈ N2

0). We denote the set of Dyck paths with semilength n
by D(n); |D(0)| = 1. We think of D ∈ D(n) also as a broken line in the
plane that connects (0, 0) with (2n, 0) and consists of 2n straight segments
si = didi+1, see Figure 3. A tunnel in D is a horizontal segment t that has
altitude n + 1

2
for some n ∈ N0, lies below D, and intersects D only in its

endpoints. Each D ∈ D(n) has exactly n tunnels. Note that projections of
two tunnels on the x axis are either disjoint or they are in inclusion (as in
the example in Figure 3). If the latter happens, we say that the tunnel with
larger projection covers the other tunnel.

Deleting from D ∈ D(n), n ≥ 1, the first up step and the first downstep
at which D visits again the x axis, we obtain, shifting appropriately the
resulting two parts of D, a unique decomposition of D in a pair of Dyck
paths E,F , where E ∈ D(m) for 0 ≤ m < n and F ∈ D(n − 1 − m).
This decomposition of Dyck paths can be used for inductive proofs of their
properties.

We associate with every Dyck path D = (d0, d1, . . . , d2n) its sequence of
altitudes als(D) = (dy0, d

y
1, . . . , d

y
2n) ∈ N2n+1

0 , where di = (dxi , d
y
i ), and its pro-

file pr(D) = (a1, a2, . . . , am) ∈ Nm, where m is the maximum term of als(D)
and ai is half of the number of segments si of D that lie in the horizontal
strip i−1 ≤ y ≤ i. It follows that a1+a2+ · · ·+am = n and pr(D) is a com-
position of n. It follows easily by induction on m that for every composition
a = (a1, a2, . . . , am) of n there is a D ∈ D(n) with pr(D) = a. For example,
the Dyck path in Figure 3 has als(D) = (0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0)
and pr(D) = (2, 3, 2).

There is a natural surjective mapping F : M(n) → D(n) defined as
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Figure 3: Dyck path with semilength 7 and two tunnels.

follows. We take the diagram of M ∈ M(n) and travel the baseline l from
−∞ to ∞. Simultaneously we construct, step by step, a lattice path D. We
start D at (0, 0) and when we encounter on l the first (second) vertex of an
edge, we make in D an up-step (down-step). In the end we get a Dyck path
D ∈ D(n) and set F (M) = D. Using the decomposition of Dyck paths and
induction, it is easy to prove that F is surjective. Clearly, the preimages
F−1(D) consist exactly of the matchings sharing the same sets of first and
second vertices. Another important property of F is that for every D ∈ D(n)
there is exactly one noncrossing (i.e., with cr(M) = 0) M ∈ F−1(D), namely
the M whose edges correspond in the obvious way to the tunnels in D. This
follows by the decomposition of Dyck paths.

Lemma 3.2 Let n ∈ N and F : M(n)→ D(n) be the above mapping.

1. For every M ∈M(n) we have crs(M) = als(F (M)).

2. For every M,N ∈M(n) we have f 1
0 (crs(M)) = f 1

0 (crs(N)) if and only
if pr(F (M)) = pr(F (N)).

3. For every composition a = (a1, a2, . . . , am) of n and every i ∈ N0,
0 ≤ i ≤∑m

i=1(i− 1)ai, there is an M ∈M(n) such that pr(F (M)) = a
and cr(M) = i. There exist no a and no M such that pr(F (M)) = a
and cr(M) >

∑m
i=1(i− 1)ai.

Proof. 1. This is clear from the definitions of crs(M) and als(D).
2. Using 1, we look at f 1

0 (als(D)) where D = F (M). Let pr(D) =
(a1, a2, . . . , am) and ri be the multiplicity of i ∈ N0 in als(D). It is clear
that r0 = a1 + 1 and rm = am. We claim that for 0 < i < m we have
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ri = ai + ai+1. In the strip i − 1 ≤ y ≤ i we have v = 2ai segments
s1, s2, . . . , sv of D and in the strip i ≤ y ≤ i+1 we have w = 2ai+1 segments
t1, t2, . . . , tw. The occurrences of i in als(D) are due to the upper endpoints
of the sj’s and due to the lower endpoints of the tj’s. But for each sj its upper
endpoint coincides with the upper endpoint of sj−1 or with that of sj+1 or
with the lower endpoint of some tk, and similarly for the lower endpoints
of the tj’s. So i appears (v + w)/2 = ai + ai+1 times. On the other hand,
ai = ri−1 − ri−2 + · · · + (−1)ir1 + (−1)i+1(r0 − 1) for every 1 ≤ i ≤ m.
Therefore the ri’s are completely determined by the composition pr(D) and
vice versa.

3. Let a composition a = (a1, a2, . . . , am) of n be given. We take an
arbitrary D ∈ D(n) with pr(D) = a. It follows by the decomposition of
Dyck paths and induction that the sum

S(a) =
m
∑

i=1

(i− 1)ai

counts the ordered pairs t1, t2 of distinct tunnels in D where t1 covers t2. For
the unique noncrossingM ∈ F−1(D) we have ne(M) = S(a) because nestings
inM are in 1-1 correspondence with the pairs of tunnels, one of them covering
the other. So cr(M) = 0, ne(M) = S(a), F (M) = D, pr(F (M)) = a. For
any given i ∈ {0, 1, . . . , S(a)}, using repeatedly the n-c transformation of
Lemma 3.1, we transform M into N such that cr(N) = i, ne(N) = S(a)− i,
and F (N) = F (M) = D. Now suppose that there is an M ∈ F−1(D) with
cr(M) = c > S(a). Using the c-n transformation of Lemma 3.1 we transform
it into N ∈ F−1(D) with cr(N) = 0 and ne(N) = ne(M) + c > S(a). This
contradicts the unicity of the noncrossing matching in F−1(D). 2

Theorem 3.3 For n ∈ N the set M(n)/∼cr of crossing-similarity classes
has

2n−2

((

n

2

)

+ 2

)

elements.

Proof. By the previous lemma, |M(n)/∼cr | equals
∑

a

(1+ a2 +2a3 + · · ·+(m− 1)am) = 2n−1 +
∑

a

(a2 +2a3 + · · ·+(m− 1)am)
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where we sum over all compositions a1 + a2 + · · · + am = n, which are 2n−1

in number. The last sum is the coefficient of xn in the expansion of

(

d

dy

∑

m≥0

x

1− x
· xy

1− xy
· xy2

1− xy2
· · · · · xym

1− xym

)∣

∣

∣

∣

y=1

.

Differentiating the product in the summand by the Leibniz rule and using
that

(

d

dy

xyi

1− xyi

)∣

∣

∣

∣

y=1

=
ix

(1− x)2
,

we obtain that the expansion equals

1

1− x

∑

m≥0

(

m+ 1

2

)(

x

1− x

)m+1

.

Using the binomial expansion (1 − z)−r =
∑

n≥0

(

r+n−1
n

)

zn, we simplify this
to

x2

(1− 2x)3
=
∑

n≥0

(

n+ 2

2

)

2nxn+2

and the result follows. 2

The values of |M(n)/∼cr | form the sequence (1, 3, 10, 32, 96, 276, . . . ). Sub-
tracting 2n−1, we get the sequence (0, 1, 6, 24, 80, 240, . . . ) that counts crossing-
similarity classes in M(n) for matchings with at least one crossing. This
sequence is entry A001788 of [8] and counts, for example, also 4-cycles in the
(n+ 1)-dimensional hypercube.

The situation for nestings is simpler and the number of similarity classes
is bigger because nesting sequences are nondecreasing and therefore

f 1
0 (nes(M)) = f 1

0 (nes(N)) iff nes(M) = nes(N).

By Theorems 1.2 and 2.7, M ∼ne N iff M and N have the same num-
bers of nestings and the same nesting sequences. For D ∈ D(n) we define
ne(D) to be the number of ordered pairs t1, t2 of distinct tunnels in D such
that t1 covers t2. The down sequence dos(D) of D = (d0, d1, . . . , d2n) is
(v0, v1, . . . , v2n) where vi is the number of down-steps dj − dj−1 = (1,−1) for
1 ≤ j ≤ i. For example, for the Dyck path in Figure 3 we have ne(D) = 8
and dos(D) = (0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7).
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Lemma 3.4 Let n ∈ N and F : M(n) → D(n) be the mapping defined
above.

1. For every M ∈ M(n) we have nes(M) = dos(F (M)). There is a
bijection between the sets {nes(M) : M ∈M(n)} and D(n).

2. For every Dyck path D ∈ D(n) and every i ∈ N0, 0 ≤ i ≤ ne(D), there
is an M ∈ F−1(D) such that ne(M) = i. There is no M ∈ F−1(D)
with ne(M) > ne(D).

Proof. 1. The first claim follows at once from the definitions. It is also clear
that dos(D) is uniquely determined by D and vice versa.

2. We know from the proof of 3 of Lemma 3.2 that ne(D) = ne(M) for
the unique noncrossing M ∈ F−1(D). Now we argue as in the proof of 3 of
Lemma 3.2. 2

Theorem 3.5 For n ∈ N the set M(n)/ ∼ne of nesting-similarity classes
has

2 · 4n−1 − 3n− 1

2n+ 2

(

2n

n

)

elements.

Proof. By the previous lemma,

|M(n)/∼ne | =
∑

D∈D(n)

(1 + ne(D)) = |D(n)|+
∑

D∈D(n)

ne(D).

We claim that this number is equal to the coefficient of xn in the expansion
of the expression

C + x2(2xC ′ + C)2C

where C = C(x) =
∑

n≥0 |D(n)|xn = 1 + x + 2x2 + 5x3 + · · · . It is well

known that C = (1 −
√
1− 4x)/2x =

∑

n≥0
1

n+1

(

2n
n

)

xn. Using the relations
xC2 − C + 1 = 0 and 2xCC ′ + C2 = C ′ we simplify the expression to

2C(x) +
1/2

1− 4x
− 3/2√

1− 4x
.

Using the expansion of C(x), geometric series, and (1−4x)−1/2 =
∑

n≥0

(

2n
n

)

xn

we obtain the formula.
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To establish the claim, recall that
∑

D∈D(n) ne(D) counts the triples (D, t1, t2)

where D ∈ D(n) and t1, t2 are two distinct tunnels in D such that t1 covers
t2.Let the segments of D supporting ti be ri (up-step) and si (down-step).
Let the lower endpoints of the segments ri (si) be ai (bi) and their upper
endpoints be a′i (b

′
i), i = 1, 2. The deletion of the interiors of the segments

r1, s1, r2, and s2 splits D in five lattice paths L1, . . . , L5 where L1 starts at
(0, 0) and ends in a1, L2 starts at a′1 and ends at a2, L3 starts at a′2 and
ends at b′2, L4 starts at b2 and ends at b′1, and L5 starts at b1 and ends at
(2n, 0). Each Li is nonempty but may be just a single lattice point. The
concatenation L1L5, where L5 is appropriately shifted so that a1 and b1 are
identified in one distinguished point, is a Dyck path and similarly for L2L4

with a2 and b2 identified and distinguished. L3 is a Dyck path by itself (after
an appropriate shift). We see that the triples (D, t1, t2) in question are in a
1-1 correspondence with the triples (E1, E2, E3) where Ei ∈ D(ni), ni ∈ N0,
are such that n1 + n2 + n3 = n − 2, and moreover E1 and E2 have one
distinguished lattice point (out of 2n1 + 1, respectively 2n2 + 1, points). It
follows that the number of the triples (E1, E2, E3) is the coefficient of xn−2

in (2xC ′ + C)2C, which proves the claim. 2

The values of |M(n)/∼ne | form the sequence (1, 3, 12, 51, 218, 926, . . . ). Sub-
tracting the Catalan numbers Cn = |D(n)|, we get the sequence (0, 1, 7,37,
176,794, . . . ) that counts nesting-similarity classes in M(n) for matchings
with at least one nesting. This sequence is entry A006419 of [8] and appears
in Welsh and Lehman [11, Table VIb] in enumeration of planar maps. We
summarize this identity in the next proposition.

Proposition 3.6 For n = 1, 2, . . . the formula

2 · 4n−1 − 3n+ 1

2n+ 2

(

2n

n

)

counts the following objects.

1. The triples (D, t1, t2) where D is a Dyck path with semilength n and
t1, t2 are two distinct tunnels in D such that t1 covers t2.

2. The nesting-similarity classes in {M ∈M(n) : ne(M) > 0}/ ∼ne.

3. The vertex-rooted planar maps with two vertices and n faces, which are
edge 2-connected and may have loops and multiple edges. See Figure 4
for the case n = 3.
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Figure 4: All seven rooted and edge 2-connected planar maps with two ver-
tices and three faces.

Proof. 1 and 2 follow from the proof of Theorem 3.5 and 3 follows by
checking the formulas in [11]. Alternatively, it is not too hard to establish
bijection between the triples in 1 and the maps in 3. 2

The present author proved in [3, Theorem 3.1] that the number of the
triples (T, v1, v2), where T is a rooted plane tree with n vertices and v1, v2

are two (not necessarily distinct) vertices of T such that v1 lies on the path
joining the root of T and v2, equals

4n−1 +
(

2n−2
n−1

)

2
.

It is straightforward to relate Dyck paths and rooted plane trees and to derive
the formula of Theorem 3.5 from this one.

4 Further applications and concluding remarks

Corollary 1.5 presents two matchings M and N such that the distribution of
cr on the levels of T (M) equals the distribution of ne on the levels of T (N).
We show that there are no other substantially different examples.

Proposition 4.1 Let M,N ∈M(n) be two matchings. We have

cr(T (M, l)) = ne(T (N, l)) for every l ≥ 0
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if and only if M = Mn = {{1, 2n}, {2, 2n − 1}, . . . , {n, n + 1}} and N =
Nn = {{1, 2}, {3, 4}, . . . , {2n− 1, 2n}}.

Proof. The if part is clear by Theorem 1.2: cr(Mn) = ne(Nn) = 0 and

cr(T (Mn, 1)) = ne(T (Nn, 1)) = {0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n}

because

crs(Mn) = (0, 1, 2, . . . , n− 1, n, n− 1, . . . , 2, 1, 0)

nes(Nn) = (0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n).

To show the only if part, we prove that the only matchings M,N ∈
M(n) satisfying cr(M) = ne(N) and f 1

0 (crs(M)) = f 1
0 (nes(N)) are Mn and

Nn. Since for every N ∈ M(n) the sequence nes(N) ends with n, we must
have n in crs(M) which means that the middle gap of M must be covered
by all edges. Thus all first vertices of the edges in M must precede all
second vertices and crs(M) = (0, 1, 2, . . . , n − 1, n, n − 1, . . . , 2, 1, 0). Thus
f 1

0 (nes(N)) = {0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n} which forces N = Nn. Thus
cr(M) = ne(N) = ne(Nn) = 0 which forces M = Mn. 2

Therefore we have no other examples of equidistribution of cr and ne on the
levels of T (M) than M = ∅ and M = {{1, 2}} because Mn = Nn only for
n = 0, 1. We call the matchings M ∈ M(n) encountered in the proof in
which all edges cover the middle gap, equivalently which have f 1

0 (crs(M)) =
{0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n}, permutational matchings; they are in 1-1
correspondence with the permutations of [n] and are n! in number.

Because |M(n)| = (2n − 1)!! = nn(2/e + o(1))n and the numbers of
crossing-similarity and nesting-similarity classes are only exponential, we
have very many examples as in Corollary 1.6 when cr (or ne) has equal
distributions on the levels of T (M) and T (N) for M 6= N . The next corol-
lary follows from the asymptotics of the numbers of similarity classes given
in Theorems 3.3 and 3.5.

Corollary 4.2 Every set of matchings X ⊂M(n) contains |X|/(2 + o(1))n

mutually crossing-similar matchings and |X|/(4 + o(1))n mutually nesting-
similar matchings.
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An explicit example of a big similarity class is provided by permutational
matchings inM(n). They all share the same crossing sequence (0, 1, 2, . . . , n−
1, n, n−1, . . . , 2, 1, 0) and the same nesting sequence (0, 0, . . . , 0, 1, 2, . . . , n−
1, n). Hence at least

n!
(

n
2

)

+ 1
= nn(1/e + o(1))n

of them are mutually crossing-similar and at least so many of them are mu-
tually nesting-similar.

Crossing and nesting correspond to two of three matchings in M(2) and
the third remaining matching is {{1, 2}, {3, 4}}. If two edges of M ∈ M
form this matching, we say that they form a camel. We denote the number
of camels in M by ca(M). This statistic behaves on the levels of the subtrees
of T in the same way as cr and ne do.

Corollary 4.3 Let M,N ∈ M(n) be two matchings such that ca has the
same distribution on the first two levels of the subtrees T (M) and T (N).
Then ca has the same distribution on all levels.

Proof. For M ∈M(n) we have ca(M) =
(

n
2

)

− (cr(M)+ne(M)). Thus this
result follows by 1 of Theorem 1.1 if we set A = (Z,+) and α = β = 1. 2

Note that while the number ofM ∈M(n) with cr(M) = 0 (or with ne(M) =
0) is the Catalan number 1

n+1

(

2n
n

)

, the number ofM ∈M(n) with ca(M) = 0
is much bigger, namely n! (these are exactly permutational matchings).

It is possible to investigate the general similarity relation ∼A,α,β onM(n)
defined, for an abelian group A = (A,+) and two its elements α, β ∈ A, by
M ∼A,α,β N iff sα,β(T (M, l)) = sα,β(T (N, l)) for every l ≥ 0. We consider
here only the case A = (Z2,+) and define the statistics cr2(M), ne2(M) ∈
{0, 1} as parity of the numbers cr(M), ne(M). We define the sequences
crs2(M) and nes2(M) of M by reducing crs(M) and nes(M) modulo 2.
For two matchings M,N ∈ M(n) we define M ∼cr,2 N iff cr2(T (M, l)) =
cr2(T (M, l)) for every l ≥ 0, and similarly for M ∼ne,2 N . By Theorems 1.1
and 2.7, M ∼cr,2 N iff cr2(M) = cr2(N) and crs2(M) and crs2(N) are equal
as multisets after forgetting the order of terms, and similarly for ∼ne,2. (Now
nes2(M) is not nondecreasing and we may have f 1

0 (nes2(M)) = f 1
0 (nes2(N))

for nes2(M) 6= nes2(N).) We determine the numbers of equivalence classes
for ∼cr,2 and ∼ne,2.

23



Theorem 4.4 We have |M(1)/∼cr,2 | = 1 and |M(n)/∼cr,2 | = 2 for n ≥ 2.
The two classes of mod 2 crossing-similarity have ((2n − 1)!! + 1)/2 and
((2n− 1)!!− 1)/2 elements. We have |M(1)/∼ne,2 | = 1, |M(2)/∼ne,2 | = 3,
and |M(n)/∼ne,2 | = 2n for n ≥ 3.

Proof. It follows from the definition of crs(M) that crs2(M) = (0, 1, 0,
1, 0, . . . , 1, 0) for every matching M . Thus the classes of mod 2 crossing-
similarity are determined only by cr2(M) and, for n ≥ 2, we have two of
them. The fact that

|{M ∈M(n) : cr2(M) = 0}| − |{M ∈M(n) : cr2(M) = 1}| = 1

for every n ≥ 1 was proved by Riordan [6] by generating functions; a simple
proof by involution was given by Klazar [4].

To handle nestings modulo 2, recall that nes(M) = dos(D) where D =
F (M) and that nesting sequences of the matchings M ∈ M(n) are in bijec-
tion with the Dyck paths D ∈ D(n) (Lemma 3.4). We claim that the n Dyck
paths

D1 = udun−1dn−1, D2 = u2dun−2dn−1, . . . , Dn−1 = un−1dudn−1, Dn = undn

(u is the up-step and d is the down-step) realize all possible numbers of
1’s and 0’s in the sequences {dos2(D) : D ∈ D(n)} and hence in the se-
quences {nes2(M) : M ∈ M(n)}. The number of 1’s (0’s) in dos2(Di),
i = 1, 2, . . . , n, is n + dn/2e − i (1 + i + bn/2c). It suffices to show that no
dos2(D) has fewer than dn/2e 1’s and fewer than 2 + bn/2c 0’s. In every D
each of the n down-steps contributes to dos2(D) exactly one 1 (by one of its
endpoints) and each of these 1’s may belong to at most two downsteps. So we
must have at least dn/2e 1’s. The argument for 0’s is similar, but now the 0
contributed by the first down-step is never shared (with the next down-steps)
and there is one more 0 contributed by the first up-step. So we have at least
1+1+ bn/2c 0’s. Thus, for every n ≥ 1, |{f 1

0 (nes2(M)) : M ∈M(n)}| = n.
If n ≥ 3, for each Di there are M,M ′ ∈ F−1(Di) with ne(M ′) = ne(M)− 1
(we take forM the noncrossing matching in F−1(Di), it has least one nesting,
and apply the n-c transformation). Thus, for n ≥ 3, there are 2n classes of
mod 2 nesting-similarity. The cases n = 1, 2 are easy to treat separately. 2

Concluding remarks. Recently, an interesting result for crossings and
nestings of higher order was obtained by Chen et al. in [1] where it is proved
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that for every k, l, n ∈ N the number of matchings in M(n) with no k-
crossing and no l-nesting is the same as the number of matchings with no k-
nesting and no l-crossing (a similar result is in [1] obtained for set partitions);
here k-crossing is a k-tuple of pairwise crossing edges and similarly for k-
nesting. Another generalization of crossings and nestings is investigated by
Jeĺınek [2] who is interested in numbers of matchings M ∈ M(n) such that
M does not contain a fixed permutational matching N ∈M(3) as an ordered
submatching.

It may be interesting to try to extend results and methods of the present
article to crossings and nestings of higher order. Another research direc-
tion may be to apply our method to other structures besides matchings.
Finally, one may try to go to higher levels of the description of the enumer-
ative complexity of crossings and nestings — denoting G : M → M/ ∼cr

the mapping sending M to its equivalence class, when is it the case that
G(T (M, l)) = G(T (N, l)) for every l ≥ 0; and similarly for ∼ne.
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