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Abstract

We determine the circular chromatic index of flower snarks, by
showing that χ′c(F3) = 7/2, χ′c(F5) = 17/5 and χ′c(Fk) = 10/3 for
every odd integer k ≥ 7, where Fk denotes the flower snark on 4k
vertices.

1 Introduction

All graphs in this paper are finite and simple. A graph is k-edge-colorable if its
edges can be colored using k colors in such a way that no two adjacent edges
receive the same color. By a classical theorem of Vizing [11] every cubic graph
is 4-edge-colorable, and hence cubic graphs fall into two categories: those that
are 3-edge-colorable, and those that require four colors. Those of the latter
kind that satisfy a mild connectivity requirement (cyclic 4-edge-connectivity)
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are called snarks. Snarks are of great interest [2, 4, 5, 12] because the non-
existence of planar snarks is equivalent to the Four Color Theorem [9], and
it is known that a minimal counterexample to several important conjectures
must be a snark, see e.g. [5, 13].

Are some snarks closer to being 3-edge-colorable than others? This
question can be made precise using the concept of circular coloring, in-
troduced by Vince [10] under the name of star coloring. For r > 0, an
r-circular edge-coloring of a graph G is a mapping c : E(G) → [0, r) such
that 1 ≤ |c(e) − c(f)| ≤ r − 1 for every two adjacent edges e and f of G.
The circular chromatic index of G is the infimum (in fact, the minimum) of
all r > 0 such that G has an r-circular edge-coloring. The circular chromatic
index of G is denoted by χ′c(G). It is not hard to show that the chromatic
index of G (the least k such that G is k-edge-colorable) is equal to dχ′c(G)e,
and hence the circular chromatic number provides a finer measure of edge-
colorability than the chromatic index. We refer the reader to the survey [14]
for more details on circular colorings of graphs.

Zhu [14] asked whether there exists a snark with circular chromatic index
four. Afshani et al. [1] answered the question in the negative by showing
that the circular chromatic index of every bridgeless cubic graph is at most
11/3. The bound is tight as witnessed by the Petersen graph. However,
the Petersen graph is the only known bridgeless cubic graph with circular
chromatic index equal to 11/3, and so it seems natural to look for other
examples among known families of snarks.

There is another result on circular edge colorings that motivated our work.
Kochol [8] disproved the conjecture of Jaeger and Swart [3] that the girth
of every snark is bounded by an absolute constant by constructing snarks
of arbitrarily high girth. However, the conjecture holds in an approximate
sense when relaxed to circular colorings: Kaiser et al. [6] proved that for
every ε > 0 there exists an integer g such that every cubic bridgeless graph
of girth at least g has circular chromatic index at most 3+ε. This result was
extended in [7] to graphs with arbitrary maximum degree.

It is natural to ask whether perhaps the same conclusion (at least for cubic
graphs) holds under the weaker assumption that the graph have odd girth at
least g, i.e., that the graph have no odd cycle of length strictly less than g.
We show that this is not the case by proving that the family of snarks known
as flower snarks provide a counterexample. We were actually able to compute
the circular chromatic index of flower snarks exactly. Let us recall that for an
odd integer k ≥ 3 the flower snark Fk, is the following graph [4]: the vertex
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set of Fk consists of 4(k) vertices v1, . . . , vk and u
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of length 2(k), and in addition, each vertex vi is adjacent to u
1
i , u

2
i and u

3
i .

2 General bound

Let ε > 0 and set r = 10/3 − ε. We show that no flower snark has an
r-circular edge-coloring. If b− a < r+ a− b, then we say that b follows a; if
b− a > r+ a− b, then a follows b. Note that ρ(x, y) is the distance between
x and y on a circle of perimeter r.

The elements of [0, r) are referred to as colors. For 0 ≤ a ≤ b ≤ r, define
ρ(a, b) = ρ(b, a) to be min{b− a, r + a− b}. Two colors x and y are close if
ρ(x, y) < 2/3 and they are far apart if ρ(x, y) > 2/3. A sequence (c0, c1, c2)
of colors is of type A if c0, c1 and c2 are pairwise far apart, and it is of
type B if two of the colors are close and the remaining one is far apart from
both of the other two. A sequence (c0, c1, c2) of type A has positive sign if
0 ≤ ci ≤ ci+1 ≤ ci+2 < r for some i = 0, 1, 2, where index arithmetic is taken
modulo 3, and it has negative sign otherwise. In other words, the sequence
(c0, c1, c2) has positive sign if it can be obtained from the sorted sequence
comprised of c0, c1 and c2 by an even number of transpositions. We now
define signs for sequences of type B. Let (c0, c1, c2) be a sequence of colors of
type B and let i, j, k be such that {i, j, k} = {0, 1, 2} and ci and cj are close.
The sequence (c0, c1, c2) has positive sign if the color ck follows both ci and
cj, and we say that it has negative sign if ci and cj both follow the color ck.
Note that for sequences of type B the sign need not be defined and in case it
is defined, it does not depend on the order of the elements in the sequence.

Similarly as in the original proof that flower snarks are not 3-edge-colored,
a certain parity argument is also involved in our proof. The following lemma
captures this:

Lemma 1. Let c be an r-circular edge-coloring of a cubic graph G for r =
10/3 − ε with ε > 0. Let v be a vertex of G, u1, u2 and u3 be its neighbors,
and ei and fi edges incident with ui but not with v (for i ∈ {1, 2, 3}). If
all the edges e1, e2, e3, f1, f2 and f3 are distinct, then the following holds:
either (c(e1), c(e2), c(e3)) and (c(f1), c(f2), c(f3)) are both of type A and have
the same sign or the two sequences are both of type B and have different signs
(in particular, the signs of both of them are defined).
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Proof. For every color a let I(a) = {a + x : 1 ≤ x ≤ 4/3 − ε} and J(a) =
{a−x : 1 ≤ x ≤ 4/3− ε}, where addition and subtraction is modulo r. Note
that if the edges e, e′ and e′′ are distinct and share a vertex, then exactly
one of c(e′) and c(e′′) belongs to I(c(e)) and the other belongs to J(c(e)).

Let ci = c(vui), ai = c(ei) and bi = c(fi) for i = 1, 2, 3. Since the edges
vu1, vu2 and vu3 share a vertex, the sequence (c1, c2, c3) is of type A. By
symmetry, we may assume that it has positive sign, i.e., c1 ∈ I(c3) ∩ J(c2),
c2 ∈ I(c1)∩J(c3), and c3 ∈ I(c2)∩J(c1). Hence, any two colors in I(c3)∪J(c2)
are close, and the same holds for I(c1)∪J(c3) and I(c2)∪J(c1). By reversing
the roles of I and J , we may assume that a1 ∈ I(c1) and b1 ∈ J(c1). Assume
first that a1, a2 and a3 are pairwise far apart. Then, a3 ∈ I(c3) (because a3 6∈
J(c3) since it is far apart from a1), and similarly a2 ∈ I(c2). Consequently,
b3 ∈ J(c3) and b2 ∈ J(c2). The circular intervals I(c1), I(c2) and I(c3) are
pairwise at distance at least 2/3, and the same holds for J(c1), J(c2) and
J(c3). It follows that (a1, a2, a3) has positive sign, and that (b1, b2, b3) is of
type A and it also has positive sign.

The other case to consider is that two of a1, a2 and a3 are close. By
the symmetry, we may assume that a2 and a3 are close, i.e., a2 ∈ J(c2)
and a3 ∈ I(c3). Hence, b2 ∈ I(c2) and b3 ∈ J(c3). We have that every
member of I(c1) follows every member of I(c3) ∪ J(c2), because c1 is at
distance one from one end of the circular interval I(c1), and each of the
circular intervals involved has length 1/3 − ε. Thus a1 follows a2 and a3.
Since b1, b2 ∈ I(c2)∪ J(c1), we deduce that b1 and b2 are close, and it follows
similarly as above that both b1 and b2 follow b3, as desired. We conclude that
both (a1, a2, a3) and (b1, b2, b3) are of type B and have different signs.

We are now ready to deduce the lower bound on the circular chromatic
indices of flower snarks:

Theorem 1. For every t ≥ 1, the circular chromatic index of the flower
snark F2t+1 is at least 10/3. Moreover, if t ≥ 3, then χ′c(F2t+1) = 10/3.

Proof. Let t ≥ 1 and suppose for a contradiction that c is an r-circular
edge-coloring of F2t+1 with r < 10/3. We repeatedly apply Lemma 1 with
v = vi, e1 = u1
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3
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Figure 1: The construction of a 10/3-circular edge-coloring of large flower
snarks. The colors of the edges are multiplied by three in the figure.

(which is impossible since they differ by a single transposition) or they are
both of type B and have different signs (which is again impossible by the
definition of the sign in this case). This establishes that χ′c(F2t+1) ≥ 10/3.

Figure 1 shows the construction of a 10/3-circular edge-coloring of F2t+1

for t ≥ 3. The edges of the snark F2t+1 incident with the vertices v1, . . . , v7,
u1

1, . . . , u
1
7, u

2
1, . . . , u

2
7 and u

3
1, . . . , u

3
7 are always colored as in the figure. The

remaining edges of F2t+1 are colored using the pattern shown on the dashed
edges. Note that the colors in the figure are multiplied by three for better
clarity.

3 The flower snark F3

An easy consequence of Lemma 1.3 of [14] is the following:

Proposition 1. Let G be a graph. If χ′c(G) = p/q (where p and q are
relatively prime), then there exists a p/q-circular edge-coloring of G with
colors 0/q, . . . , (p− 1)/q only and each of these colors is assigned to at least
one edge of G.

Since the edges colored with the colors 0/q, . . . , (q − 1)/q must form a
matching in G, we obtain the following from Proposition 1:

Proposition 2. Let G be a graph. If χ′c(G) = p/q (where p and q are
relatively prime), then q is at most the cardinality of a maximum matching
of G.

5



v1 v2 v3
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Figure 2: A 7/2-circular edge-coloring of F3. The dashed edges wrap
“around” the figure. The colors of all the edges are multiplied by two.

We are now ready to determine the circular chromatic index of F3:

Theorem 2. The circular chromatic index of F3 is 7/2.

Proof. A 7/2-circular edge-coloring of F3 can be found in Figure 2. By The-
orem 1, the circular chromatic index of F3 is at least 10/3. By Proposition 2,
χ′c(F3) ∈ {10/3, 17/5, 7/2}.

Assume that χ′c(F3) = 10/3. By Proposition 1, there exists a 10/3-
circular edge-coloring c of F3 which is onto the set {0/3, . . . , 9/3}. By the
pigeon-hole principle, at least one of the colors is assigned to a single edge of
F3 (the size of F3 is 18). Assume that |c−1(9/3)| = 1. Observe that all the
three sets c−1({0/3, 1/3, 2/3}), c−1({3/3, 4/3, 5/3}) and c−1({6/3, 7/3, 8/3})
of edges form matchings in F3 and at least two of them are matchings of
size six, i.e., perfect matchings. However, F3 does not contain two disjoint
perfect matchings since it is not 3-edge-colorable.

Assume that χ′c(F3) = 17/5. By Proposition 1, there exists a 17/5-circular
edge-coloring c of F3 which maps onto the set {0/5, . . . , 16/5}. Observe that
each of the colors is assigned to a single edge of F3 except for one of the colors
which is assigned to two edges of F3. Assume that the exceptional color is 1/5.
Both the sets c−1({0/5, 1/5, 2/5, 3/5, 4/5}) and c−1({1/5, 2/5, 3/5, 4/5, 5/5})
of edges of F3 are perfect matchings, say M1 and M2. By their choice,
|M1∩M2| = 5. However, F3 contains no two perfect matchings that differ at
a single edge (in fact, no simple graph does).
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4 The flower snark F5

A construction of 17/5-circular edge coloring of F5 depicted in Figure 3 shows
that χ′c(F5) ≤ 17/5. We were not able to provide the matching lower bound
without the assistance of a computer. By Theorem 1 and Proposition 2, it is
enough to exclude the cases that χ′c(F5) = 10/3 or χ′c(F5) = 27/8. A brute
force algorithm for finding such an edge-coloring will be too slow. Therefore,
we designed a faster algorithm for verifying the existence of p/q-circular edge-
coloring of F2t+1 based on the following idea: first, we construct an auxiliary
graph of order p3. The vertices of this graph are all the sequences of colors
of length three. Two such sequences (a1, a2, a3) and (a′1, a

′
2, a

′
3) are joined

by an edge if it is possible to extend the partial coloring c(ui
1u

i
2) = ai and

c(ui
2u

i
3) = a′i to the three edges incident with the vertex v2. It is not hard

to observe that F2t+1 has a p/q-circular coloring if and only if the auxiliary
graph contains a walk of length 2t + 1 from a vertex (a1, a2, a3) to a vertex
(a1, a3, a2) for some choice of a1, a2, a3 ∈ {0/q, . . . , (p − 1)/q}. Once the
auxiliary graph is constructed (which may be done quite fast even if the
brute force algorithm for determining the adjacency of its vertices is used),
the existence of the walk can be decided in time linear in the size of the
auxiliary graph. In this way, we verified that F5 has neither 10/3-circular
nor 27/8-circular edge-coloring. Based on the discussion of the previous two
sections, we conclude:

Theorem 3. The following holds for every t ≥ 1:

χ′c(F2t+1) =







7/2 if t = 1,
17/5 if t = 2, and
10/3 otherwise.
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