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Abstract

The problem of colouring the square of a graph naturally arises in con-
nection with the distance labelings, which have been studied intensively.
We consider this problem for sparse subcubic graphs and show that the
choosability χ`(G

2) of the square of a subcubic graph G of maximum aver-
age degree d is at most four if d < 24/11 and G does not contain a 5-cycle,
χ`(G

2) is at most five if d < 7/3 and at most six if d < 5/2. Wegner’s
conjecture claims that the chromatic number of the square of a subcubic
planar graph is at most seven. Our result implies that χ`(G

2) is at most
four if g ≥ 24, it is at most 5 if g ≥ 14, and it is at most 6 if g ≥ 10.
For lower bounds, we find a planar subcubic graph G1 of girth 9 such
that χ(G2

1) = 5 and a planar subcubic graph G2 of girth five such that
χ(G2

2) = 6. As a consequence, we show that the problem of 4-colouring of
the square of a subcubic planar graph of girth g = 9 is NP-complete. We
conclude the paper by posing few conjectures.

1 Introduction

We study the colouring of squares of graphs, and so consider simple undirected
graphs. Let χ(G) and χ`(G) be the chromatic number and the choosability of a
graph G, respectively. The square G2 of a graph G is the graph with the same
vertex set in which two vertices are joined by an edge if their distance in G is at
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most two. It is easy to see that ∆ + 1 ≤ χ(G2) ≤ χ`(G
2) ≤ ∆2 + 1, where ∆ is

the maximum degree of G. However, by Brooks theorem, it is not hard to infer
that there are only finitely many connected graphs for which the upper bound
is attained. On the other hand, the chromatic number of the square of a planar
graph is bounded by a function linear in the maximum degree (note that this
bound does not follow directly from the 5-degeneracy of planar graphs [7]).

The notion of colouring of the square of a graph, as well as the other variants
of a distance colouring, arise from the problem of assigning frequencies to trans-
mitters. We are given a set of locations of transmitters, and we want to assign
frequencies to them in such a way that they do not interfere. The transmitters
interfere if they are close enough and the frequencies assigned to them are similar.
Choosability version of the problem corresponds to the situation where we are
not allowed to use all frequencies on all transmitters. The notion of closeness can
be often approximated by forming the graph of the neighbouring transmitters,
and colouring of the square or a higher power of this graph enables us to take
the interference between farther transmitters into account.

Let us briefly survey the rich history of the colouring of the squares of pla-
nar graphs. Wegner [15] proved that the squares of cubic planar graphs are
8-colourable. He conjectured that his bound can be improved:

Conjecture 1. Let G be a planar graph with maximum degree ∆. The chromatic
number of G2 is at most 7, if ∆ = 3, at most ∆ + 5, if 4 ≤ ∆ ≤ 7, and at most
⌊

3∆
2

⌋

+ 1, otherwise.

If this conjecture were true, then the bounds would be the best possible. The
reader is welcome to see Section 2.18 in [8] for more details. Though Conjec-
ture 1 has been verified for several special classes of planar graphs, including the
outerplanar graphs [10], it remains open for all values of ∆ ≥ 3. The best known
upper bounds are due to Molloy and Salavatipour [11, 12]: d5∆/3e+78 for all ∆
and d5∆/3e+25 for ∆ ≥ 241. Sharper results can be obtained for special classes
of graphs. Dvořák et al. [4] have proved that the chromatic number of the square
of a planar graph G with sufficiently large maximal degree is ∆ + 1 if the girth
of G is at least seven and it is bounded by ∆ + 2 if the girth of G is six.

A graph G is called subcubic if ∆(G) ≤ 3. We consider (not necessarily planar)
subcubic graphs of small maximum average degree d and show the following
bounds on the choosability of G2 (Section 3):

• If d < 24/11 and G does not contain a 5-cycle, then χ`(G
2) ≤ 4.

• If d < 7/3, then χ`(G
2) ≤ 5.

• If d < 5/2, then χ`(G
2) ≤ 6.

For planar subcubic graphs of large girth g, this implies that (Section 4):
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• If g ≥ 24, then χ`(G
2) ≤ 4.

• If g ≥ 14, then χ`(G
2) ≤ 5.

• If g ≥ 10, then χ`(G
2) ≤ 6.

Montassier and Raspaud [13] have shown similar results for colouring of the
squares of planar subcubic graphs. They have shown that χ(G2) ≤ 5 if g ≥ 14
and χ(G2) ≤ 6 if g ≥ 10 and their proof can be easily generalised to work
for choosability as well. They use some of the reducible configurations we do,
however their proofs of reducibility are much simpler, because they can use the
girth assumptions (not only the sparseness of the graph).

Regarding the lower bounds, we construct subcubic planar graphs G1 and
G2 of girths g(G1) = 9 and g(G2) = 5 such that χ(G2

1) = 5 and χ(G2
2) = 6

(Section 5).
The problem of finding the chromatic number of the square of a planar graph

is NP-complete. It is NP-complete even to decide whether the square of a planar
graph can be coloured by seven colours [14] – note that this implies that determin-
ing the chromatic number of the square of a planar graph is NP-complete when
restricted to graphs of maximum degree six. It is also NP-complete to decide
whether the square of a cubic (not necessarily planar) graph can be coloured by
four colours [6]. On the other hand, the problem can be solved in a polynomial
time for partial k-trees [16]. For further complexity and structural results we refer
to the survey [2]. We are interested in the complexity of the problem for pla-
nar graphs of large girth. The graphs used in the reduction of Ramanathan [14]
contain many triangles, thus they do not provide any guidance in this direction.

We show that the problem of determining the chromatic number of the square
of a graph is NP-complete even for subcubic planar graphs of girth 9 (Section 6),
more precisely, we show that it is NP-complete to decide whether such a graph
can be coloured by four colours.

2 Notation

Let N denote the set of all nonnegative integers. A d-vertex is a vertex of de-
gree d. The maximum average degree d(G) of a graph G is the maximum of
2|E(H)|/|V (H)| over all induced subgraphs H of G.

A k-cycle is a cycle of length k. The girth g of G is the length of the shortest
cycle in G, and it is infinity if G is a forest. A thread is an induced path in G
whose vertices are all of degree 2 in G. A k-thread for k ≥ 1 is a thread with
k vertices. The length of a thread is number of vertices of the thread, i.e., a
k-thread has length k.

If G is a connected plane graph, then let F (G) be the set of all faces of G.
Denote by `(f) the length of a face f (we count multiple occurrences of an edge
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if f is not a simple cycle, which can happen if G is not 2-connected). A `-face is
a face of length `.

We say that a graph G is k-minimal, if G2 is not k-choosable, but the square
of every proper subgraph of G is k-choosable. Obviously, a k-minimal graph
is connected. A configuration is an induced subgraph of G, and we say that a
configuration is k-reducible, if it cannot appear in a k-minimal graph. Note that
a k-reducible configuration is also k′-reducible for every k′ ≥ k.

We introduce the following notation to simplify the description of reducible
configurations: Let Ya,b,c be a 3-vertex v together with an a-thread, a b-thread
and a c-thread incident to v, such that the threads are vertex-disjoint and there
are no edges between the end-vertices of the threads. Note however that the
end-vertices may have a common neighbour. We allow the possibility that a = 0
or b = 0 or c = 0, and in this case v is adjacent to one or more vertices of degree
3.

Let Ya,b—j—Yc,d be two 3-vertices v1 and v2 joined by a j-thread together
with an a-thread and a b-thread incident to v1 and a c-thread and a d-thread
incident to v2. Again, the threads are vertex-disjoint and there are no edges
between the end-vertices of the threads. We also allow that a, b, j, c or d could
be 0. Thus, if j = 0 then v1 and v2 are adjacent.

Let G be a graph and let L be an assignment of lists to the vertices of G.
We say that L is a p-list assignment for a given function p : V (G) → N, if
|L(v)| = p(v) for each vertex v of G. If p is a constant function with value k, we
say that L is an k-list assignment.

3 Colouring Sparse Graphs

In this section we show that the squares of sparse subcubic graphs can be coloured
by few colours. We proceed by showing that if a subgraph induced by vertices
close to any vertex v is too sparse in such a graph, then it is k-reducible for given
k. Thus we show that in the k-minimal graph, each such subgraph is dense, and
thus that the k-minimal graph itself is dense, which is a contradiction.

We first identify the reducible configurations in Subsection 3.1. Then, in
Subsection 3.2, we discuss the possible neighbourhoods of vertices in a k-minimal
graph. Finally, we derive the bounds on density of k-minimal graphs, for k = 4,
5 and 6.

3.1 Reducible Configurations

In this section, we give k-reducible configurations for k = 4, 5 and 6. Let us first
show that we may assume that a k-minimal graph has minimum degree at least
two.

Lemma 1. A 1-vertex is a k-reducible configuration for each k ≥ 4.
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Proof. Let G be a k-minimal graph and let L be a k-list assignment of G such
that G2 is not L-colourable. Assume for the contradiction that G contains a
1-vertex v. By the k-minimality of G, the graph (G − v)2 has an L-colouring
c. The vertex v has at most three neighbours in G2. We let c(v) be a colour
that does not appear in the neighbourhood of v in G2. Thus, we extend c to an
L-colouring of G2, a contradiction.

Let R be a configuration in a graph G. We define the function sR : V (R) → N.
The value sR(v) is the number of neighbours of v in G2 that are not its neighbours
in R2, i.e., sR(v) = degG2(v)− degR2(v). Note that some of such neighbours may
belong to R.

Suppose that we want to show k-reducibility of a configuration R by the
following approach: we assume that R appears in a k-minimal graph G. We
remove R from G, colour the graph G \ R, and we extend this colouring to the
vertices of R. For each vertex v of R, we remove at most sR(v) colours of the
vertices in distance at most two in G \ R from the list of v, and then consider
colouring of R from these new lists. In the next lemma, we describe this idea
more precisely.

Lemma 2. Let R be a configuration in a graph G and p a function from vertices
of R such that p(v) ≤ k − sR(v) for every vertex v of R. Suppose that

(a) no two vertices of G \ R have a common neighbour in R, and

(b) no two vertices u and v of R such that uv 6∈ E(R2) have a common neigh-
bour in G \ R.

If R2 can be coloured from any p-list assignment L, then G is not k-minimal.

Proof. Let G be a k-minimal graph and let L be a k-list assignment such that G is
not L-colourable. Assume for the contradiction that G contains the configuration
R satisfying the assumptions of the lemma. Let G′ = G−R. By the k-minimality
of G, the graph G′2 has an L-colouring c. We show that we can extend this
colouring to G2, which is a contradiction.

We remove the colours used on the neighbours in G2 from the lists of the
vertices of R. The length of the new list of each vertex v ∈ V (R) is at least
k − sR(v) ≥ p(v). We can colour R2 from these lists, thus obtaining the values
of the colouring c on V (R). By the assumptions of the lemma, the subgraph of
G2 induced by V (R) is equal to R2 and the subgraph induced by V (G′) is equal
to G′2. Consequently, c is a proper L-colouring of G2, a contradiction.

The condition (a) of the above lemma is equivalent to say that each vertex
of R has at most one neighbour outside of R. This is satisfied in all of our
applications of this lemma. The condition (b) is more complicated to satisfy. In
the case k = 4, all the configurations for that the lemma is used satisfy this
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property trivially. In case k ≥ 5 we need to consider the cases when two vertices
of R share a common neighbour outside of R separately, though.

Using p(v) = k−sR(v) in the applications of this lemma is not very practical,
since it requires us to know the exact neighbourhood of R in G. Instead, we use
upper bounds on s derived from the knowledge about the degrees of vertices in
the neighbourhood of R. In particular, we often use p(v) = k − s′R(v), where

s′R(v) = 3(degG(v) − degR(v)) +
∑

uv∈E(R)

(degG(u) − degR(u)).

A block of a graph G is its maximal 2-connected subgraph. A connected graph
G is said to be a Gallai tree if each of the blocks of G is a complete graph or
an odd cycle. In several proofs of the reducibility of configurations, we use the
following theorem, which is proved independently by Borodin [1] and Erdös et
al. [5].

Theorem 3. Let G be a connected graph with a list assignment L such that
|L(v)| ≥ deg(v) for each vertex v of G and G is not L-colourable. Then, |L(v)| =
deg(v) for every v and G is a Gallai tree. Moreover, if G is 2-connected, then
the lists L(v) of all the vertices v of G are the same.

Let us show a stronger version of this theorem for a particular graph.

Lemma 4. Let G be a path on four vertices v1v2v3v4 and let L be a list assignment
to the vertices of G such that |L(v1)| = |L(v4)| = 2 and |L(v2)| = |L(v3)| = 3.
Then G2 has two L-colourings c1 and c2 such that c1(v2) 6= c2(v2).

Proof. Since G2 is not a Gallai tree, at least one colouring c1 of G2 exists by
Theorem 3.

Let a1 = c1(v2) and L(v2) = {a1, a2, a3}. Let us assume for the sake of
contradiction that all colourings of G use the colour a1 on the vertex v2. This
means that if we colour v2 by a2, then this colouring cannot be extended. Let
L′(v1) = L(v1) \ {a2}, L′(v3) = L(v3) \ {a2} and L′(v4) = L(v4) \ {a2}. By
Theorem 3, if v1, v3 and v4 cannot be coloured from lists L′, then |L′(v1)| =
|L′(v4)| = 1 and |L′(v3)| = 2. But then a2 ∈ L(v1) ∩ L(v4). Now observe
that the colouring c2 defined by c2(v1) = c2(v4) = a2, c2(v2) = a3 and c2(v3) ∈
L(v3) \ {a2, a3} satisfies the requirements of the lemma.

Let us first consider cycles that contain at most one 3-vertex in k-minimal
graphs.

Lemma 5. Let R be a configuration formed by a cycle v1v2 · · · vs such that v2, v3,
. . . , vs are 2-vertices. Then R is k-reducible for k ≥ 4 unless k = 4 and s = 5.
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Proof. Since there is at most one edge joining R and G \ R, all the assumptions
of Lemma 2 are trivially satisfied. It suffices to show 4-reducibility if s 6= 5 and
5-reducibility if s = 5, and we may assume that v1 is a 3-vertex.

Suppose first that s 6= 5. We use the function p defined by p(v1) = 1, p(v2) =
p(vs) = 3 and p(vi) = 4 for the remaining vertices. Let L be any p-list assignment.
We need to show that R2 can be coloured from L. Observe that this is the case
if s = 3 or s = 4.

In case s > 5, let c(v1) be the single colour in L(v1). Let p′(v2) = p′(vs) = 2,
p′(v3) = p′(vs−1) = 3 and p′(vi) = 4 for the remaining vertices, and let L′ be an
arbitrary p′-list assignment such that L′(vi) ⊆ L(vi) \ {c(v1)} for i = 2, 3, s − 1
and s and L′(vi) = L(vi) for the remaining vertices. We need to find a colouring
of vertices v2, . . . , vs from the lists L′.

If s > 6, we choose c(v2) ∈ L′(v2) and c(vs) ∈ L′(vs) so that c(v2) 6= c(vs).
We remove the colour c(v2) from the lists L′(v3) and L′(v4) and the colour c(vs)
from the lists L′(vs−1) and L′(vs−2) (note that all these vertices are mutually
distinct, since s > 6). Finally, we colour the subgraph of R2 induced by the path
v3 · · · vs−1 from the new lists using Theorem 3, thus obtaining a proper colouring
c.

Finally, consider the case s = 6. If L′(v2) 6= L′(v6), we select c(v2) from
L′(v2) \L′(v6), remove c(v2) from the lists of v3 and v4 and colour the vertices v3,
v4, v5 and v6 using Lemma 4. Thus suppose that L′(v2) = L′(v6) = {a1, a2}. If
L′(v2) ⊂ L′(v3) and L′(v2) ⊂ L′(v5), then set c(v2) = c(v5) = a1, c(v3) = c(v6) =
a2 and choose c(v4) from L′(v4)\L′(v2) arbitrarily. If this is not the case, we may
assume that a1 6∈ L′(v3). Then we set c(v2) = a1, c(v6) = a2, remove the colour
a1 from list of v4 and the colour a2 from lists of v4 and v5, and then colour v3, v4

and v5 from their lists using Theorem 3.
In the case s = 5, we let p(v1) = 2, p(v2) = p(v5) = 4 and p(v3) = p(v4) = 5.

Note that we can colour the vertices v1, v2, v5, v3 and v4 one by one in this order.

We are now ready to identify several 4-reducible configurations.

Lemma 6. The following configurations are 4-reducible:

(1) a 6-thread,

(2) Y1,4,5,

(3) Y2,3,4,

(4) Y5,5—0—Y4,5, and

(5) a 7-cycle v1v2 · · · v7 such that v1 incident to a 2-thread x1x2, the vertex v2

incident to a 2-thread y1y2 (where the 2-threads are vertex-disjoint), and
each vi is a 2-vertex for 3 ≤ i ≤ 7.
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Proof. Let us prove the reducibility of each configuration separately. Let R be
one of the configurations. We use Lemma 2 for the configuration R′ obtained
from R by removing all 2-vertices that have degree 1 in R, i.e., those, that have
a neighbour in G − R. We remove the vertices x2 and y2 in case (5) even if they
are adjacent. Note that we then know that the neighbours of R′ in G − R′ are
mutually distinct 2-vertices, and thus the assumptions of Lemma 2 are trivially
satisfied. We can also use the function p defined for vertices of R′ as

p(v) = 4 − 2(degG(v) − degR′(v)) −
∑

uv∈E(R′)

(degG(u) − degR′(u)).

It suffices to show that the configuration R′ can be coloured from any p-list
assignment. This will imply that R′ with the additional assumptions on the
degrees of surrounding vertices cannot appear in a 4-minimal graph, and hence
that R is reducible.

(1) Let R be a 6-thread. In this case, R′ is a 4-thread v1v2v3v4 with p(v1) =
p(v4) = 2 and p(v2) = p(v3) = 3. By Theorem 3, R′2 can be coloured from
the lists L.

(2) Let R be Y1,4,5. In this case, the configuration R′ is a path
u3u2u1vw1w2w3w4, with p(w4) = p(u3) = p(v) = 2, p(w1) = p(w3) =
p(u1) = p(u2) = 3, and p(w2) = 4.

First we try to construct an L-colouring of R′2 in the following way. We fix
a colouring c′ of the subgraph of R′2 induced by vertices v, u1, u2 and u3.
Notice that such a colouring always exists by Lemma 4. We choose c′(w1) ∈
L(w1) \ {c

′(v), c′(u1)}, and afterwards set L′(w2) = L(w2) \ {c
′(v), c′(w1)},

L′(w3) = L(w3)\{c
′(w1)} and L′(w4) = L(w4). Each of the lists L′ contains

at least two colours. If we can colour w2, w3 and w4 from lists L′, then we
obtain a proper colouring of R′2. If this is not the case, then by Theorem 3,
L′(w2) = L′(w3) = L′(w4) = {a1, a2} for some two colours a1 and a2. Let
a3 = c′(w1), a4 = c′(v) and a5 = c′(u1). Then L(w3) = {a1, a2, a3} and
L(w2) = {a1, a2, a3, a4}.

Note that if we can choose colour for w1 distinct from a3, i.e., if |L(w1) \
{a4, a5}| > 1, then we are able to extend the colouring to the rest of the
configuration. Therefore, let us assume that L(w1) = {a3, a4, a5}. The
colours a4 = c′(v) and a5 = c′(u1) for that the colouring c′ cannot be
extended to the subconfiguration on vertices w1, w2, w3 and w4 cannot be
coloured are determined uniquely. By Lemma 4, we can choose a colouring
c of v, u1, u2 and u3 such that c(u1) 6= a5. Hence, we can extend c to R′2.

(3) Let R be Y2,3,4. In this case, the configuration R′ is Y1,2,3. Let v be the
3-vertex of R′, and let u1, w1w2 and y1y2y3 be the threads incident to v,
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where u1, w1 and y1 are adjacent to v. We let p(u1) = p(w2) = p(y3) = 2,
p(w1) = p(y2) = p(v) = 3 and p(y1) = 4.

Let us first fix a colouring c′ of the subgraph of R′2 induced by u1, v, w1 and
w2, which exists by Lemma 4. Let L′(y1) = L(y1) \ {c′(u1), c

′(w1), c
′(v)},

L′(y2) = L(y2) \ {c′(v)} and L′(y3) = L(y3). Note that |L′(y1)| ≥ 1,
|L′(y2)| ≥ 2 and |L′(y3)| = 2. If y1, y2 and y3 can be coloured from
lists L′, we obtain a proper colouring of R′2. Assume this is not the
case. Then |L′(y2)| = 2 and L′(y1) ⊆ L′(y2) = L′(y3). This implies that
L(y2) = L(y3) ∪ {c′(v)}. But by Lemma 4 we may choose a colouring c of
subgraph of R′2 induced by u1, v, w1 and w2 such that c(v) 6= c′(v), and
such a colouring can be extended to R′2.

(4) Let R be Y5,5—0—Y4,5. The configuration R′ is Y4,4—0—Y3,4. Let v1 and v2

be the two adjacent 3-vertices of R′, and let u1u2u3u4, w1w2w3w4, y1y2y3y4

and z1z2z3 be the threads of R′, where u1 and w1 are adjacent to v1 and y1

and z1 are adjacent to v2. Then we let p(u4) = p(w4) = p(y4) = p(z3) = 2,
p(u3) = p(w3) = p(y3) = p(z2) = 3 and p(x) = 4 for every other vertex x of
R′.

Suppose that we have a colouring c′ of the square of the path P =
w4w3w2w1v1v2z1z2z3, and suppose that this colouring cannot be extended
to a colouring of R′2. The colourings of the threads Pu = u1u2u3u4 and
Py = y1y2y3y4 are independent, because the distance of u1 and y1 is three.
Assume that c′ cannot be extended to Pu. Similarly as in the proof of the
second claim of this lemma, we conclude that the lists of vertices of Pu

uniquely determine the colour au = c′(v1). And, if c′ cannot be extended to
Py, then the lists of vertices of Py uniquely determine the colour ay = c′(v2).
Let L′(v1) = L(v1) \ {au}, L′(v2) = L(v2) \ {ay} and L′(x) = L(x) for the
other vertices of P . If we can find an L′-colouring c of P 2, then c can be
extended to a proper colouring of R′2.

Let us choose a colour a1 ∈ L′(z2) \ L′(z3). Using Theorem 3, fix an L′-
colouring c of the square of the path w4w3w2w1v1v2 such that c(v2) 6= a1.
We extend c to the vertices z1, z2 and z3 in the following way. We assign lists
L′′(z1) = L′(z1)\{c(v1), c(v2)}, L′′(z2) = L′(z2)\{c(v2)} and L′′(z3) = L′(z3)
to these vertices. Note that each of these lists has size at least 2. If an
L′′-colouring of the square of z1z2z3 exists, it extends c to a proper L′-
colouring of P 2. If such a colouring does not exist, then by Theorem 3,
L′′(z1) = L′′(z2) = L′′(z3). And hence, L′(z2) = L′(z3) ∪ {c(v2)}. But this
is impossible, because c(v2) 6= a1.

(5) Let R be the last configuration given in the lemma. The configuration R′

is induced by vertices v1,. . . , v7, x1 and y1, and the lengths of the lists are
p(x1) = p(y1) = 2, p(v1) = p(v2) = 3 and 4 for the remaining vertices. Let
us construct the colouring c from the lists L.
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We first colour the subgraph induced by vertices x1, v1, v2 and y1, which is
possible by Lemma 4. In case L(v4) \L(v5) contains precisely one element,
say a, we may also assume that the colour c(v2) is distinct from a. Let
us choose colours c(v3) and c(v7) from their lists such that they extend
this colouring. Then, we construct the assignment of lists to the rest of
the vertices in the following way: L′(v6) = L(v6) \ {c(v1), c(v7)}, L′(v5) =
L(v5) \ {c(v3), c(v7)} and L′(v4) = L(v4) \ {c(v2), c(v3)}. If we can extend
the colouring c to these vertices from lists L′, we properly colour the whole
configuration R′2. By Theorem 3, this is possible unless L′(v4) = L′(v5) =
L′(v6) = S and the length of S is exactly two. This implies that L(v4) =
S ∪ {c(v2), c(v3)} and L(v5) = S ∪ {c(v3), c(v7)}. But this means that c(v2)
is the single colour of L(v4) \ L(v5), which contradicts the choice of the
colouring of vertices x1, v1, v2 and y1.

Now let us focus on 5-reducible configurations.

Lemma 7. The following two configurations are 5-reducible:

(1) a 3-thread, and

(2) Y1,2,2.

Proof. Let us prove the reducibility of each configuration R separately. We use
Lemma 2. Let L be an arbitrary p-list assignment to the vertices of R, where
p(v) = 5− s′R(v) for each vertex v of R. In order to be able to apply the lemma,
we need to consider the case when two of the vertices of R share a neighbour
outside of R, and to show that R can be coloured from any p-list assignment.

(1) The configuration R is a 3-thread v1v2v3, p(v1) = p(v3) = 2 and p(v2) = 3. If
v1 and v3 have a common neighbour outside of R, then R together with this
vertex forms a 4-cycle with at least three 2-vertices. Such a configuration is
reducible by Lemma 5. And, if v1 and v3 do not have a common neighbour
outside R, then we can apply Lemma 2, since R can be coloured from any
p-list assignment by Theorem 3.

(2) The configuration R is Y1,2,2 with the 3-vertex v and threads u1, w1w2 and
y1y2, where u1, w1 and y1 are the neighbours of v, see Figure 1(a). The
lengths of the lists are p(u1) = p(w2) = p(y2) = 2 and p(w1) = p(y1) =
p(v) = 4.

Assume first that no two vertices of R have a common neighbour outside
of R. In this case we can directly apply Lemma 2, and it is sufficient to
show that R2 can be coloured from the lists L. Let us choose colours in this
order: c(v) ∈ L(v) \ L(w2), c(u1) ∈ L(u1) \ {c(v)}, c(y2) ∈ L(y2) \ {c(v)},
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w2(2)
w1(4)

v(4)

y1(4)
y2(2)

u1(2)

(a)

w2(4)
w1(4)

v(3)

y1(4)
y2(4)

x(2)

(b)

w2(4)
w1(5)

v(4)

y1(3)

u1(4)

x(2)

(c)

Figure 1: Configurations arising from Y1,2,2. The numbers in brackets denote the
lengths of the lists assigned to the vertices. The dashed edges join the considered
configuration with the rest of the graph.

c(y1) ∈ L(y1) \ {c(v), c(u1), c(y2)}, c(w1) ∈ L(w1) \ {c(v), c(u1), c(y1)} and
c(w2) ∈ L(w2) \ {c(w1)}. This is always possible by sizes of the lists, and
the constructed colouring is a proper colouring of R2, since c(w2) 6= c(v) by
the choice of c(v).

Next, consider the case that w2, y2 and u1 have a common neighbour x.
Then V (G) = V (R)∪{x}, and G2 is 5-choosable – colour vertices v, u1 and
x in this order, remove their colours from lists of vertices w1, w2, y1 and y2

and use Theorem 3 to colour them from the restricted lists of size at least
two. This is possible, since these vertices induce a 4-cycle in G2.

Suppose now that w2 and y2 have a common neighbour x that is not adja-
cent to u1. We apply Lemma 2 on the 6-cycle induced by vertices v, x, w1,
w2, y1 and y2, see Figure 1(b). Since x and u1 are not adjacent, this is pos-
sible. The lengths of lists are p′(v) = 3, p′(x) = 2 and 4 for the remaining
vertices. Colour first x and v from their lists arbitrarily, and then extend
this colouring to the vertices w1, w2, y1 and y2 that induce a 4-cycle in G2

using Theorem 3 – each of the vertices w1, w2, y1 and y2 have at least two
colours distinct from colours of x and v in their lists.

Finally, consider the case that w2 and u1 have a common neighbour x that is
not adjacent to y2. Let us apply Lemma 2 on the graph induced by vertices
v, x, w1, w2, u1 and y1, see Figure 1(c). The list sizes are p′′(x) = 2,
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p′′(y1) = 3, p′′(w2) = p′′(u1) = p′′(v) = 4 and p′′(w1) = 5. Let L′′ be
an arbitrary p′′-list assignment and let us find an L′′-colouring c′′. Choose
c′′(u1) ∈ L′′(u1) \ L′′(y1) and colour the remaining vertices one by one in
the following order: x, w2, v, w1 and y1. The sizes of the lists ensure that
this is always possible.

Finally, we identify the 6-reducible configurations.

Lemma 8. The following configurations are 6-reducible in graphs of girth at least
6:

(1) a 2-thread,

(2) a 3-cycle containing two 3-vertices and one 2-vertex,

(3) a 4-cycle containing two nonadjacent 3-vertices and two 2-vertices, and

(4) Y1,1—1—Y0,1.

Proof. Let us prove the reducibility of each configuration R separately. We use
Lemma 2. Let L be an arbitrary p-list assignment to the vertices of R, where
p(v) = 6 − s′R(v) for each vertex v of R. For the fourth configuration, we need
to discuss the case when two of the vertices of R share a neighbour outside of
R in order to be able to apply Lemma 2. For the remaining configurations the
assumptions of the same lemma are satisfied trivially.

(1) The configuration R is a 2-thread v1v2 such that p(v1) = p(v2) = 2. The
graph R2 can obviously be coloured from L.

(2) Let v1, v2 and v3 be the vertices of the configuration R, where v3 is the
2-vertex. Then p(v1) = p(v2) = 2 and p(v3) = 4. The graph R2 can be
coloured by Theorem 3.

(3) Let v1, v2, v3 and v4 be the vertices of the configuration R, where v2 and v4

are the 2-vertices. Then p(v1) = p(v3) = 3 and p(v2) = p(v4) = 4. Again,
the graph R2 can be coloured by Theorem 3.

(4) The 3-vertices of R are v1 and v2 with the common neighbour z. The
1-threads are u1, w1 and y1, where u1 and w1 are the neighbours of v1

and y1 is a neighbour of v2, see Figure 2(a). The lengths of the lists are
p(u1) = p(w1) = 3, p(v1) = 4, p(v2) = p(y1) = 2 and p(z) = 5.

Suppose first that the assumptions of Lemma 2 are satisfied, and let us show
that R2 is colourable from the lists L. Choose a colour c(v1) ∈ L(v1)\L(u1)
and c(v2) ∈ L(v2) \ {c(v1)}. Define the lists L′(u1) = L(u1), L′(w1) =
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u1(3)

v1(4)

w1(3)

z(5)
v2(2)

y1(2)

(a)

u1(4)

v1(4)
z(4)

v2(3)

y1(4)

x(3)

(b)

u1(4)

v1(4)
z(5) v2(4)

y1(3)

x(3)

(c)

Figure 2: Configurations arising from Y1,1—1—Y0,1

L(w1) \ {c(v1)}, L′(z) = L(z) \ {c(v1), c(v2)} and L′(y1) = L(y1) \ {c(v2)}.
We can L′-colour the subgraph induced by vertices u1, w1, z and y1 in R2

by Theorem 3. In this way, we extend c to a proper colouring of R2.

Now, consider the case that the assumptions of Lemma 2 are not satisfied.
By the previous claims 2 and 3 of this lemma, and by Lemma 5, it suffices
to discuss the cases when u1 and y1, or u1 and v2 have a common neighbour
x outside R. Moreover, x has exactly two neighbours in R.

Suppose first that u1 and y1 share the neighbour x. Let us consider the
6-cycle induced by vertices u1, v1, z, v2, y1 and x, see Figure 2(b). We may
apply Lemma 2 for this configuration, since distances among v1, v2 and x
are all equal to two. The sizes of the lists are p′(x) = p′(v2) = 3 and 4 for the
rest of the vertices. Let L′ be a p′-list assignment. We construct a colouring
c of the configuration from these lists. We choose c(u1) ∈ L′(u1) \ L′(x)
and c(v2) ∈ L′(v2) arbitrarily, and extend the colouring to the remaining
four vertices (that induce a 4-cycle in the square of the configuration) using
Theorem 3.

Finally, suppose that u1 and v2 have the common neighbour x. Let us
consider the configuration induced by vertices v1, v2, z, u1, y1 and x, see
Figure 2(c). The distance between x and v1 is two, and the between x and
y1 is two as well. The vertices v1 and y1 cannot share the neighbour w1,
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since two 2-vertices cannot be adjacent in a 6-minimal graph by claim 1 of
this lemma. Therefore, we may apply Lemma 2. The lengths of lists are
p′′(y1) = p′′(x) = 3, p′′(v1) = p′′(v2) = p′′(u1) = 4 and p′′(z) = 5.

Let L′′ be a p′′-list assignment and let us construct a colouring c from these
lists. If there exists a colour a ∈ L′′(y1) ∩ L′′(v1), we set c(y1) = c(v1) = a,
remove the colour a from the lists of the remaining vertices and colour them
in order x, v2, u1 and z. If the lists L′′(y1) and L′′(v1) are disjoint, then at
least one of them contains a colour a that does not belong to L′′(z). Let us
colour one of the vertices y1 and v1 by a and the other one arbitrarily from
its list, and remove the colours c(y1) and c(v1) from the lists of vertices
in the distance at most two from them. Then again colour the remaining
vertices from the new lists in order x, v2, u1 and z.

3.2 Neighbourhoods of vertices

Let us consider the possible neighbourhoods of 3-vertices in k-minimal graphs.
We prove that these neighbourhoods cannot contain too many 2-vertices, which
we later use to show that any k-minimal graph must be dense. All of the following
lemmata are proved by a straightforward case analysis using the results of the
previous subsection.

Given a graph G and a vertex v, let G2(v) be the subgraph of G induced by
v and all 2-vertices reachable from v by paths consisting only from 2-vertices.

Lemma 9. Let G be a 4-minimal graph different from a 5-cycle and v a 3-vertex
in G such that v is not adjacent to any 3-vertex. Then G2(v) is a subgraph of
Y1,3,5 or Y1,4,4 or Y2,2,5 or Y3,3,3.

Proof. Let x, y and z be the 3-vertices (not necessarily distinct) that are joined
by threads with v. By the 4-minimality, G cannot contain a 5-cycle, and any
other cycle containing at most one 3-vertex is reducible by Lemma 5. Therefore,
x, y and z are distinct from v. Let lx, ly and lz be the lengths of the threads
joining x, y and z with v, and assume 1 ≤ lx ≤ ly ≤ lz. By Lemma 6(1), lz ≤ 5,
and by Lemma 6(3), lx ≤ 3. If lx = 1, then lz < 5 or ly < 4 by Lemma 6(2) and
G2(v) is a subgraph of Y1,3,5 or Y1,4,4. If 2 ≤ lx ≤ 3, then lx = ly = 2 (and G2(v)
is a subgraph of Y2,2,5), or lz ≤ 3 (and G2(v) is a subgraph of Y3,3,3).

Lemma 10. Let G be a 4-minimal graph different from a 5-cycle and let v and
w be two adjacent 3-vertices in G. Then, both G2(v) and G2(w) are subgraphs of
Y0,5,5, and at least one of the following conditions holds:

• both G2(v) and G2(w) are subgraphs of Y0,4,5, or

• G2(v) or G2(w) is a subgraph of Y0,3,5, or

14



• G2(v) or G2(w) is a subgraph of Y0,4,4.

Proof. Let x and y be the 3-vertices joined by threads with v and let s and t
be the 3-vertices joined by threads with w. Let lx, ly, ls and lt be the lengths
of these threads, and assume lx ≤ ly ≤ lt and ls ≤ lt. The vertices x and y are
distinct from v and the vertices s and t are distinct from w by Lemma 5 and
by the minimality of G. By Lemma 6(1), lt ≤ 5 and both G2(v) and G2(w) are
subgraphs of Y0,5,5.

Suppose that neither of the conditions of the lemma is satisfied by v and w.
Then ly = ls = lt = 5 and 4 ≤ lx ≤ 5. But if s and t are distinct from v, then
this induces a copy of Y5,5—0—Y4,5 in G, which is reducible by Lemma 6(4).
Thus we may assume s = v. Hence, v and w are a part of a 7-cycle vwx1 · · ·x5,
where xi are 2-vertices. However, since lx ≥ 4, ly ≥ 4, lt ≥ 4, the vertices v and
w are additionally incident to vertex-disjoint 2-threads, and the configuration is
reducible by Lemma 6(5).

Let us now consider neighbourhoods of vertices in 5-minimal graphs.

Lemma 11. Let G be a 5-minimal graph and v a 3-vertex in G. Then, G2(v) is
a subgraph of Y0,2,2 or Y1,1,2.

Proof. Let x, y and z be the 3-vertices (not necessarily distinct) that are joined
by threads with v. By Lemma 5, none of x, y and z is equal to v. Let lx, ly and lz
be the lengths of the threads joining x, y and z with v, and assume lx ≤ ly ≤ lz.
By Lemma 7(1), lz ≤ 2, and by Lemma 7(2), lx = 0 (then G2(v) is a subgraph of
Y0,2,2), or ly ≤ 1 (and G2(v) is a subgraph of Y1,1,2).

For vertices in 6-minimal graphs, the situation may be a bit more complicated.

Lemma 12. Let G be a 6-minimal graph and v a 3-vertex in G. Then, either

• G2(v) is a subgraph of Y0,1,1, or

• G2(v) is Y1,1,1, the 3-vertices x, y and z incident with G2(v) are mutually
distinct, and all the graphs G2(x), G2(y) and G2(z) are equal to Y0,0,1.

Proof. Let x, y and z be the 3-vertices (not necessarily distinct) that are joined
by threads with v. By Lemma 5, x, y and z are distinct from v. Let lx, ly and
lz be the lengths of the threads joining x, y and z with v, and again assume
lx ≤ ly ≤ lz. By Lemma 8(1), lz ≤ 1. If lx = 0, then G2(v) is a subgraph of Y0,1,1.
Thus assume that lx = 1 and G2(v) is Y1,1,1. By Lemma 8(3), the vertices x, y
and z are mutually distinct. If G2(x) is not equal to Y0,0,1, then neighbourhoods
of v and x form a supergraph of Y1,1—1—Y0,1, which is reducible by Lemma 8(4).
Thus G2(x) (and similarly G2(y) and G2(z)) is equal to Y0,0,1.
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3.3 Final Step

In this section we combine the results of the previous subsections and prove the
main results.

If G is a subcubic graph, let n2(G) be the number of 2-vertices of G and let
n3(G) be the number of 3-vertices of G. Let V3(G) be the set of 3-vertices of G.
By Lemmata 9–12, G2(v) is equal to Ya,b,c for some a, b and c whenever G is a
k-minimal graph for k ∈ {4, 5, 6}. We let d2(v) = a + b + c. Note that

∑

v∈V3

d2(v) = 2n2.

Let G be a 4-minimal graph and let v be a 3-vertex in G such that G2(v) is
distinct from Y0,5,5. Let P (v) be the set of all 3-vertices u adjacent to v such that
G2(u) is Y0,5,5. Then, we define

d3(v) = d2(v) +
∑

u∈P (v)

d2(u) = d2(v) + 10|P (v)|.

Let us show some estimates on d2 and d3 in the minimal graphs.

Lemma 13. Let G be a 4-minimal graph and let v be a 3-vertex of G such that
G2(v) is distinct from Y0,5,5. Then, d3(v) ≤ 9(|P (v)|+ 1).

Proof. Let P (v) = {u1, . . . , us} with s ≤ 3. Note that by Lemmata 9 and 10,
d2(x) ≤ 10 for every 3-vertex x of G. Let us consider several cases regarding s:

s = 0: If v is not adjacent to any 3-vertex, then d2(v) ≤ 9 by Lemma 9. Oth-
erwise, G2(v) is a subgraph of Y0,5,5 by Lemma 10. The graph G2(v) is
distinct from Y0,5,5, thus d2(v) ≤ 9 in this case as well.

s = 1: By Lemma 10, G2(v) is a subgraph of Y0,3,5 or Y0,4,4. Therefore, d3(v) =
d2(v) + 10 ≤ 18.

s = 2: Since G2(v) is a subgraph of Y0,5,5 and v has at least two neighbours that
are 3-vertices, d2(v) ≤ 5. Consequently, d3(v) = d2(v) + 20 ≤ 27.

s = 3: In this case d2(v) = 0 and d3(v) = 30 < 36.

Lemma 14. Let G be a 6-minimal graph. If u and v are two 3-vertices of G
joined by a path consisting of 2-vertices, then d2(u) + d2(v) ≤ 4.

Proof. We use Lemma 12. If G2(v) is Y1,1,1, then G2(u) is Y0,0,1 and d2(u)+d2(v) =
4. One can apply a similar argument if G2(u) is Y1,1,1. If neither G2(u) nor G2(v)
is Y1,1,1, then both of them are subgraphs of Y0,1,1 and d2(u) + d2(v) ≤ 4.
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We are now ready to prove the main results:

Theorem 15. Let G be a subcubic graph of maximum average degree d < 24/11.
The graph G2 is 4-choosable if and only if G does not contain a 5-cycle.

Proof. If G contains a 5-cycle, then G2 contains a clique of size 5 and therefore
G2 is not 4-colourable. For the other implication, assume for the contradiction
that G does not contain a 5-cycle, but G2 is not 4-choosable. Hence G contains
a 4-minimal subgraph G′ whose average degree is at most d < 24/11. We show
that average degree of any 4-minimal graph is at least 24/11, thus obtaining a
contradiction.

By the 4-minimality, G′ is connected and it contains at least one 3-vertex.
Let U be the set of all 3-vertices v of G′ such that G′

2(v) is not Y0,5,5. Let us now
calculate the following sum in two ways:

S =
∑

v∈U

d3(v).

Since Y5,5—0—Y5,5 is reducible,

S =
∑

v∈V3(G′)

d2(v) = 2n2.

On the other hand, by Lemma 13

S ≤
∑

v∈U

9(|P (v)|+ 1) = 9n3(G
′).

Therefore, 2n2 = S ≤ 9n3 and we infer that n2 ≤ 4.5n3. This means that the
average degree of G′ is

2n2 + 3n3

n2 + n3
= 2 +

n3

n2 + n3
≥ 2 +

n3

5.5n3
=

24

11
.

Theorem 16. Let G be a subcubic graph of maximum average degree d < 7/3.
Then, G2 is 5-choosable.

Proof. Assume for contradiction that G2 is not 5-choosable. Then G contains
a 5-minimal subgraph G′ whose average degree is at most d < 7/3. We show
that average degree of any 5-minimal graph is at least 7/3, thus obtaining a
contradiction.

By the 5-minimality, G′ is connected and contains at least one 3-vertex. Let
us now consider the following sum:

S =
∑

v∈V3(G′)

d2(v) = 2n2(G
′).
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By Lemma 11, d2(v) ≤ 4 for each 3-vertex of G′. Thus, 2n2(G
′) = S ≤ 4n3(G

′)
and we get that n2(G

′) ≤ 2n3(G
′). This means that the average degree of G′ is

2n2 + 3n3

n2 + n3

= 2 +
n3

n2 + n3

≥ 2 +
n3

3n3

=
7

3
.

Theorem 17. Let G be a subcubic graph of maximum average degree d < 5/2.
Then G2 is 6-choosable.

Proof. Assume for contradiction that G2 is not 6-choosable. Then G contains
a 6-minimal subgraph G′ whose average degree is at most d < 5/2. We show
that average degree of any 6-minimal graph is at least 5/2, thus obtaining a
contradiction.

By the 6-minimality, G′ is connected and contains at least one 3-vertex. Let
X be the set of all unordered pairs of 3-vertices {u, v} such that u and v are
connected by a thread. The length of the thread is at most one by Lemma 8(1).
Note that two 3-vertices u and v are connected by at most one such path, since
otherwise the configuration formed by u, v and the two paths is reducible by
Lemma 8(2) or (3). Let us now calculate the following sum in two ways:

S =
∑

{u,v}∈X

[d2(u) + d2(v)].

Each vertex v appears in exactly three pairs in X (since a cycle with at most
one 3-vertex is excluded by Lemma 5), thus the sum is equal to

S = 3
∑

v∈V3(G′)

d2(v) = 6n2(G
′).

On the other hand, consider an arbitrary pair {u, v} ∈ X. By Lemma 14,
d2(u) + d2(v) ≤ 4. Hence, S ≤ 4|X| = 6n3(G

′). Thus, 6n2(G
′) = S ≤ 6n3(G

′)
and we get that n2(G

′) ≤ n3(G
′). This means that the average degree of G′ is

2n2 + 3n3

n2 + n3
= 2 +

n3

n2 + n3
≥ 2 +

n3

2n3
=

5

2
.

4 Colouring Planar Graphs of Large Girth

In this section we show bounds on choosability of planar subcubic graphs of large
girth. A well-known observation is that such graphs have small maximum average
degree.

Lemma 18. Let G be a planar graph of girth at least g. Then d(G) < 2+4/(g−2).
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Proof. Since every induced subgraph of G is a subcubic planar graph of girth at
least g, it suffices to show that d = 2|E(G)|/|V (G)| < 2g/(g − 2). We may also
assume that G is connected. If G is a tree, then obviously d(G) < 2. So assume
that G has a finite girth. Let e = |E(G)|, v = |V (G)| and f = |F (G)|. By Euler
formula, e + 2 = v + f . The girth of G is at least g and because G is not a tree,
every facial walk in G contains a cycle. Therefore, 2e ≥ fg. We obtain

e < e + 2 ≤
2e

d
+

2e

g

1 <
2

d
+

2

g

d < 2 +
4

g − 2
.

Together with Theorems 15–17, this implies:

Corollary 19. Let G be a planar subcubic graph of girth g. Then,

• If g ≥ 24, then χ`(G
2) ≤ 4.

• If g ≥ 14, then χ`(G
2) ≤ 5.

• If g ≥ 10, then χ`(G
2) ≤ 6.

5 Lower Bounds

In this section, we show lower bounds on the girth of the planar subcubic graphs
for that the analogue of Corollary 19 holds. It is easy to find a 5-minimal graph
of girth 5:

Proposition 20. The graph from Figure 3 has girth 5 and its square is not
5-colourable.

We also show that there exists a 4-minimal graph of girth 9. First we need to
prove several auxiliary lemmata. In their proofs, the following notation is used
(where H is the fixed graph we are trying to colour): (u, v, w) → c(x) = k stands
for the statement: ”The vertices u, v and w are the neighbours of vertex x in H 2.
Let c : V (H) → {1, 2, 3, 4} be a proper colouring of H2 such that c(u), c(v) and
c(w) are three mutually different colours distinct from colour k. Then necessarily
c(x) = k”.

Lemma 21. Let H4 be the graph in Figure 4. Then there is no proper colouring
c : V (H4) → {1, 2, 3, 4} of H2

4 such that c(x1) = c(x2) and {c(y1), c(z1)} 6=
{c(y2), c(z2)}.
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Figure 3: A 5-minimal graph

x1

y1

z1

x2

y2

z2

u1 u2 u3 u4

Figure 4: The graph H4.

Proof. Without loss of generality we may assume that c(x1) = c(x2) = 1, c(y1) =
c(y2) = 2, c(z1) = 3 and c(z2) = 4. Then (x1, y1, z1) → c(u1) = 4, similarly
(x2, y2, z2) → c(u4) = 3 and then (x1, u1, u4) → c(u2) = 2 and (x4, u1, u4) →
c(u3) = 2. But u2 and u3 are neighbours in H2

4 , thus the proper colouring does
not exist.

Lemma 22. The graph G 6=(x1, x2) in Figure 5 has the following properties:

1. G 6= is a planar subcubic graph.

2. The vertices x1 and x2 are on distance 6.

3. The girth of G 6= is 9.

4. Every proper colouring c : V (G 6=) → {1, 2, 3, 4} of G2
6= satisfies c(x1) 6=

c(x2).

Proof. The first three properties are clear from the figure, thus it is sufficient
to prove the last property. For the contradiction suppose that c : V (G 6=) →
{1, 2, 3, 4} is a proper colouring of G2

6=, such that c(x1) = c(x2). We may assume
that c(x1) = c(x2) = 1.

First we show that c(y1) 6= c(y2). If c(y1) = c(y2) then we may assume that
c(y1) = c(y2) = 2 and c(z3) = 3. Successively we observe that (x1, y1, z3) →
c(z1) = 4, (x1, y1, z1) → c(z7) = 3, (x2, y2, z3) → c(z4) = 4, (y1, z4, z7) → c(z6) =
1, and (y2, z4, z7) → c(z5) = 1, but z5 and z6 are neighbours in G2

6=. That is a
contradiction with assumption c(y1) = c(y2).
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Figure 5: The graph G 6=(x1, x2).

Hence, we know that c(y1) 6= c(y2). We may assume that c(y1) = 2 and
c(y2) = 3. Then, c(z1) ∈ {3, 4} and c(z3) ∈ {2, 4}. Since z1 and z3 are adjacent
in G2

6=, they have distinct colours. Consider the following cases:

c(z1) = 3 and c(z3) = 4: We infer that (y1, z1, z3) → c(z2) = 1, (x1, y1, z1) →
c(z7) = 4, (z1, z2, z3) → c(u4) = 2, (x2, y2, z3) → c(z4) = 2, (z4, y2, z7) →
c(z5) = 1, (z5, z4, z7) → c(z6) = 3, (z5, z6, z7) → c(u1) = 2, and
(y2, z4, z5) → c(u7) = 4. Vertex u2 has neighbours in G2

6= coloured by 2
and 3, thus c(u2) ∈ {1, 4}. If c(u2) = 4 then all the vertices u3, u5 and u6

have neighbours coloured by 2 and 4, and thus they are coloured by 1 or 3.
But it is impossible since they induce a triangle in G2

6=. Therefore, we know
that c(u2) = 1. Then (u2, u4, u7) → c(u5) = 3, (u2, u4, u5) → c(u3) = 4,
(z2, u3, u4) → c(v4) = 3, (y1, z6, z7) → c(v1) = 1, (z7, v1, v4) → c(v2) = 2,
and (v1, v2, v4) → c(v3) = 4. But by Lemma 21 this colouring cannot be
extended to vertices v5, v6, v7 and v8.

c(z1) = 4 and c(z3) = 2: This case is straightforward: (y2, z1, z3) → c(z2) = 1,
(x1, y1, z1) → c(z7) = 3, (x2, y2, z3) → c(z4) = 4, (y1, z4, z7) → c(z6) = 1,
and (z4, z6, z7) → c(z5) = 2. By Lemma 21, this colouring cannot be
extended to vertices u1, u2, u3 and u4.

c(z1) = 3 and c(z3) = 2: First, observe that (x1, y1, z1) → c(z7) = 4 and
(x2, y2, z3) → c(z4) = 4. Both of the vertices z2 and u4 have neighbours in
G2

6= coloured by colours 2 and 3, thus they are coloured by 1 or 4. They are
adjacent, thus one of them has to be assigned the colour 1 and the second
one the colour 4. Hence, c(u3) ∈ {2, 3}. The vertex z6 has neighbours with
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colours 2 and 4 so c(z6) ∈ {1, 3}. Now, we distinguish cases according to
colours of u3 and z6.

c(z6) = 1 and c(u3) = 2: In this case we infer (z6, z7, u3) → c(u1) = 3,
(z6, u1, u3) → c(u2) = 4, (z6, z7, u1) → c(z5) = 2, (y2, z4, z5) → c(u7) =
1, (z4, u3, u7) → c(u6) = 3, and (u2, u3, u7) → c(u5) = 3, but that
is a contradiction with that colouring is proper since u5 and u6 are
neighbours.

c(z6) = 1 and c(u3) = 3: This is an easy case, (z7, z6, u3) → c(u1) = 2,
(z6, u1, u3) → c(u2) = 4, and (z7, z6, u1) → c(z5) = 3. But z5 and y2

are neighbours in G2
6= and both of them are coloured by 3. This is a

contradiction.

c(z6) = 3 and c(u3) = 2: Note that (z6, z7, u3) → c(u1) = 1, (z6, u1, u3) →
c(u2) = 4, (z7, z6, u1) → c(z5) = 2, (y2, z4, z5) → c(u7) = 1,
(z4, u3, u7) → c(u6) = 3, and (u2, u3, u7) → c(u5) = 3, but this is
a contradiction, since u5 and u6 are adjacent in G2

6=.

c(z6) = 3 and c(u3) = 3: If c(u4) = 4 then (z1, z3, u3) → c(z2) = 1, but
by Lemma 21 this colouring cannot be extended to vertices v1, v2,
v3 and v4. Thus necessarily c(u4) = 1. Similarly, if c(u6) = 2 then
by Lemma 21 the colouring cannot be extended to vertices w1, w2,
w3 and w4 (note that neither u5 nor u7 is coloured by 3, and thus
the assumptions of the lemma are satisfied). Hence, it follows that
c(u6) = 1. Next, (y2, z4, u6) → c(u7) = 2, (u3, u6, u7) → c(u5) = 4,
(u3, u4, u5) → c(u2) = 2, (z7, u2, u3) → c(u1) = 1, and (z6, z7, u1) →
c(z5) = 2, but z5 and u7 are neighbours in G2

6= coloured by the same
colour, a contradiction.

Theorem 23. There exists a planar subcubic graph G with g(G) = 9 such that
G2 is not 4-colourable.

Proof. The graph consists of vertices x, y, z, u and v, edges xy, yz, yu and uv,
and copies of G 6=(x, v) and G 6=(z, v) (see Figure 6). By the first three properties
of G 6= from Lemma 22, G is a planar graph of girth 9. For the contradiction
suppose that G is 4-colourable. Because of the distances of the vertices x, y, z,
u and v, and the forth property of G 6= from Lemma 22, all the vertices x, y, z,
u and v must have mutually distinct colours. But it is a contradiction with the
4-colourability.
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Figure 6: A graph whose square is not 4-colourable

6 NP-completeness

In this section we discuss the complexity aspects of the problem. Let us first
show an auxiliary structural lemma.

Lemma 24. There exists a subcubic planar graph Gcopy(x, y) of girth 9 with the
properties described below. The graph Gcopy(x, y) contains two 1-vertices x and
y on the outer face. Let vx and vy be the neighbours of x and y in Gcopy(x, y),
respectively. The graph Gcopy(x, y) satisfies the following properties:

• the distance of x and y in Gcopy(x, y) is greater than 9, and

• c(x) = c(y) in any proper colouring c of the square of Gcopy(x, y), and

• for any a1, a2, a3 ∈ {1, 2, 3, 4} such that a1 6= a2 and a1 6= a3, there exists
a proper colouring c of the square of Gcopy(x, y) with c(x) = c(y) = a1,
c(vx) = a2 and c(vy) = a3.

Proof. We use the graph G 6= from Lemma 22. The graph G 6=

has the following colouring c1: c−1
1 ({1}) = {x1, y2, v1, u1, u4, u6, w2},

c−1
1 ({2}) = {z1, x2, z6, v2, v7, u3, u7, w1}, c−1

1 ({3}) = {y1, z3, z5, v4, v5, v8, u5, w3}
and c−1

1 ({4}) = {z2, z4, z7, v3, v6, u2, w4}.
The steps of the construction of Gcopy(x, y) are depicted in Figure 7. First we

construct an auxiliary subcubic planar graph Gcopy′(x, y) of girth 9 such that the
vertices x and y are on the outer face, x is a 1-vertex and y is a 2-vertex, and
c(x) = c(y) in any proper colouring c of the square of Gcopy′(x, y). The graph
Gcopy′(x, y) consists of vertices x, y, u, v and w, edges xu, uv, uw and wy, and
a copy of G 6=(v, y). The vertices x, y, u, v and w must have mutually distinct
colours, with the exception of vertices x and y that can have the same colour.
Since we colour the graph by four colours, the colours of x and y must in fact
be the equal in any proper colouring of G2

copy′(x, y). Also note that there exists
a proper colouring c2 of the square of Gcopy′(x, y) by four colours – let us colour
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Figure 7: Graphs used in Lemma 24

the copy of G 6=(v, y) using the colouring c1, and set c2(x) = 2, c2(u) = 4 and
c2(w) = 3.

Next we construct the second auxiliary subcubic planar graph Gcopy′′(x, y) of
girth 9 such that the 1-vertices x and y are on the outer face, and c(x) = c(y) in
any proper colouring c of G2

copy′(x, y). The graph Gcopy′′(x, y) consists of vertices
x, x′, y, y′, z1, z2, v1 and v2, edges x′z1, y′z2, z1z2, z1v1, z2v2 and the following
copies of graph Gcopy′: Gcopy′(x, x′), Gcopy′(y, y′) and Gcopy′(v1, v2).

In any colouring c of G2
copy′′(x, y), by properties of Gcopy′ it holds that c(x) =

c(x′), c(y) = c(y′) and c(v1) = c(v2). Let us assume that exists such a colouring
c with c(x) 6= c(y). We may assume that c(x) = 1 and c(y) = 2, and also
that c(z1) = 3 and c(z2) = 4. But then c(v1) = c(y′) = c(y) = 2 and c(v2) =
c(x′) = c(x) = 1, which is a contradiction with the properties of Gcopy′(v1, v2).
On the other hand, there exists the following colouring c3 of G2

copy′′(x, y): colour
Gcopy′(x, x′) by c2 and Gcopy′(y, y′) by c2 with colours 3 and 4 swapped, so that
c3(x) = c3(x

′) = c3(y) = c3(y
′) = 2, neighbours of x′ have colours 1 and 3 and

neighbours of y′ have colours 1 and 4. Then set c3(z1) = 4, c3(z2) = 3 and finally
colour Gcopy′(v1, v2) by the colouring c2 with colours 1 and 2 and colours 3 and 4
swapped, i.e. c3(v1) = c3(v2) = 1.

The graph Gcopy′′(x, y) satisfies almost all properties of Gcopy(x, y), except pos-
sibly for the last property that any proper colouring of x, y and their neighbours
can be extended – we only constructed the colouring c3 where c3(x) = c3(y) = 2,
the colour of the neighbour of x is 3 and the colour of the neighbour of y is 4. We
construct the graph Gcopy(x, y) by taking vertices x, z and y and adding copies of
Gcopy′′(x, z) and Gcopy′′(z, y). Let vx be the neighbour of x and vy the neighbour
of y in this graph. Let vzx be the neighbour of z in Gcopy′′(x, z) and vzy be the
neighbour of z in Gcopy′′(z, y). Up to the permutation of colours, there are only
two proper colourings of x, y, vx and vy – either c(x) = c(y) = 1, c(vx) = 2,
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Figure 8: Gcross(x1, y1, x2, y2)

c(vy) = 3 or c(x) = c(y) = 1, c(vx) = 2 = c(vy) = 2. In both cases we can colour
Gcopy′′(x, z) and Gcopy′′(z, y) by the permutations of c3 such that in addition to
the prescribed colours on x, y, vx and vy, we have c(vzx) = 3 and c(vzy) = 4. This
shows that indeed any precolouring of vertices x, y, vx and vy can be extended
to a proper colouring of G2

copy(x, y) and finishes the proof of the lemma.

The main result of this section follows:

Theorem 25. It is NP-complete to decide whether the square of a subcubic planar
graph of girth 9 is 4-colourable.

Proof. We use the copy gadget from Lemma 24. The special vertices x and y of
Gcopy(x, y) have degree 1. Thus, we can form a binary tree where the edges are
replaced by the copies of Gcopy(x, y), and copy the colour of the root of the tree
to an arbitrary number of vertices of degree one. Note that by the properties of
Gcopy(x, y), this graph does not impose any additional constraints on colours of
the neighbours of these vertices.

The other gadget we need is a crossover gadget Gcross(x1, y1, x2, y2), which
consists of vertices x1, y1, x2, y2, w1 and w2 and edges x1w1, w1y2, w1w2, y1w2

and w2x2, see Figure 8. In any colouring c of the square of Gcross(x1, y1, x2, y2)
with c(x1) 6= c(y1), it holds that c(x1) = c(x2) and c(y1) = c(y2), there exists
such a colouring, and a cyclic order of the 1-vertices of the gadget on the outer
face is x1, y1, x2 and y2. This gadget allows us to transfer information across the
edges of the graph.

The proof of the NP-completeness proceeds by a reduction from the problem
of 3-colouring of a planar graph, that is NP-complete due to Dailey [3]. Given an
instance of this problem—a 2-connected planar graph G— we need to create a
subcubic planar graph H of girth 9 of a size polynomial in |V (G)| such that H2 is
4-colourable if and only if G is 3-colourable. The idea of the construction is that
we put a vertex into each face of G and force the colour of all these vertices to be
the same, say 4. We then join them to all the vertices of G, so the original vertices
must have colours 1, 2, or 3. Then we replace the edges by gadgets that ensure
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large enough girth. A 4-colouring of H2 then straightforwardly corresponds to a
3-colouring of G.

The graph H is constructed in the following way (see Figure 9): We replace
each d-vertex v of G by a tree of copy gadgets that copy the colour of v to 2d
vertices of degree one. Let e1, f1, e2, f2, . . . , ed and fd be a cyclic order of the
edges and the faces incident to v, and let ve1

, vf1
, . . . , ved

and vfd
be a cyclic

order of the copies of v.
We add a vertex uf for each `-face f of G, and add a tree of copy gadgets

that copy its colour to 2` vertices uf
v1

, uf
e1

, . . . , uf
v`

and uf
e`

, where v1, e1, v2, e2,
. . . , v` and e` is a cyclic order of the vertices and the edges around the face f .

If a vertex v of G is incident to a face f , we add a new vertex x and a copy
of the graph Gcopy(u

f
v , x) and join x and vf by a 1-thread. This ensures that uf

and v have distinct colours.
If e = vw is an edge of G incident to faces f1 and f2, we add vertices x1, x2,

x3 and x4, the following copies of gadgets: Gcopy(ve, x1), Gcross(x1, u
f2

e , x2, u
f1

e ),
Gcopy(x2, x3) and Gcopy(x4, we), and join x3 and x4 by a 1-thread. Since we already
know that ufi

and v have distinct colours, this ensures that the vertices v and w
have distinct colours, and that uf1

and uf2
have the same colour.

Given a proper 3-colouring G by the colours {1, 2, 3}, we can colour all the
vertices uf of H by the colour 4 and preserve the colouring of the copies of the
vertices of G inside H. We extend this colouring to whole H2 by the properties
of the gadgets. Conversely, in a proper 4-colouring of H2, all the vertices uf have
the same colour (say 4) and the colours of the original vertices of G are distinct
from it, i.e., belong to {1, 2, 3}. It follows that this colouring restricted to the
vertices of G is a proper 3-colouring of G.

The construction of H can be performed in a polynomial time, and H is a
subcubic planar graph of girth 9. This finishes the proof of the NP-completeness
of the problem.

7 Conclusion

The gap between the upper bounds and the examples showing the lower bounds
obtained in Sections 4 and 5 is large and it would be of its own interest to find
sharper bounds. In particular we believe that the upper bounds can be improved
significantly by taking more complicated reducible configurations into account.

We were unable to find a 7-minimal planar subcubic graph of girth larger than
three. So we pose the following conjecture:

Conjecture 2. The square of every triangle-free planar subcubic graph is 6-
colourable.

By subdividing some of the edges of the graph in Figure 3, we can obtain an
example showing that the conjecture is tight.
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Figure 10: A graph that is not `-facial colourable with 3` − 1 colours

In fact we propose the following more general conjecture. A colouring c of
a plane graph is an `-facial colouring if any two distinct vertices on a facial
walk of length ` have distinct colours. Notice that 1-facial colouring is the usual
colouring. Also notice that for subcubic graphs 2-facial colouring corresponds to
colouring of the square of the graph. This concept is introduced in [9]. They
pose also the following conjecture:

(3` + 1)-Conjecture. Let G be a plane graph and ` ≥ 1. Then, G is `-facial
colourable by 3` + 1 colours.

For ` = 1 the conjecture is equivalent to the Four Colours Theorem. For
` = 2 we obtain Wegner’s conjecture for subcubic graphs. If the conjecture is
true, it is tight for all values of `. In a same fashion, we propose the following
3`-conjecture:

3`-Conjecture. Let G be a plane triangle-free graph and ` ≥ 1. Then G is
`-facial colourable by 3` colours.

For ` = 1 this statement is equivalent to Grötzsch’s Theorem. For ` = 2, it
implies Conjecture 2. Note that the bound in this conjecture is tight, as witnessed
by graphs depicted in Figure 10. All the faces of the graph form cliques for the
purposes of `-facial colouring, and at most one of vertices in thread between x
and y may have the same colour as vertex z.

If 3`-Conjecture and Conjecture 2 are not false, then they are probably hard.
The following nice consequence of these two conjectures might be easier for con-
sideration.

Conjecture 3. The square of every bipartite planar subcubic graph is 6-
colourable.
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planar networks, R. H. Möhring, R. Raman, eds., Proc. ESA’02, LNCS Vol.
2461, Springer, 2002, 736–747.

[13] M. Montassier, A. Raspaud, A note on 2-facial coloring of plane graphs,
Technical Report RR-1341-05, LaBRI, 2005.

[14] S. Ramanathan, Scheduling algorithms for multi-hop radio networks,
Ph.D. thesis: Dept. of Computer Science, University of Delaware, Newark,
1993.

29



[15] G. Wegner, Graphs with given diameter and a coloring problem, technical
report, University of Dortmund, Germany, 1977.

[16] X. Zhou, Y. Kanari, T. Nishizeki, Generalized vertex-coloring of partial
k-trees, IEICE Trans. Foundamentals, EXX-A(1), 2000.

30


