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Abstract

By use of elementary geometric arguments we prove the existence of a special inte-
gral solution of a certain system of linear equations. The existence of such a solution
then yields the NP-hardness of the decision problem on the existence of locally in-
jective homomorphisms to Theta graphs with three distinct odd path lengths.
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1 Introduction and background

Graphs considered in this paper are finite, undirected and simple, i.e., without
loops or multiple edges. The vertex set of a graph G is denoted by VG, the edge
set by EG, and edges are considered as two-element sets of vertices, with the
notation (u, v) for the edge connecting vertices u and v. The neighborhood of a
vertex is the set of vertices adjacent to it, formally NG(u) = {v : (u, v) ∈ EG}
(the subscript is omitted if it is clear from the context in which graph the
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neighborhood if considered). The size of its neighborhood is called the degree
of the vertex.

A graph homomorphism f : G → H is an edge-preserving vertex-mapping, i.e.,
a mapping f : VG → VH such that (f(u), f(v)) ∈ EH whenever (u, v) ∈ EG.
A homomorphism from a graph G into the complete graph on k vertices corre-
sponds to a k-coloring of G (coloring of vertices by k colors such that adjacent
vertices receive distinct colors), a notion that finds applications in many opti-
mization problems (scheduling, broadcasting etc.). In this sense a homomor-
phism from a graph G to a graph H is often referred to as an H-coloring of
G. For a thorough introduction to the theory of graph homomorphisms as an
important part of algebraic graph theory, the reader is referred to the recent
monograph [12].

Observe that every homomorphism f : G → H maps the neighborhood NG(u)
of each vertex u ∈ VG into the neighborhood NH(f(u)) of its image in H.
Based on the properties of the restricted mappings we say that f is locally
injective (locally surjective, locally bijective, respectively) if for every vertex
u ∈ VG, the neighborhood NG(u) is mapped injectively (surjectively, bijec-
tively) into NH(f(u)) via the mapping f . Locally injective homomorphisms
find application in generalized distance constrained graph labelings and the
channel assignment problem and this connection will be discussed in more
detail in the concluding section. Locally bijective homomorphisms have been
studied in topological graph theory as graph covers [2] and locally surjective
ones relate to so called role assignment graphs studied in sociological appli-
cations [4]. Since a graph G allows a locally injective homomorphism to a
graph H if and only if G is an induced subgraph of a graph G′ which covers
H (i.e. G′ allows a locally bijective homomorphisms to H), locally injective
homomorphisms are also referred to as partial covers.

We are interested in the computational complexity of the following decision
problem

H-LIHOM

Input: A graph G.
Question: Does there exist a locally injective homomorphism

f : G → H?

where the final goal would be a complete characterization of the complexity
this problem, depending on the parameter graph H. This study has been
initiated and partial results presented in [7] and [6]. In this paper we extend
the classification for a variety of so called Theta graphs.

In a similar manner we refer to H-LBHOM, H-LSHOM and H-HOM as the
problems whether an input graph G allows a locally bijective, locally surjective
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or locally unconstrained (respectively) homomorphism to the parameter graph
H.

The characterization of the complexity of the H-HOM problem was given by
Hell and Nešetřil [11] who proved that the problem is polynomially solvable for
bipartite graphs H and NP-complete otherwise. The computational complexity
of locally surjective homomorphisms was studied by Kristiansen and Telle [18]
and the full characterization was completed by Fiala and Paulusma [9]: The
H-LSHOM problem is NP-complete for every connected graph H with at least
three vertices.

The study of the computational complexity of locally bijective homomor-
phisms was initiated by Bodlaender et al. [3] (who proved NP-hardness if
H is regarded as part of the input) and Abello et al. [1] (who identified the
first polynomial and NP-complete instances of the H-LIHOM problem and
asked for its characterization). The study was carried on in a series of papers
of Kratochv́ıl, Proskurowski and Telle [14–16] who proved, among other re-
sults, that H-LBHOM is NP-complete for simple regular graphs H of valency
at least three.

It is proven in [7] that for every graph H, the H-LBHOM is polynomially
reducible to the H-LIHOM. Hence the NP-hardness results on locally bijective
homomorphisms translate directly to hardness results on locally injective ones.
And therefore from the point of view of locally injective homomorphisms,
it makes sense to concentrate on those graphs H for which locally bijective
homomorphisms are polynomially time solvable. The simplest such graphs
are those with at most two vertices of degree greater than 2 [16], and the
simplest of these are the Theta graphs. Surprisingly, even for such simple
graphs both NP-complete and nontrivial polynomial time solvable instances
have been identified (in [6] and in this paper).

For a collection of at least three positive integers a1 ≤ a2 ≤ . . . ≤ an, with
a2 ≥ 2, denote by Θ(a1, a2, . . . , an) the graph consisting of two vertices of
degree n, say u and v, and for each i, a path of length ai connecting u and v

(apart from the end-vertices u and v, these paths are disjoint and since a2 ≥ 2,
the resulting graph has no multiple edges).

If the collection consists of only two distinct integers, say a1 = · · · = ak 6=
ak+1 = · · · = an , the complexity of Θ(a1, . . . , an)-LIHOM problem was fully
described in [6] (and a polynomial/NP-completeness dichotomy holds true in
this case). The next case, which remained open for a while, was H = Θ(1, 3, 5).
Extending the methods developed in [5], we prove the following more general
theorem.

Theorem 1 For every three distinct odd positive integers a, b, c, the Θ(a, b, c)-
LIHOM problem is NP-complete.
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The reduction is based on a number theoretic result (Theorem 3) which we
find interesting in its own and which has previously been asked as an open
problem at several occasions. The paper is organized as follows. In Section 2
we briefly describe the reduction from [5] in a more general form. Section 3
contains the proof of Theorem 3 and Section 4 the proof of our main result
Theorem 1. Concluding remarks are gathered in Section 5.

2 The reduction

Lemma 2 If a < b < c and m are odd positive integers such that

(i) There is no integer solution x, y, z ≥ 0 of the equation xa + yb + zc = m

such that x, y and z satisfy the triangle inequalities x + y ≤ z, x + z ≤ y

and y + z ≤ x;
(ii) There is an integer solution x, y, z ≥ 0 of the equation xa + yb + zc = m

such that x + y = z − 1;
(iii) There is an integer solution x, y, z ≥ 0 of the equation xa + yb + zc = m

such that y + z = x − 1;
(iv) There is an integer solution x, y, z ≥ 0 of the equation xa + yb + zc = m

such that z + x = y − 1,

then the Θ(a, b, c)-LIHOM problem is NP-complete.

Proof: It is well known that the edges of every cubic bipartite graph can be
properly colored by three colors (i.e., so that each color induces a matching),
while for general cubic graphs the existence of such a 3-coloring is NP-complete
to decide [13]. However, deciding if a precoloring of edges of a cubic bipartite
graph can be extended to a proper 3-edge-coloring of the entire graph is also
NP-complete, as recently shown in [5]. This problem remains NP-complete
if only two colors are used in the precoloring (as a matter of fact, it would
become polynomially solvable if only one color were used, cf. [17]). We reduce
this problem to Θ(a, b, c)-LIHOM.

Given a cubic bipartite graph G with some edges precolored by two colors,
say amber and black (the third color will be cyan), we construct G′ from G by
replacing every amber edge by a path of length a, every black edge by a path
of length b, and every edge which is not precolored by a path of length m. As
the problem parameters a, b, c, and m are constant, the size of the graph G′

is linear in the size of G. If m satisfies the above stated properties, then G′

allows a locally injective homomorphism into Θ(a, b, c) if and only if the edge
precoloring of G can be extended to a proper 3-edge-coloring of the whole
graph. This follows from the fact that the vertices of degree 3 in G′ must map
onto u or v and the paths joining them must each map onto a sequence of
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Fig. 1. Example of a mapping of a path of length m = 11 into Θ(1, 3, 5) according
to the pattern 1 + 3 + 1 + 5 + 1 = 11.

paths of length a, b, c with no two consecutive paths having the same length.
(See Figure 1 for an example.)

If x, y, z are the numbers of occurrences of the lengths a, b, c (respectively)
in such a sequence for a path of length m, the condition (i) implies that the
lengths of the initial and last segments in each such sequence are the same,
and conditions (ii-iv) guarantee that the path of length m can have both the
initial and the last segment mapped onto the path of length a (and both onto
the path of length b, and as well c). Hence these three options encode the
colors (a = amber, b = black and c = cyan).

A locally injective homomorphism from G′ into Θ(a, b, c) thus corresponds to
a proper 3-edge-coloring of G, since both degree-3 vertices of Θ(a, b, c) are
incident with exactly one path of length a, one path of length b and one path
of length c. And this coloring must extend the precoloring of G, since a path
of length a in G′ can only map onto the path of length a in Θ(a, b, c) (and
similarly for the paths of length b). �

The geometric meaning of the condition of Lemma 2 is illustrated in Figure 2.
The triangle determined in the plane xa + yb + zc = m by the triangle-
inequalities cone must contain no integer points, but each segment parallel
with one of its sides and shifted by 1 away must contain at least one integer
point. It turns out that after performing a rotation of the coordinate axes
such that this triangle is transformed into the whole triangle determined on
xa + yb + zc = m by the coordinate planes, the statement can be proved by
an essentially elementary geometric argument.

3 The geometric reformulation

Theorem 3 Let A,B,C be distinct positive integers. Then a positive integer
M exists such that
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m = ax + by + cz

x = 0, y = z

y

z

x

Fig. 2. The geometric meaning of Lemma 2. The thick segments shall contain an
integer point.

M = AX + BY + CZ

X

Y

Z

Fig. 3. The triangle ∆M .

(I) There is no integer solution X,Y, Z ≥ 1 of the equation
XA + Y B + ZC = M ;

(II) There is an integer solution X,Y ≥ 1 of the equation XA + Y B = M ;
(III) There is an integer solution Y, Z ≥ 1 of the equation Y B + ZC = M ;
(IV) There is an integer solution Z,X ≥ 1 of the equation XA + ZC = M .

The geometric meaning of this theorem is that there always exists a shift of the
plane XA + Y B + ZC = 0 such that the triangle (further referred to as ∆M)
determined in the translated plane by the halfspaces X ≥ 0, Y ≥ 0, Z ≥ 0
contains at least one integer point inside each of its sides, but none inside the
triangle. (See Figure 3.)

Proof: Let π be the plane of points (X,Y, Z) for which XA + Y B + ZC = 0.
Denote by L the 2-dimensional lattice that is the intersection of π and the
3-dimensional lattice of integer points. Every translate of π intersects the 3-
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Fig. 4. Finding points PY and PZ in the plane π.

dimensional integer lattice either in a translate of L, or in the empty set.
Let lX be the intersection line of π and the coordinate plane X = 0. Define
similarly lY and lZ . Note that lX , lY and lZ are parallel to the sides of the
triangle ∆M for every M 6= 0. The lines lX , lY and lZ intersect in the origin.

Let PY be (one of) the lattice point(s) of L lying in the angle determined by
lX and lZ and being on the closest line parallel to the line lY (for every line
parallel to lY , this triangle contains only finite number of integer points). Shift
the line lY into l′Y that passes through PY , thus obtaining a triangle ∆′ with
lattice points inside the sides lying on lX and l′Y , but with no lattice points
in its interior. Similarly, let PZ be a point of L lying in the angle determined
by lX and l′Y and closest to the line lZ . Shift lZ to l′Z passing through PZ ,
obtaining a triangle ∆′′ with lattice points inside each of its sides, but with
no lattice points in its interior. (See Figure 4.)

Let PY = (y1, y2, y3) and PZ = (z1, z2, z3) be the coordinates of these points.
For M = −By2 − Cz3 (an integer), the triangle ∆M is the translate of ∆′′

by the integer vector (0,−y2,−z3), and hence it contains the integer point
(0,−y2,−z3) on its side parallel to lX , the integer point (y1, 0, y3 − z3) on its
side parallel to ly and the integer point (z1, z2−y2, 0) on its side parallel to lZ ,
but no integer point in the interior. Thus M = −By2 −Cz3 satisfies (I-IV). �

4 Proof of the main theorem

We show that for every three distinct odd positive integers a, b, c, there exists a
positive odd integer m such that the conditions (i-iv) of Lemma 2 are satisfied.
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Given a < b < c, set

A = b + c, B = a + c, C = a + b.

Let M be the number guaranteed by Theorem 3.

Lemma 4 This M satisfies (I-IV) of Theorem 3 if and only if m = M − a−
b − c satisfies (i-iv) of Lemma 2.

Proof: Note first that since a, b, c are odd, A,B,C are all even and so is M .
It follows that m = M − a − b − c is odd. Consider the dual transformations
given by

(X,Y, Z) → (x = Y + Z − 1, y = Z + X − 1, z = X + Y − 1)

and

(x, y, z) → (X =
y + z − x + 1

2
, Y =

z + x − y + 1

2
, Z =

x + y − z + 1

2
).

A simple calculation shows that

AX + BY + CZ =

(b + c)(y + z − x + 1)

2
+

(a + c)(z + x − y + 1)

2
+

(a + b)(x + y − z + 1)

2
=

a + b + c + xa + yb + zc

and hence

AX + BY + CZ = M if and only if ax + by + cz = m.

Obviously, x, y, z are integers if X,Y, Z are. On the other hand, if x, y, z are
integers solving xa + yb + zc = m, then x + y + z ≡ 1 mod 2 and X,Y, Z

are also integers. Thus the transformations provide a bijection among integer
solutions of xa + yb + zc = m and XA + Y B + ZC = M .

It is straightforward that X = 0 if and only if y+z = x−1, and that under this
assumption Y ≥ 1, Z ≥ 1 imply x ≥ 0, y ≥ 0 and z ≥ 0, as well as x, y, z ≥ 0
imply Y = z+x−y+1

2
= 2z+1

2
> 0 and Z = x+y−z+1

2
= 2y+1

2
> 0. Hence the

conditions (ii-iv) of Lemma 2 of and (II-IV) of Theorem 3 are equivalent.

Similarly, X > 0 if and only y + z > x− 1, and since all the involved variables
are integers, this means that X ≥ 1 if and only if y + z ≥ x. Since the
inequalities are symmetric, the equivalence of the conditions (i) of Lemma 2
and (I) of Theorem 3 follows. �
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5 Concluding remarks

The recently intensively studied notion of L(2, 1)-labelings of graphs stems
from the applications in the frequency assignment and radio coloring prob-
lems. It asks for labeling the vertices of a given graph by nonnegative inte-
gers so that adjacent vertices are assigned labels that differ by at least two,
while vertices at distance two must be assigned distinct labels. This notion
was generalized in several ways (L(p1, . . . , pk)-labelings, the so called channel
assignment problem, etc.) to capture more complex channel environments.

A natural generalization is the notion of H(2, 1)-labelings [7], where it is as-
sumed that the frequency space is equipped with a metric described by a graph
H. An H(2, 1)-labeling of a graph G is a vertex mapping f : VG → VH such
that distG(u, v) + distH(f(u), f(v)) ≥ 3 for all pairs of vertices u, v ∈ VG. To
explain the parameters (2, 1) observe that the condition requires that neigh-
bors in G are mapped onto vertices non-adjacent in H, i.e., onto vertices which
are at least 2 apart. At the same time vertices with a common neighbor are
mapped onto distinct vertices of H, i.e., on vertices that are at least 1 apart.
Hence, as noted in [7], f is an H(2, 1)-labeling if and only if it is a locally
injective homomorphism from G to H, the complement of H.

An L(2, 1)-labeling of span k is thus a Pk(2, 1)-labeling where Pk denotes
the path of length k. The original optimization problem of minimizing the
span of an L(2, 1)-labeling of G was shown NP-complete in [10]. The fixed
parameter version, i.e., assuming that the span k is bounded, leads to the
class of decision problems on the existence of Pk(2, 1)-labelings. These were
shown NP-complete in [8] for every k ≥ 4. The case of the smallest NP-hard
span, i.e., and path of length k = 4, is nothing else but the Θ(1, 2, 3)-LIHOM
problem, since P4 = Θ(1, 2, 3). This provides another connection to partial
covers of Theta graphs.

Distance constrained labelings in the circular metric considered by van den
Heuvel et al. [20] and Liu and Yhu [19] correspond to Ck(2, 1)-labelings. There
NP-completeness for every fixed k ≥ 6 (as shown in [7]) follows from the fact
that Ck is a regular graph of valency k − 3 ≥ 3 for k ≥ 3, and the already
mentioned result Ck-LBHOM ∝ Ck-LIHOM.

The natural question to characterize the computational complexity of deciding
the existence of an H(2, 1)-labeling, depending on the parameter graph H,
is thus equivalent to characterizing the computational complexity of the H-
LIHOM problems. However, the full characterization is not yet in sight. Still
we believe that the core of the hardness of this characterization problem will
prove to be the Theta graphs.
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