
GRAD AND CLASSES

WITH BOUNDED EXPANSION II.

ALGORITHMIC ASPECTS

JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Abstract. Classes of graphs with bounded expansion are a gener-
alization of both proper minor closed classes and degree bounded
classes. Such classes are based on a new invariant, the greatest
reduced average density (grad) of G with rank r, ∇r(G). These
classes are also characterized by the existence of several partition
results such as the existence of low tree-width and low tree-depth
colorings [19][18]. These results lead to several new linear time
algorithms, such as an algorithm for counting all the isomorphs
of a fixed graph in an input graph or an algorithm for checking
whether there exists a subset of vertices of a priori bounded size
such that the subgraph induced by this subset satisfies some ar-
birtrary but fixed first order sentence. We also show that for fixed
p, computing the distances between two vertices up to distance p

may be performed in constant time per query after a linear time
preprocessing. We also show, extending several earlier results, that
a class of graphs has sublinear separators if it has sub-exponential
expansion. This result result is best possible in general.

1. Introduction

The concept of tree-width [15],[24],[27] is central to the analysis of
graphs with forbidden minors done by Robertson and Seymour and
gained much algorithmic attention thanks to the general complexity
result of Courcelle about monadic second-order logic graph properties
decidability for graphs with bounded tree-width [6],[7]. It appeared
that many NP-complete problems may be solved in polynomial time
when restricted to a class with bounded tree-width. This restriction
of tree-width is quite a strong one, as it does not include the class of
planar graphs, for instance.
Another way is to consider partitions of graphs into parts such that

any p of them induce a graph with low tree-width. DeVos et al. [8]
proved that for any proper minor closed class of graphs C — that is:
any minor closed class of graphs excluding at least one minor — and
any integer p, there exists a constant N(C, p) so that any graph G ∈ C
has a vertex-partition into at most N(C, p) parts such that any i ≤ p
parts induce a graph of tree-width at most (i− 1).

Supported by grant 1M0021620808 of the Czech Ministry of Education.
1

2 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

It is then natural to ask whether the parts could be choosen even
“smaller” or “simple”. This issue has been studied in [20] where the
authors introduce the tree-depth td(G) of a graph G as the minimum
height of a rooted forest including the graph in its closure. This minor
monotone invariant is related to tree-width by tw(G) + 1 ≤ td(G) ≤
tw(G) log n, where n is the order of G. The class of graphs with
bounded tree-depth appears to be particularly small, as it includes
only a bounded number of rigid graphs (that is: graphs having no
non-trivial automorphisms) and as it excludes long paths (to compare
with classes with bounded tree-width which exclude big grids). The
main result of [20] is that for any proper minor closed class of graphs C
and any integer p, there exists an integer N ′(C, p) such that any graph
G ∈ C has a vertex-partition into at most N ′(C, p) parts such that any
i ≤ p parts induce a graph of tree-depth at most i. It is also proved in
[20] that the tree-depth is the greatest graph invariant for which such
a statement holds.
Our first proof [20] of this decomposition result relied in the result of

DeVos et al. and thus indirectly to the Structural Theorem of Robert-
son and Seymour [25]. However since then, we generalized these results
[19][18] to classes with bounded expansion (which may be seen as a
generalization of both proper minor closed classes and degree bounded
classes). Our prrof is both more general and conceptually easier. Even
better: it leads to a linear time algorithm that we shall describe here.
Our main goal will be then to show that this algorithm has a wide
range of algorithmic applications.
Before we shall consider algorithmic consequences, we shall introduce

bounded expansion and related concepts in Section 2.
In Section 4 we describe the augmentation process which is the basis

of the partition theorem and propose a linear time algorithm for it.

2. The grad of a graph and classes with bounded
expansion

The distance d(x, y) between two vertices x and y of a graph is the
minimum length of a path linking x and y, or∞ if x and y do not belong
to the same connected component. The radius ρ(G) of a connected
graph G is: ρ(G) = minr∈V (G)maxx∈V (G) d(r, x)

Definition 2.1. Let G be a graph. A ball of G is a subset of vertices
inducing a connected subgraph. The set of all the families of balls of
G is noted B(G). The set of all the families of balls of G including no
two intersecting balls is noted B1(G).
Let P = {V1, . . . , Vp} be a family of balls of G.
• The radius ρ(P) of P is ρ(P) = maxX∈P ρ(G[X])

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 3

• The quotientG/P ofG by P is a graph with vertex set {1, . . . , p}
and edge set E(G/P) = {{i, j} : (Vi × Vj) ∩ E(G) 6= ∅ or Vi ∩
Vj 6= ∅}.

Definition 2.2. The greatest reduced average density (grad) of G with
rank r is

∇r(G) = max
P∈B1(G)
ρ(P)≤r

|E(G/P)|
|P|

The first grad, ∇0 , is closely related to degeneracy (G is k-degene-
rated iff k ≥ b2∇0(G)c). The grads of a graph form an increasing
sequence which becomes constant starting from some index (smaller
than the order of the graph).

Definition 2.3. A class of graphs C has bounded expansion if there
exists a function f : N→ R such that for every graph G ∈ C and every
r holds

(1) ∇r(G) ≤ f(r)

Here are some examples of class with bounded expansion:

Example 1. Any proper minor closed class of graphs has expansion
bounded by a constant function. Conversely, any class of graphs with
expansion bounded by a constant is included in some proper minor
closed class of graphs.

Proof. If C is a proper minor closed class of graph, the graphs in C are
k-degenerated for some integer k hence ∇r(G) ≤ k + 1 for any G ∈ C.
Conversely, assume C is a class of graph with expansion bounded by

a constant C. Let C ′ be the class defined by C ′ = {G : ∀r ≥ 0,∇r(G) ≤
C}. This class obviously includes C. Let G ∈ C ′ and let H be a minor
of G. Then for any r ≥ 0, ∇r(H) ≤ ∇|V (G)|(G) ≤ C thus H ∈ C ′.
Hence C ′ is a proper minor closed class as it does not include K2C+2

(as ∇0(K2C+2) = C + 1). ¤

Example 2. Let ∆ be an integer. Then the class of graphs with max-
imum degree at most ∆ has expansion bounded by the exponential
function f(r) = ∆r+1.

Example 3. In [17] is introduced a class of graphs which occurs nat-
urally in finite-element and finite-difference problems. These graphs
correspond to graphs embedded in d-dimensional space in a certain
manner. It is proved in [26] that these graphs excludes Kh as a depth
L minor if h = Ω(Ld). Hence they form (for each d) a class with
polynomialy bounded expansion.

The next example show that the bounded function can be any arbi-
trary increasing function:

4 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Example 4. Let f be any increasing function from N to N \ {0, 1, 2}.
Then there exists a class C such that C has expansion bounded by f
but by no smaller integral function.

Proof. Consider the class C whose elements are K4 and the graphs Gn

obtained by subdividing 2n times the complete graph K2f(n)+1 (for
n ≥ 1). As 2 ≤ ∇r(Gn) < 3 for r < n and as ∇r(Gn) = f(n) for r ≥ n,
we conclude. ¤

Example 5. If C is a class with bounded expansion and if c is any fixed
integer then the class C ′ • Kc whose elements are the lexicographic
products G •Kc, G ∈ C still has bounded expansion [18].
It should be noted that such a statement is false for proper minor

closed classes in a strong sense: for any n ∈ N, Kn is a minor of
Grid(2n, 2n) •K2.

2.1. Few properties of tree-depth. A rooted forest is a disjoint
union of rooted trees. The height of a vertex x in a rooted forest F is
the number of vertices of a path from the root (of the tree to which
x belongs to) to x and is noted height(x, F). The height of F is the
maximum height of the vertices of F . Let x, y be vertices of F . The
vertex x is an ancestor of y in F if x belongs to the path linking y and
the root of the tree of F to which y belongs to. The closure clos(F)
of a rooted forest F is the graph with vertex set V (F) and edge set
{{x, y} : x is an ancestor of y in F, x 6= y}. A rooted forest F defines
a partial order on its set of vertices: x ≤F y if x is an ancestor of y in
F . The comparability graph of this partial order is obviously clos(F).

Definition 2.4. The tree-depth td(G) of a graph G is the minimum
height of a rooted forest F such that G ⊆ clos(F).
Lemma 2.1. Let G be a connected graph with maximum degree ∆ and
tree-depth t ≥ 1. Then G has order n ≤ 1 + ∆ + · · ·+∆t−1.

Proof. We proceed by induction over t. If t = 1, G = K1 and tdK1 = 1.
Assume the inequality has been proved for graphs with tree-depth at
most (t−1) with t ≥ 2 and let G be a connected graph with tree-depth
t. As G is connected it contains a vertex r such that td(G − r) =
td(G) − 1 = t − 1. Let G1, . . . , Gk be the connected components of
G− r. All of these have tree-depth at most t− 1. By induction, they
have order at most 1 + ∆ + · · ·+∆t−2. As k ≤ ∆, we conclude. ¤

Lemma 2.2. For n ≥ 1, td(Pn) = dlog2(k + 1)e
Proof. According to lemma 2.1 a path of tree-depth t has order at most
1 + 2 + · · · + 2t−1 = 2t − 1. It follows that the tree-depth of Pk is at
least log2(k + 1).
Moreover let x1, . . . , x2t−1 be the vertices of a path of order 2

t − 1
in the order in which they appear on the path. Let w(i) be the base 2

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 5

word of length t corresponding to the number i (for instance, if t = 3,
w(1) = 001, w(2) = 010, . . . , w(7) = 111). Let c(i) be the rank of the
rightmost 1 of w(i) (that is, for t = 3, c(1) = c(3) = c(5) = c(7) = 3,
c(2) = c(6) = 2 and c(4) = 1). Then c is a centered coloring of P2t−1

with t colors thus td(P2t−1) ≤ t. Finally we note that td(Pn) increases
with n. ¤

Lemma 2.3. Let G be a graph and let Pk be the longest path in G.
Then dlog2(k + 1)e ≤ td(G) ≤

(

k+2
2

)

− 1.

Proof. As the tree-depth is minor monotone, any graph including a
path Pk as a subgraph as tree-depth at least td(Pk) = dlog2(k + 1)e
(according to Lemma 2.2).
Conversely, let us prove by induction over k ≥ 1 that a graph which

includes no path Pk has tree depth at most
(

k+1
2

)

. Obviously the state-
ment holds for k = 1 (graphs without edges has tree-depth 1). Assume
the statement has been proved up to (k − 1) for some k ≥ 2. Let
G be a graph with no path Pk. Without loss of generality we may
assume that G includes a Pk−1 and that G is connected (as the tree-
depth of a non-connected graph is the maximum of the tree-depths
of its connected components). Let P be such a path of G. Assume
G − V (P) includes some path P ′ isomorphic to Pk−1. According to
the connectivity of G, there exists some minimum length path P ′′

linking a vertex of P to a vertex of P ′ (and this path has length at
least 1). Then P ∪ P ′ ∪ P ′′ includes a Pk, a contradiction. Thus
G − V (P) includes no Pk−1. By induction, td(G − V (P)) ≤

(

k
2

)

− 2
hence td(G) ≤ td(G − V (P)) + |V (P)| ≤

(

k
2

)

+ k =
(

k+1
2

)

. If follows

that if Pk is the longest path in G, td(G) is at most
(

k+2
2

)

− 1. ¤

3. Basics

We shall first mention some basic linear time algorithms, as well as
the basic data structures used for input and output of our algorithms.
Concerning the data structure used for the computations, any standard
one will do, but we will have in mind the simple data structure of
PIGALE library [12][13].

3.1. Graph representation of input and output graphs. It will
be convenient for our algorithms to represent graphs as follows:

• The vertices of the input graph will be assumed to be numbered
from 1 to n and its edges will be given as a list L of pairs (i, j).
Although this representation allows multigraphs and loops, we
will consider simple input graphs only. Notice that this repre-
sentation may be computed in linear time from any standard

6 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

one.

1Ã'!&"%#$

2Ã'!&"%#$

3Ã'!&"%#$

4Ã'!&"%#$

5Ã'!&"%#$

­­
­­
­­
­­
­

44
44

44
44

4

n = 5

L = ((1, 2), (1, 3), (3, 4), (4, 2), (5, 2), (5, 4))

• A computed directed graph ~G will be represented as an array
D of lists indexed by integers 1, . . . , n. In the list D[i] will
be gathered all the couples (j, e) such that (j, i) is an arc of
~G with index e ∈ {1, . . . ,m} (where m is the size of ~G). This
representation may be easily transformed into any standard one
in linear time.

1Ã'!&"%#$

2Ã'!&"%#$

3Ã'!&"%#$

4Ã'!&"%#$

5Ã'!&"%#$

1

OO

2 //

3

OO
4

>>

5
~~

6
//

7

²²

n = 5,m = 7

D[1] = ()

D[2] = ((1, 1), (4, 5))

D[3] = ((1, 2))

D[4] = ((2, 4), (3, 3), (5, 7))

D[5] = ((2, 6))

Notice that the used representation of a directed graph ~G allows
to answer the question “is there an arc from vertex i to vertex j” in
time O(∆–(~G)). Notice that this simple observation has by itself many
algorithmic consequences [4].

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 7

3.2. Low indegree orientation. The aim of the following algorithm
is to compute a low-indegree orientation of the graph with vertex set
{1, . . . , n} and list of edges L.
Lemma 3.1. Let G be a graph of order n and size m. There is an
O(n +m)-time algorithm which computes an acyclic orientation of G
with maximum indegree b2∇0(G)c.
Proof. First we compute a representation of the graph in any suitable
data structure like PIGALE’s data structure [12]. All of this may be
easily done in time O(m). Then we do the following:

Ensure: D represents an orientation ~G ofG such that ∆–(~G)≤b2∇0(G)c.
Let D = (), let m = 0.
Let T [] be an array of lists.
Let d[] be an array.
Initialize d[v] with degree of v, δ with the minimum degree of the
graph and ∆ with the maximum degree of the graph.
Using a bucket sort, initialize T [d] as the list of the vertices with
degree d.
while δ < ∆ or T [δ] is not empty do
pop v out of T [δ].
let d[v]← 0
for all w neighbour of v do
if d[w] > 0 then
if d[w] > δ then
extract w from T [d[w]]
insert w in T [d[w]− 1]
if d[w] = ∆ and T [d[w]] is empty then
let ∆← ∆− 1

end if

end if

let d[w]← d[w]− 1
m← m+ 1; append (w,m) to D.

end if

end for

while T [δ] is empty and δ < ∆ do

let δ ← δ + 1
end while

end while

In this algorithm, if δ is increased the the actual induced subgraph
of G has minimum degree greater than δ. It follows that the maximum
value of δ reached by the algorithm is less or equal to the maximum
average degree of G, that is: δ ≤ 2∇0(G). It follows that this algorithm
computes an acyclic orientation ofG with maximum indegree b2∇0(G)c
in time O(m). ¤

8 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

3.3. Digraph simplification. Digraph simplification may be achieved
in O(m) time using bucked sort [12]. We recall the algorithm here for
completeness. It will be convenient for our further use to associate
to each arc an integer weight and to maintain the simplification the
minimum weight for parallel arcs linking two vertices.

Require: D represents a directed graph orientation ~G and weight[] is
a weight array.

Ensure: D is simplified; among parallel arcs only one with minimum
weight is kept.
D′[] is an array of list, Last[] is an array initialized with 0 and
Last weight[] is an array.
for all v ∈ {1, . . . , n} do
while D[v] 6= () do
Pop (x, e) out of D[v].
if Last[x] = e then
if weight[e] < Last weight[x] then
Pop last element of D′[x]
Last[x] = e; Last weight[x] = weight[e]
Append (v, e) to D′[x]

end if

else

Last[x] = e; Last weight[x] = weight[e]
Append (v, e) to D′[x]

end if

end while

end for

for all x ∈ {1, . . . , n} do
while D′[x] 6= () do
Pop (v, e) out of D′[x]
Append (x, e) to D[v]

end while

end for

4. Transitive fraternal augmentations of graphs in
linear time

4.1. Theory. In the following, a directed graph ~G may not have a loop
and for any two of its vertices x and y, ~G includes at most one arc from
x to y and at most one arc from y to x.

Definition 4.1. Let ~G be a directed graph. A 1-transitive fraternal
augmentation of ~G is a directed graph ~H with the same vertex set,
including all the arcs of ~G and such that, for any vertices x, y, z,

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 9

• if (x, z) and (z, y) are arcs of ~G then (x, y) is an arc of ~H
(transitivity),

• if (x, z) and (y, z) are arcs of ~G then (x, y) or (y, x) is an arc of
~H (fraternity).

A transitive fraternal augmentation of a directed graph ~G is a se-
quence ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · · , such that ~Gi+1 is a

1-transitive fraternal augmentation of ~Gi for any i ≥ 1.

The key result of [18] claims the existence of density bounded tran-
sitive fraternal augmentations:

Lemma 4.1 (Special case of Lemma 6.1 of [18]). There exists polyno-

mials Pi (i ≥ 0) such that for any directed graph ~G and any 1-transitive

fraternal augmentation ~H of ~G we have

(2) ∇r(H) ≤ P2r+1(∆
–(~G) + 1,∇2r+1(G)),

where G and H stand for the simple undirected graphs underlying ~G
and ~H.

Although quite technical, the next result is a simple direct conse-
quence of Lemma 4.1:

Corollary 4.2. Let C be a class with expansion bounded by a function
f and let F : N2 → N.
Define A(r, i) and B(i) recursively as follows (for i ≥ 1 and r ≥ 0):

A(r, 1) = f(r)

B(1) = 2f(0)

A(r, i+ 1) = P2r+1(B(i) + 1, A(2r + 1, i))

B(i+ 1) = F (B(i), A(0, i+ 1))

Assume G ∈ C and ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · · is a
transitive fraternal augmentation of G such that

∆–(~Gi+1) ≤ F (∆–(~Gi),∇0(Gi+1)) (for i ≥ 1)

and such that ∆–(~G1) ≤ 2f(0). Then:

∇r(Gi) ≤ A(r, i)

∆–(~Gi) ≤ B(i)

We now present a linear time implementation of this procedure,
where it will be checked that ∆–(~Gi+1) ≤ ∆–(~Gi)

2 + 2∇0(Gi), that
is: F (x, y) = x2 + 2y.

10 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

4.2. The algorithm for one step augmentation. In the augmen-
tation process, we add two kind of arcs: transitivity arcs and fraternity
arcs. Let us start with transitivity ones:

◦ ◦

◦

◦ ◦

◦
+3

DD­­­­­­­­­­ ½½4
44

44
44

44
4 DD­­­­­­­­­­ ½½4

44
44

44
44

4

??

Require: D represents the directed graph to be augmented.
Ensure: D′ represents the array of the added arcs.
Initialize D′.
Initialize an array mark[] with false.
for all v ∈ {1, . . . , n} do
for all (u, e) ∈ D[v] do
for all (x, f) ∈ D[u] do
if mark[x] = false then

m← m+ 1; append (x,m) to D′[v].
mark[x]← true.

end if

end for

end for

for all (u, e) ∈ D[v] do
for all (x, f) ∈ D[u] do
mark[x]← false

end for

end for

end for

This algorithm runs in O(∆–(~G)2n) time, where ∆–(~G) is the max-
imum indegree of the graph to be augmented. It computes the list
array D′ of the transitivity arcs which are missing in ~G, each missing
arc appearing exactly once in the list.
Now, we shall consider the fraternity edges.

◦ ◦

◦

◦ ◦

◦
or

◦ ◦

◦
+3

DD­­­­­­­­­­

ZZ4444444444

DD­­­­­­­­­­

ZZ4444444444
??

DD­­­­­­­­­­

ZZ4444444444
__

Require: D represents the directed graph to be augmented.
Ensure: L represents the list of edges to be added.

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 11

L = ().
Sub[] is an array of list, and Last[] is an array initialized with 0.
for all v ∈ {1, . . . , n} do
for all (x, e) ∈ D[v] do
for all (y, f) ∈ D[v] do
if x < y then
append y to Sub[x].

end if

end for

end for

end for

for all x ∈ {1, . . . , n} do
for all y ∈ Sub[x] do
if x 6= Last[y] then
Last[y] = x; append (x, y) to L.

end if

end for

end for

This algorithm runs in O(∆–(~G)2n)-time and computes the list of
the fraternity edges, each edge appearing exactly once.
We then use the O(m)-time algorithm to compute a low indegree

orientation of the edges in L and we merge the obtained directed graph
with D and D′ (the simplification of the graphs goes the same way as
in the computation of the fraternity edges, hence is done in O(m+ n)

time, that is: O(∆–(~G)2n)-time).

Theorem 4.3. For any class C with bounded expansion, there exists
an algorithm which computes, given an input graph G ∈ C, a transitive
fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gc of G in time O(cn).

5. Distances

The following result is a weighted extention of the basic observation
that bounded orientations allows O(1)-time checking of adjacency [4].

Theorem 5.1. For any class C with bounded expansion and for any
integer k, there exists a linear time preprocessing algorithm so that for
any preprocessed G ∈ C and any pair {x, y} of vertices of G the value
min(k, dist(x, y)) may be computed in O(1)-time.

Proof. The proof goes by a variation of our augmentation algorithm
so that each arc e gets a weight w(e) and each added arc gets weight
min(w(e1) + w(e2)) over all the pairs (e1, e2) of arcs which may imply
the addition of e and simplification should keep the minimum weighted
arc.

12 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Then, after k augmentation steps, two vertices at distance at most
k have distance at most 2 in the augmented graph. The value min(k,
dist(x, y)) then equals

min

(

k, w((x, y)), w((y, x)), min
(z,x),(z,y)∈ ~G

(

w(z, x) + w(z, y)
)

)

. ¤

6. p-centered colorings and tree-decomposition

6.1. Theory.

Definition 6.1. A tree-decomposition of a graph G consists in a pair
(T, λ) formed by a tree T and a function λ mapping vertices of T to
subsets of V (G) so that for all v ∈ V (G), {x ∈ V (T) : v ∈ λ(x)}
induces a subtree of T , and such that for any edge {v, w} of G there
exists x ∈ V (T) such that {v, w} ⊆ λ(x).
The width of a tree decomposition (T, λ) is maxv∈V (G)|λ(v)|−1. The

tree-width of G is the minimum width of any tree-decomposition of G.

From a rooted tree Y of height at most p such that G ⊆ clos(Y) it
is straightforward to construct a tree-decomposition (T, λ) of G having
width at most (p− 1): Set T = Y and define λ(x) = {v ≤Y x}. Then
for any v, {x ∈ V (T) : v ∈ λ(x)} = {x ≥Y v} induces the subtree of
Y rooted at v (hence a subtree of T). Moreover, as G ⊆ clos(Y), any
edge {x, y} with x <Y y is a subset of λ(y). Hence (T, λ) is a tree-
decomposition of G. As maxv∈V (G)|λ(v)| = height(Y) ≤ p, this tree-
decomposition has width at most (p−1). Last, this tree-decomposition
may be obviously constructed in linear time.

Definition 6.2. A centered coloring of a graph G is a coloring of the
vertices such that in any connected subgraph some color appears ex-
actly once.
For an integer p, a p-centered coloring of G is a coloring of the vertices

such that in any connected subgraph either some color appears exactly
once, or at least p different colors appear.

6.2. The algorithm.

Require: c is a centered-coloring of the graph G using colors 1, . . . , p.
Ensure: F is a rooted forest such that G ⊂ clos(F).
Set F = ∅.
Let Big[] be an array of size p.
for all Connected component Gi of G do

Initialize Big[] to false.
Set root color← 0.
for all v ∈ V (Gi) do
if Big[c[v]] = false then

if c[v] = root color then

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 13

root color← 0,Big[c[v]]← true.
else

root← v; root color← c[v].
end if

end if

end for

Recurse onG-root thus getting some rooted forest F ′={Y ′1 , . . . ,Y ′j }.
Add to F the tree with root root and subtrees Y1, . . . , Yj, where
the sons of root are the roots of Y1, . . . , Yj.

end for

This algorithms clearly runs in O(pm) time. If G is connected, it
returns a rooted tree Y of height at most p such that G ⊆ clos(Y).

7. Application to subgraph isomorphism problem

For general subgraph isomorphism problem of deciding wether a
graph G contains a subgraph isomorphic to a graph H of order l, the
better known general bound is O(nαl/3) where α is the exponent of
square matrix fast multiplication algorithm [21] (hence O(n0.792 l) us-
ing the fast matrix algorithm of [5]). The particular case of subgraph
isomorphism in planar graphs have been studied by Plehn and Voigt
[22], Alon [2] with superlinear bounds and then by Eppstein [9][10] who
gave the first linear time algorithm for fixed pattern H and G planar
and then extended his result to graphs with bounded genus [11]. We
generalize this to classes with bounded expansion.
We shall now make use of the following result for graphs with bounded

tree-width:

Lemma 7.1 (Eppstein, Lemma 2 of [10]). Assume we are given graph
G with n vertices along with a tree-decomposition T of G with width w.
Let S be a subset of vertices of G, and let H be a fixed graph with at
most w vertices. Then in time 2O(w logw)n we can count all isomorphs of
H in G that include some vertex in S. We can list all such isomorphs
in time 2O(w logw)n+O(kw), where k denotes the number of isomorphs
and the term kw represents the total output size.

We shall prove here the following extention of the results of [10][11]:

Theorem 7.2. Let C be a class with bounded expansion and let H be a
fixed graph. Then there exists a linear time algorithm which computes,
from a pair (G,S) formed by a graph G ∈ C and a subset S of vertices
of G, the number of isomorphs of H in G that include some vertex in
S. There also exists an algorithm running in time O(n) +O(k) listing
all such isomorphism where k denotes the number of isomorphs (thus
represents the output size).

Proof. This is a direct consequence of Theorem 4.3 and Lemma 7.1. ¤

14 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

8. Local decidability problems

Monadic second-order logic (MSOL) is an extention of first-order
logic (FOL) that includes vertex and edge sets and belonging to these
sets. The following theorem of Courcelle has been applied to solve
many optimization problems.

Theorem 8.1 (Courcelle [6][7]). Let K be class of finite graphs G =
〈V,E,R〉 represented as τ2-structures, that is: by two sorts of elements
(vertices V and edges E) and an incidence relation R, and φ be a
MSOL(τ2) sentence. If K has bounded tree width and G ∈ K, then
checking wether G ² φ can be done in linear time.

Combining Theorem 8.1 with Theorem 4.3, we get:

Theorem 8.2. Let C be a class with bounded expansion and let p be a
fixed integer. Let φ be a FOL(τ2) sentence. Then there exists a linear
time algorithms to check ∃X : (|X| ≤ p) ∧ (G[X] ² φ).

Thus for instance:

Theorem 8.3. Let K be a class with bounded expansion and let H be
a fixed graph. Then, for each of the next properties there exists a linear
time algorithm to decide whether a graph G ∈ K satisfies them:

• H has a homomorphism to G,
• H is a subgraph of G,
• H is an induced subgraph of G.

Although there is an (easy) polynomial algorithm to decide whether
td(G) ≤ k for any fixed k, if P6=NP then no polynomial time approx-
imation algorithm for the tree-depth can guarantee an error bounded
by nε, where ε is a constant with 0 < ε < 1 and n is the order of the
graph [3]. We shall now prove that the decision problem td(G) ≤ k for
any fixed k may actually be decided in linear time:

Lemma 8.4. Any Depth-First Search (DFS) tree Y of connected graph
G satisfies:

• G ⊆ clos(Y),
• td(G) ≤ height(Y) ≤ 2td(G) − 1.

Proof. According to the basic properties of the DFS, a vertex v of G
may not be adjacent in G to a vertex which is not comparable to v with
respect to the tree order induced by the DFS tree Y thus G ⊆ clos(Y)
and td(G) ≤ height(Y). Moreover, G includes Pheight(Y) as a subgraph

(take any maximal tree chain) thus height(Y) ≤ 2td(Pheight(Y)) − 1, ac-
cording to Lemma 2.2. Hence height(Y) ≤ 2td(G)−1 as td(Pheight(Y)) ≤
td(G). ¤

Theorem 8.5. For any fixed k, there exists a linear time algorithm
which decides wether an input graph G has tree-depth at most k or not.

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 15

Proof. Without loss of generality we may assume G is connected (for
otherwise we process all the connected components one by one). Any
DFS tree Y of G may be computed in O(m) time, where m is the size
of G. If height(Y) ≥ 2k, the answer is “No” according to Lemma 8.4.
Otherwise, consider the following sentence Φ:

∃V1∃V2 . . . ∃Vk : (∀x ∈ V1 ∀y ∈ V2, x 6= y) ∧ . . .
∧ (∀x(∃y ∈ V1, x = y) ∨ . . .)
∧ (∀A(∃B(∀x ∈ A (x ∈ B))∧

(∀x ∈ B ∀y ∈ A (y ∈ B)∨qAdj(x, y)))
∨ (∃x∈V1 (x∈A) ∧ (∀y∈A (x = y)∨q(y ∈ V1)))

∨ . . .
∨ (∃x∈Vk (x∈A) ∧ (∀y∈A (x = y)∨q(y ∈ V1))))

The first two lines express that V1, . . . , Vk shall be a partition of
the vertex set, and the next ones express that for any subset A of
vertices, either G[A] is not connected of for some i A includes exactly
one element of Vi, that is: V1, . . . , Vk is a centered coloring of G. Such
a centered coloring with k colors exists if and only if G has tree-depth
has most k [20]. It follows that G ² Φ if and only if td(G) ≤ k. As
we only check Φ on graphs with tree depth at most 2k (given togather
with a tree-decomposition easily deduced from the DFS tree) and as Φ
obviously belongs to MSOL, there exists, according to Theorem 8.1,
a linear time algorithm to check wether G satisfies Φ. ¤

9. Vertex separators

A celebrated theorem of Lipton and Tarjan [16] states that any pla-
nar graph has a separator of size O(

√
n). Alon, Seymour and Thomas

[1] showed that excluding Kh as a minor ensures the existence of a
separator of size at most O(h3/2

√
n). Gilbert, Hutchinson, and Tarjan

[14] further proved that graphs with genus g have a separator of size
O(
√
gn) (this result is optimal). Plotkin et al. [23] introduced the con-

cept of limited-depth minor exclusion and have shown that exclusion of
small limited-depth minors implies the existence of a small separator.
Precisely, they prove that any graph excluding Kh as a depth l minor
has a separator of size O(lh2 log n+ n/l) hence proving that excluding
a Kh minor ensures the existence of a separator of size O(h

√
n log n).

We use the following result to show that any class of graphs with
sub-exponential expansion has separators of sublinear size.

Theorem 9.1 (Plotkin et al. [23]). Given a graph with m edges and n
nodes, and integers l and h, there is an O(mn/l) time algorithm that
will either produce a Kh-minor of depth at most l log n or will find a
separator of size at most O(n/l + 4lh2 log n). ¤

16 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Lemma 9.2. There exists a constant C such that any graph G has a
separator of size at most C n logn

z
whenever z is an integer such that

(3) 2z(∇z(G) + 2) ≤
√

n log n.

Proof. Let l = z/ log n and let h = b∇z(G) + 2c. As ∇z(G) ≤ f(z) <
h − 1, G has no Kh minor of depth at most l log n. According to
Theorem 9.1, G has a separator of size at most (C/2)(n/l+4lh2 log n)
for some fixed constant C, i.e. a separator of size at most (C/2)(n logn

z
+

4z(∇z(G) + 2)
2) ≤ C n logn

z
. ¤

Theorem 9.3. Let C be a class of graphs with expansion bounded by a
function f such that log f(x) = o(x).
Then the graphs in C have separators of size o(n).

Proof. Let g(x) = log f(x)
x
. By assumption, g(x) = o(1). Define ζ(n) as

the greatest integer such that

log f(ζ(n)) <
log n

3

Notice that ζ is increasing and limn→∞ ζ(n) = ∞. From the defini-

tion of g(x), we deduce ζ(n) = log f(ζ(n))
g(ζ(n))

= logn
3g(ζ(n))

= o(log n). Thus

log(2ζ(n)(f(ζ(n)) + 2)) < logn
3
(1 + o(1)). It follows that if n is suffi-

ciently large (say n > N), log(2ζ(n)(f(ζ(n)) + 2)) < log n+log logn
2

, that

is: 2ζ(n)(f(ζ(n)) + 2) <
√
n log n. Thus if n > N , G has a separator

of size at most C n logn
ζ(n)

= 3g(ζ(n))n = o(n). ¤

As random cubic graphs almost surely have bisection width at least
0.101n (Kostochka and Melnikov, 1992), they have almost surely no
separator of size smaller than n/20 It follows that if log f(x) = (log 2)x,
the graphs have no sublinear separators any more. This shows the
optimality of Theorem 9.3.

References

[1] N. Alon, P.D. Seymour, and R. Thomas, A separator theorem for graphs with
excluded minor and its applications, Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, 1990, pp. 293–299.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach. 42

(1995), no. 4, 844–856.
[3] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks, Approximat-

ing tree-width, pathwidth, frontsize, and shortest elimination tree, Journal of
Algorithms (1995), no. 18, 238–255.

[4] M. Chrobak and D. Eppstein, Planar orientations with low out-degree and
compaction of adjacency matrices, Theoretical Computer Science 86 (1991),
243–266.

[5] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Comput. 9 (1990), 251–280.

BOUNDED EXPANSION II: ALGORITHMIC ASPECTS 17

[6] B. Courcelle, Graph rewriting: an algebraic and logic approach, Handbook of
Theoretical Computer Science (J. van Leeuwen, ed.), vol. 2, Elsevier, Amster-
dam, 1990, pp. 142–193.

[7] , The monadic second-order logic of graphs I: recognizable sets of finite
graphs, Inform. Comput. 85 (1990), 12–75.

[8] M. DeVos, G. Ding, B. Oporowski, D.P. Sanders, B. Reed, P.D. Seymour, and
D. Vertigan, Exluding any graph as a minor allows a low tree-width 2-coloring,
Journal of Combinatorial Theory, Series B 91 (2004), 25–41.

[9] David Eppstein, Subgraph isomorphism in planar graphs and related problems,
Proc. 6th Symp. Discrete Algorithms, ACM and SIAM, January 1995, pp. 632–
640.

[10] , Subgraph isomorphism in planar graphs and related problems, J. Graph
Algorithms & Applications 3 (1999), no. 3, 1–27.

[11] , Diameter and treewidth in minor-closed graph families, Algorithmica
27 (2000), 275–291, Special issue on treewidth, graph minors, and algorithms.

[12] H. de Fraysseix and P. Ossona de Mendez, PIGALE: Public Implementation
of a Graph Algorithm Library and Editor, Free Software (GPL licence), 2002,
http://pigale.sourceforge.net.

[13] , Handbook of graph drawing and visualization, ch. PIGALE, CRC
Press, 2005.

[14] J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan, A separator theorem for graphs
of bounded genus, J. Algorithms (1984), no. 5, 375–390.

[15] R. Halin, S-functions for graphs, J. Geom. 8 (1976), 171–176.
[16] R. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM

Journal on Applied Mathematics 36 (1979), no. 2, 177–189.
[17] G.L. Miller, S.-H. Teng, W. Thurston, and S.A. Vavasis, Geometric separators

for finite-element meshes, SIAM J. on Scientific Computing 19 (1998), no. 2,
364–386.

[18] J. Nešetřil and P. Ossona de Mendez, Grad and classes with bounded expansion
I. decompositions, Tech. Report 2005-739, KAM-DIMATIA Series, 2005.

[19] , The grad of a graph and classes with bounded expansion, 7th Interna-
tional Colloquium on Graph Theory, 2005, accepted.

[20] , Tree depth, subgraph coloring and homomorphism bounds, European
Journal of Combinatorics (2005), (in press).

[21] J. Nešetřil and S. Poljak, Complexity of the subgraph problem, Comment. Math.
Univ. Carol. 26.2 (1985), 415–420.

[22] J. Plehn and B. Voigt, Finding minimally weighted subgraphs, Proc. 16th Int.
Workshop Graph-Theoretic Concepts in Computer Science (Springer-Verlag,
ed.), Lecture Notes in Computer Science, no. 484, 1991, pp. 18–29.

[23] S. Plotkin, S. Rao, and W.D. Smith, Shallow excluded minors and improved
graph decomposition, 5th Symp. Discrete Algorithms, SIAM, 1994.

[24] N. Robertson and P.D. Seymour, Graph minors. I. Excluding a forest, J. Com-
bin. Theory Ser. B 35 (1983), 39–61.

[25] , Graph minors. XVI. Excluding a non-planar graph, Journal of Com-
binatorial Theory, Series B 89 (2003), no. 1, 43–76.

[26] S.-H. Teng, Combinatorial aspects of geometric graphs, Computational Geom-
etry (1998), no. 9, 277–287.

[27] K. Wagner, Über eine Eigenschaft der Ebenen Komplexe, Math. Ann. 114

(1937), 570–590.

18 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Department of Applied Mathematics, and, Institute of Theoretical
Computer Science (ITI), Charles University, Malostranské nám.25,
11800 Praha 1, Czech Republic

E-mail address: nesetril@kam.ms.mff.cuni.cz

Centre d’Analyse et de Mathématiques Sociales, CNRS, UMR 8557,
54 Bd Raspail, 75006 Paris, France

E-mail address: pom@ehess.fr

