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Abstract. An L, )-labeling of a graph of span ¢ is an assignment of
integer labels from {0,1,...,t} to its vertices such that the labels of
adjacent vertices differ by at least two, while vertices at distance two are
assigned distinct labels.

We show that for all £ > 3, the decision problem whether a k-regular
graph admits an L, ;)-labeling of span k+2 is NP-complete. This answers
an open problem of R. Laskar.

1 Introduction

Motivated by models of channel assignment in wireless communication [7,6],
generalized graph coloring and in particular the concept of L3 1)-labeling have
drawn significant attention in the graph-theory community in the past decade [1].

Besides the practical aspects, also purely theoretical questions became very
intersting. Among other we shall highlight a long-lasting conjecture of Griggs
and Yeh that the span of any optimal L, ;)-labeling is upperbounded by A(G)?,
where A(G) is the maximum degree of the given graph G [6]. So far this conjec-
ture is still open, though it has been verified for various classes of graphs (e.g.,
for chordal graphs [11,8] or for graphs of diameter at most two [6]).

We focus our attention on the computational complexity of the decision prob-
lem whether a given graph G allows an L, 1)-labeling of span at most A. If A
is a part of the input, the problem becomes NP-complete by a reduction from
the Hamiltonian path problem [6]. If A is a fixed constant (i.e., the parameter
of the problem), the computational complexity was settled in [3], by construct-
ing a polynomial time algorithm for A < 3 and by showing that the problem is
NP-complete otherwise. The core argument of the NP-hardness proof is based
on the fact that vertices of high degree may allow only extremal labels (i.e., 0 or
A) of the given spectrum.

In response to this fact, R. Laskar asked at the DIMACS/DIMATIA /Rényi
Workshop on Graph Colorings and their Generalizations (Rutgers University,
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2003) what is the computational complexity of the L, 1)-labeling problem when
restricted to regular graphs, hoping that the restriction might provide new ideas
for a general proof of hardness results on distance constrained labelings. In this
note we settle the computational complexity of the L, 1)-labeling problem on
regular graphs in the following sense:

Theorem 1. For every integer k > 3, it is NP-complete to decide whether a
k-regular graph admits an L, 1)-labeling of span (at most) A = k + 2.

The result is the best possible in terms of the span, since no k-regular graph
(for k > 2) allows an L3 1)-labeling of span k + 1 (see e.g. a paper by Georges
and Mauro [5] on labelings of regular graphs). Though our result is not totally
unexpected, the reduction (namely the garbage collection) is surprisingly uneasy
to design. It utilizes so called multicovers introduced in [10].

The paper is organized as follows: The next section provides necessary defini-
tions and facts used latter. In Section 3 we prepare tools used in the construction
and discuss their properties. The main result is then proven in Section 4.

2 Preliminaries

All graphs considered in this paper are finite and simple, i.e., with a finite vertex
set and without loops or multiple edges. A graph G is denoted as a pair (Vg, Eq),
where Vi stands for a finite set of vertices and E¢ is a set of edges, i.e. unordered
pairs of vertices. The distance distg(u, v) between two vertices u and v of a graph
G is the length (the number of edges) of a shortest path connecting v and v. If
two vertices belong to different components, we let their distance be unspecified.

The set of vertices adjacent to a vertex wu is called the meighborhood of u
and it is denoted by Ng(u). The degree of a vertex w is the cardinality of its
neighborhood, i.e., deg(u) = |Ng(u)|. A graph is called k-regular if all its vertices
are of degree k.

A vertex labeling by nonnegative integers f : Vi — Zg is called an Lz,1)-
labeling of G if | f(u) — f(v)| > 2 holds for any pair of adjacent vertices u and v,
and the labels f(u) and f(v) are distinct whenever dist(u,v) = 2.

The span of an Ly 1)-labeling is the difference between the largest and the
smallest label used. The parameter A(31)(G) is the minimum possible span of an
L 2,1)-labeling of G. Such a labeling will be called optimal, and we may assume
that it uses labels from the discrete interval [0, ..., A2,1)(G)].

With an optimal labeling f we associate its symmetric labeling f’, defined
by f'(u) = A2,1)(G) — f(u). Clearly the symmetric labeling is also optimal.

L 2,1)-1abelings are closely related to graph covers: A full covering projection
from a graph G to a graph H is a graph homomorphism h : Vg — Vg such
that the neighborhood Ng(u) of any vertex u € Viz is mapped bijectively on the
neighborhood Ny (h(u)) of h(u).

Similarly, if the mapping is locally injective, i.e., if Ng(u) is mapped injec-
tively into Ng(h(u)), we call h a partial covering projection. Obviously every
full covering projection is also a partial covering projection.



The relationship between L ;)-labelings and (partial) covering projections
was discussed in [2]:

Proposition 1. Every L 1)-labeling of a graph G of span A\ corresponds to a
partial covering projection G — Pxy1, and vice versa.

In particular, Cyx4; C Px11, hence every partial covering projection to Cx,1
is also an L(s 1)-labeling of span at most .

Kratochvil, Proskurowski and Telle [10] gave an explicit construction of a
special multicover graph allowing many extensions to full covering projections.
We will use it in our gadgets.

Proposition 2 ([10]). For any regular graph F', there exists a graph H (called
a multicover of F') with a distinguished vertex uw € Vg such that any locally
injective homomorphism h' : Ng(u)Uu — F can be extended to a locally bijective
homomorphism h: H — F.

3 Gadgets

3.1 Polarity gadget

Let k¥ > 3 be a positive integer. Consider the graph F, on k + 5 vertices
Vlyeo.,Up—1,UL,---,Us, T, Yy, With edges defined as follows:

E(Fp) ={(vi,v;) |1 <4, <k —1,]i—j| > 2}
U {(vi,uj)|1 < 1 < k — 1,]' — 172,3}
U{(v,us)]|2<i<k—2}

U {(u1,u2), (us, us), (us, ), (usg,y)}

See Fig. 1 for an example of such a graph. Observe also that each vertex
except x and y is of degree k.

Lemma 1. In the graph F),, the pair of vertices x and y are labeled by 0 and X
(or vice versa) under any L 1)-labeling f of span A =k + 2.

Proof. The edge (u1,us) participates in k — 1 triangles. If both u; and uy were
labeled by labels different from 0 and A, then at most A —4 < k — 1 labels would
remain for vy,...,vg_1, which is insufficient. So without loss of generality we
may assume f(u;) = 0, and then uy may get only two possible labels: 2 or A.
The latter would, however, exclude all possible choices for us.

Now up to a symmetry of labelings we have f(u;) = 0, f(uz) = 2 and for
the vertices vy,...,vx_1 remain the labels 4,5,...,\. Since F}, restricted onto
these vertices is the complement of a path on k£ — 1 vertices, only two possible
labelings exist: either f(v;) =i+ 3 or f(v;) = A+ 1 —i. In both cases (they are
equivalent under an automorphism of F},) only one possible label remains for the
vertex uz, namely f(uz) = 1. We deduce by similar arguments that f(u4) = 3.

Finally, since u4 is adjacent to vertices labeled by 1,5, ..., A—1, its remaining
neighbors z and y must be labeled either one by 0 and the other one by A as
claimed.



Fig. 1. The polarity gadget F}, and its L, 1y-labeling.

3.2 Swallowing gadget

In our construction we involve multicovers allowing two different L5 1)-labelings
as follows. Let H,u be a multicover of the k-regular graph Cjys. For the swal-
lowing gadget we take two copies Hq, Hs of the graph H (with the notation that
the copy of vertex v in H; is denoted by v;, i = 1,2), insert two new vertices x,y
and modify the edge set as follows:

E(Fs) = (E(Hy1) U E(H2) \ {(u1,v1), (u2,v2)}) U{(,v1), (¥, v2), (u1,u2)}

where v is an arbitrary neighbor of v in H. Observe that again all vertices except
z and y are of degree k. The construction of the swallowing gadget is illustrated
in Fig. 2.
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Fig. 2. The swallowing gadget Fs and the two of its L, 1)-labelings.

Lemma 2. The graph F; allows two L5 1y-labelings f and f', such that f(v) =
flo1) = A =1, f(v2) = f'(v2) = 1, while f(z) =0, f'(z) =1 and f(y) = A,
flly)=r-1



Proof. We label the vertices of Cy2 by integers [0, )], in a usual sequential way.
For the construction of f we choose the covering projection from H; to [0, A]
where u is mapped on 0 and v on A — 1. The remaining neighbors of u are
mapped onto 2,3,...,A — 1. On Hy we use the symmetric labeling and get a
valid L(2,1)—labeling of Fy, since the “central” vertices u; and us got labels 0 and
A which are sufficiently separated for the desired L ;)-labeling f.

Similarly f' can be obtained in a similar way from an L, ;)-labeling of H
where u is mapped on 1, the vertex v on A — 1 and the remaining neighbors of
u are mapped on the set 3,4,..., A — 2, \.

Both labelings are schematically depicted in Fig. 2.

3.3 Coupling gadget

Let a be an integer in the range [1,A\—1]. Set T'={1,2,...,a—1,a+1,...,k}.
We construct the following graph (called the coupling gadget) F* on k* + 2k + 1
vertices {v! : i = 0,1,...,\, t € T} U {u1,us,z,y} by setting the edges as
follows:

10<i,j <Ali—j|>2,teT}

, (Vi_¢,v5) [t € T}
u1,vp), (uz, vy_y) |t € T}

U {(u1,), (u2,9) }

An example of the coupling gadget for a particular choice A = 5,a = 2 is
depicted in Fig 3. Observe that similarly as above all vertices except « and y are
of degree k.

2 A

Fig. 3. The coupling gadget F? for A = 5 and its L5,1)-labeling.

Lemma 3. The graph F¢ allows an L, 1)-labeling f of span A such that f(x) =
a, f(y) =A—a, f(u1) =X and f(u2) = 0.

Proof. Set f(vl) =1 fori=0,1,...,\ t € T. (See Fig. 3 for an example.) An
easy check shows that it is a valid L, ;)-labeling.



4 Main result

Theorem 2. For every integer k > 3, it is NP-complete to decide whether a
k-regular graph admits an L s 1)-labeling of span (at most) A = k + 2.

Proof. The problem is clearly in NP. Moreover, no k-regular graph admits an
L(3,1)-1abeling of span less than k + 2 (as long as k > 1), so we can restrict our
attention only to labelings of span exactly &k + 2.

We prove the theorem by a reduction from the NOT-ALL-EQUAL 3-SATISFI-
ABILITY problem. The input of this problem is a Boolean formula & in con-
junctive normal form with exactly three literals in each clause and the ques-
tion is whether it is NAE-satisfiable, i.e, if a truth assignment exists such that
each clause contains at least positively and at least one negatively valued lit-
eral. Determining whether @ is NAE-satisfiable has been shown NP-complete by
Schaefer [12] (see also [4, Problem LO3]).

Without loss of generality we may assume that with each clause C' the formula
& contains also its complementary clause C’ consisting of the complements of all
literals in C. In particular, each variable has then the same number of positive
and negative occurrences.

From such a formula @ we construct a k-regular graph G such that G allows
an L 1)-labeling f of span k + 2 if and only if @ is NAE-satisfiable. The graph
G is constructed by local replacements of variables and clauses by variable and
clause gadgets described below. (Consult Fig. 4 for details of the construction.)

Variable gadgets: Assume first that k # 4. For each variable with ¢ positive
and ¢ negative occurrences, we insert in G 2t copies of the polarity gadget Fj,
arranged in a circular manner, i.e., the vertex y; of the i-th gadget will be
identified with the vertex x;11 of the consequent gadget. (The last and the first
gadgets are joined accordingly as well.)

The vertices x; with odd indices will represent positive occurrences of the
associated variable, while even indices will be used as negated occurrences of
the variable. For k£ > 5, we conclude the construction of each variable gadget by
inserting ¢(k + 1) new vertices v, i =1,...,k+1, s=1,...,t, and ¢ triples of
coupling gadgets F}, F? and F?2 linked by the following edges:

— (vi,vj) if i — j| > 2, i.e., each (k + 1)-tuple with the same upper index
induces the complement of a path on k£ 4 1 vertices
— (vf,@25-1), (v}, x25) If i #1,3,A—-3,A -1

Moreover, for each s = 1,...,t the vertices v{ and v5_; are identified with
the z,y vertices of its uniquely associated coupling gadget F, and similarly v
and v§_, are merged with the z,y of a pair of F?s.

When k£ = 4, we join polarity gadgets in a similar way: Use ¢ copies of the
polarity gadget, the z-vertices represent positive occurrences and the y-vertices
negations. Now with a help of the ¢(k + 1) new vertices v{,..., v}, we define
the remaining edges as:



_ (vf,vﬁ) if |i — j| > 2, i.e., each (k + 1)-tuple with the same upper index
induces the complement of a path on k + 1 vertices
o (’Uf7y8)7 (’Ufaxs—i-l) for i = 2,4

As above, two coupling gadgets F)}, F3 are joined to vertices v{ and v (gadget
F!) and to v§ (gadget F32); both connections terminate in v$). See Fig 4 (right)
for a detail of this construction.

Observe that at this moment vertices of variable gadgets are of degree k — 1
(the z;’s) or of degree k (all others).

Clause gadgets: Each clause gadget consists of k£ + 3 vertices zp, 29, 23,
wi, ..., wg, and of the following edges:

— (wj,w;) if |2 — j| > 2, inducing the complement of a path on k vertices
j
— (z,w;)ifi=1,23and 2< j <k —2

Clause gadgets of complementary clauses C and C’ are joined by use of

— three swallowing gadgets Fs where for each ¢ = 1, 2,3, the vertices z,y are
identified with z; and z;. (Both z vertices must represent the same variable
— one a positive occurrence, the other one a negated occurrence),

— two coupling gadgets F* where both z’s are merged with w; and both y’s
with wi,

— a coupling gadget F! between w; and w},

— the edge (wq,w}).

Completing the construction: Finally, all variable and clause gadgets are
composed together as follows: The z-vertices of variable gadgets are linked in
one-by-one manner to the z-vertices of clause gadgets such that edges between
gadgets represent the variable-clause incidence relation in ¢ between the asso-
ciated variables and clauses. As was already noted above, vertices z; with odd
1 indicate positive occurrences of the associated variable, while those with an
even 7 represent negations. (Formally, if a variable v occurs positively in a clause
¢, we pick a unique z;, ¢ odd, of the gadget representing v and a unique z; of
the clause gadget representing ¢ and insert into G the edge (z;, z;). Similarly
for a negated variable we choose z; with an even index i.) This concludes the
construction of the graph G, see Fig. 4 for an illustration.

Clearly G is k-regular. It remains to be shown that G admits an L3 )-
labeling of span k + 2 if and only if ¢ is NAE-satisfiable. In particular, we prove
that the NAE-satisfying Boolean assignments ¢ are in one-to-one correspondence
with valid labelings f of GG via the equivalence:

(*) ¢(v) = TRUE & f(z1) =0 for z; of the variable gadget representing v.

Assume first that @ is NAE-satisfied by an assignment ¢. Then the partial of
x1’s can be extended to all variable gadgets such that each z; is inside the gadget
incident with vertices 2,3,...,A — 2. (Just set f(vf) = i and extend it to the
polarity and coupling gadgets.) Consider a clause C' and its gadget. Without loss



when k =4

! ! 4
21 29 23 F, 23 25 21

Fig. 4. Construction of G, variable gadgets in the upper part, two complementary
clause gadgets at the bottom. The different construction of the variable gadget for
k = 4 shown on the right side.

of generality we may assume that C' contains one positively and two negatively
valued literals, i.e., (up to an permutation of indices) z; is adjacent to a variable
vertex labeled by A, and 22, z3 to vertices labeled by 0. We extend f onto the
clause gadget by letting f(z1) =0, f(22) = A —1, f(z3) = X and f(w;) = i. For
the complementary clause C', we label its gadget symmetrically and extend f
to the remaining swallowing and coupling gadgets to get a valid labeling of the
entire graph G.

In the opposite direction, it is easy to observe that in a valid L3 1)-labeling
f of G of span k + 2 the following arguments hold:

— Up to symmetry the polarity gadgets allow only one possible labeling, where
in each variable gadget f(z;) # f(zit1), f(z:) € {0, A}.

— For k > 5, the k — 3 common neighbors {v3,v],vs,...,v3_,,v5_5} of 251
and x2, must be labeled by the set {2,4,5,...,A —4, A — 5} regardless the
labeling of z5_1 and z3s. (Note that each z; gets neighbors labeled 3 and
A — 3 inside the polarity gadgets.)

Similarly for £ = 4, it holds that f(ys) # f(zsy1) and f(25), f(z]) € {2,4}.

— If z; is labeled O, then its neighbor z; is labeled either A or A — 1 and
symmetrically if f(z1) = A then f(z;) € {0,1}.

— In each clause gadget the labels of 21,22 and z3 must be distinct since they
share a common neighbor (e.g., the vertex w;). Then from both sets {0,1}
and {A — 1,A} at least one label is used on {z1, z2,23}.



Then ¢ defined by (*) is a NAE-satisfying assignment for @, i.e., each clause
contains some positively as well as also some negatively valued literals. This
concludes the proof of NP-hardness of the problem. Membership in NPis obvious.

5 Conclusion

We have shown NP-hardness of determining the minimum span of L(2, 1)-labelings
of regular graphs by proving that for every k > 3, the decision problem whether

A(2,1)(G) < k + 2 is NP-complete for k-regular graphs G. Note that the bound

k + 2 is the minimum possible, no k-regular graph allows an L(2,1)-labeling of

span less than k + 2.

We conjecture that for every & > 3, there exists a constant ¢, (depend-
ing on k) such that the decision problem A3 1)(G) < A restricted to k-regular
graphs is NP-complete for every fixed A € {k+2,k+3,..., ¢} and polynomially
solvable for all other values of A. The latter is certainly true for small A (i.e.,
A < k+ 1). The upper bound is more interesting. In particular, if our conjec-
ture is true, it still remains a question how far is the ¢ from Ay = max{c :
Jk-regular G s.t. A(2,1)(G) > c}. We conjecture that c; # A, i.e., that in the
upper part of the spectrum there will be space for nontrivial polynomial time al-
gorithms. Note finally that Ay < k? +k — 2 follows from [9], and that Ay < k% —1
if the conjecture of Griggs and Yeh is true.
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