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RESTRICTED GRAPH HOMOMORPHISM DUALITIES
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ABSTRACT. We study restricted homomorphism dualities in the
context of classes with bounded expansion. This presents a gener-
alization of restricted dualities obtained earlier for bounded degree
graphs and also for proper minor closed classes. This is related to
distance coloring of graphs and to the “approximative version” of
Hadwiger conjecture.

1. INTRODUCTION

We motivate this paper by the following two examples.

Examplel. Celebrated Grotzsch’s theorem (see e.g. [2]) says that
every planar graph is 3-colourable. In the language of homomorphisms
this says that for every triangle free planar graph G there is a ho-
momorphism of G into K3. Here a homorphism from a graph G to
a graph H is a mapping f: V(G) — V/(H) which preserves adja-

cency: {f(z),f(y)} € E(H) whenever {z,y} € E(G). G A
or f: G —— H denotes that f is a homomorphism from G to H. The
existence of a homomorphism from G to H is noted G —— H, while
the non-existence of such a homomorphism is noted G —— H. It is
also clear that the relation G < H defined as G —— H is a quasiorder
on the class of all finite graphs. This quasiorder becames partial or-
der if we restrict it to the class of all minimal retracts (i.e. cores).
This partial order is called homomorphism order. See [5] for a recent
introduction to graphs and homomorphisms.

Using the partial order terminology the Grotzsch’s theorem says that
K3 is an upper bound (in the homomorphism order) for the class Pj of
all planar triangle free graphs. As obviously K3 ¢ Ps a natural question
(first formulated in [9]) suggests: Is there yet a smaller bound? The
answer, which may be viewed as a strengthening of Grotzsch’s theorem,
is positive. Thus there exists a triangle free 3-colorable graph H such
that G —— H for every graph G € Ps. This has been proved in
[15, 12] in a stronger version for minor closed classes. The case of planar
graphs and triangle is interesting in its own and it has been related to
the Seymour conjecture and Guenin’s theorem [3], see [7] and seems to
found a proper setting in the context of TT-continuous mappings, see

[16]. Restricted duality results have been generalized since to proper
1
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minor closed classes of graphs and to other forbidded subgraphs. In
fact to any finite set of connected graphs, see [15]. This then implies
that Grotzsch’s theorem can be strengthened by a sequence of ever
stronger bounds and that the supremum of the class of all triangle free
planar graphs does not exist, see [11].

Example2. Let us consider all sub-cubic graphs (i.e. graph with
maximum degree < 3). By Brooks theorem (see e.g. [2]) all these
graphs are 3-colorable with the single connected exception K. What
about the class of all sub-cubic triangle free graphs? Does there exists a
triangle free 3-colorable bound? The positive answer to this question is
given in [20] and [4]. In fact for every finite set F = {F}, Fs, ..., Fi} of
connected graphs there exists a graph H with the following properties:

- H is 3-chromatic;

- G —— H for every subcubic graph G € Forby,(F).

(Here Forby,(F) is the class of all graphs G which satisfy F; —+— G
for every i = 1,2,...,t.) In this case we briefly say that the class of all
sub-cubic graphs has all restricted dualities. (We shall motivate this
terminology below.)

It is interesting to note that while sub-cubic graphs have restricted
dualities (and, more generally, this also holds for the classes of bounded
degree graphs) for the classes of degenerated graphs a similar statement
is not true (in fact, with a few trivial exceptions, it is never true), see
9, 11].

Where lies the boundary for validity of restricted dualities? This is
the central question of this paper. We give a very general sufficient
condition for a class to have restricted dualities. But first we introduce
another source for restricted dualities. Chronologically this is also the
original cotext.

The following is a partial order formulation of an important homo-
morphism (or coloring) problem:

Definition 1.1. A pair F, D of graphs is called dual pair if for every
graph G holds:

(1) F——({ <~ G¢—D.

We also say that F' and D form a duality, D is called dual of F'. Dual
pairs of graphs and even of relational structures were characterized in
[17], the notion itself goes back to [8]. Equivalently, one can describe
a dual pair F, D by saying that for the class Forby(F') the graph D is
the maximum graph (in the homomorphism order).

It appears (and this is the main result of [17]) that (up to the homo-
morphism equivalence) all the dualities are of the form (7', Dy) where
T is a finite (relational) tree. Every dual Dt is uniquelly determined
by the tree T' (but its structure is by far more difficult to describe, see
e.g. [18, 19]). These results imply in most cases infinitely many ex-
amples. But a much richer spectrum (and in fact a surprising richness
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of results) is obtained by restricting the validity of (1) to a particular
class of graphs KC:

Definition 1.2. A class K admits a restricted duality if, for any finite
set of connected graphs F = {F, Fy, ..., F}}, there exists a finite graph
D% such that F; —— D% for i = 1,...,t and such that for all G € K
holds:

(F;, —+—=G),i=1,2,...,t, &= (G —= D}).

It is easy to see that using the homomorphism order we can refor-
mulate this definition as follows: A class K has restricted duality if
for any finite set of connected graphs F = {F}, Fy, ..., F;} the class
Forby,(F) N K is bounded in the class Forby (F).

In our companion papers [13, 14] we defined the notion of grad and
bounded expansion class. For the benefit of the reader we recall these
definitions in Section 2. The following is then the main result of this

paper:

Theorem 1.1. Any class of graphs with bounded expansion has all
restricted dualities.

As both proper minor closed classes and bounded degree graphs form
classes of bounded expansion this result generalizes both Examples 1.
and 2. In fact the seeming incomparability of bounded degree graphs
and minor closed classes led us to the definition of bounded expansion
classes.

This paper is organized as follows. In Section 2 we recall basic defini-
tions and results of [13] which will be needed. In Section 3 we reformu-
late the restricted dualities in terms of local homomorphism properties
and introduce the basic construction. In Section 4 we prove Theorem
1.1 and in Section 5 we list several corollaries. Among them is a sur-
prising result that exact odd powers of graphs in any given bounded
expansion class have bounded chromatic number.

2. BOUNDED EXPANSION CLASSES.

In [15], we introduced the tree-depth td(G) of a graph G as follows:

A rooted forest is a disjoint union of rooted trees. The height of a
vertex x in a rooted forest F'is the number of vertices of a path from the
root (of the tree to which x belongs to) to x and is noted height(x, F).
The height of F' is the maximum height of the vertices of F'. Let x,y
be vertices of F. The vertex x is an ancestor of y in F' if x belongs
to the path linking y and the root of the tree of F' to which y belongs
to. The closure clos(F') of a rooted forest F'is the graph with vertex
set V(F) and edge set {{x,y}: = is an ancestor of y in F,x # y}. A
rooted forest F' defines a partial order on its set of vertices: * <p y
if x is an ancestor of y in F'. The comparability graph of this partial
order is obviously clos(F). The tree-depth td(G) of a graph G is the
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minimum height of a rooted forest F' such that G C clos(F). As a
consequence, we have an algorithmic definition of the tree depth :

Lemma 2.1 ([15]). Let G be a graph and let G4, . .., G}, be its connected
components. Then:

1, if V(G =1;
td(G) = 1+ mingey ) td(G —v), ifp=1 and |V(G)| > 1,
maxt_; td(G;), otherwise.

We say that a class C has a low tree-depth coloring if, for any integer
p > 1, there exists an interger N(p) such that any graph G € C may
be vertex-colored using N (p) colors so that each of the connected com-
ponents of the subgraph induced by any ¢ < p parts has tree-depth at
most i. As it obviously holds td(G) > tw(G) — 1 any class having a
low-tree depth coloring has also low tree-width coloring (in the sense
of [1].

The existence of low-tree depth colorings is related to the ntion of p-
centered coloring, which have also been introduced in [15]: A p-centered
coloring of a graph G is a vertex coloring such that, for any connected
subgraph H, either some color ¢(H) appears exactly once in H, or H
gets at least p colors. For the sake of completeness we recall some
results of [15]. These statements establish the relationship of centered
colorings and low tree/depth colorings. They are easy to prove (with
the exception of Theorem 2.4 which is the central result of [15]):

Lemma 2.2 ([15]). Let G, H be graphs, let p = td(H), let ¢ be a
q-centered coloring of G where ¢ > p. Then any subgraph H' of G
isomorphic to H gets at least p colors in the coloring ¢ of G. O

From this lemma follows that p-centered colorings induce low tree-
depth colorings:

Corollary 2.3. Let p be an integer, let G be a graph and let ¢ be a
p-centered coloring of G.
Then i < p parts induce a subgraph of tree-depth at most i

Proof. Let G' be any subgraph of GG induced by i < p parts. Assume
td(G’) > i. According to Lemma 2.1, the deletion of one vertex de-
creases the tree-depth by at most one. Hence there exists an induced
subgraph H of G’ such that td(H) = i+ 1 < p. According to lemma
2.2, H gets at least p colors, a contradiction. Il

Theorem 2.4. Any graph G has p-centered coloring for any p < td(G).

The following was established in [15] for the case of proper minor
closed classes of graphs. We prove it here in full generality.

Theorem 2.5. Let C be a class of graphs having low tree-depth color-
ings and let p be an integer. Then there exists integer X (p), such that
every graph in C has a p-centered coloring using X (p) colors.
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Proof. Let G € C. According to the assumption, there exists a ver-
tex partition into C(p) parts, such that any p parts form a graph
of tree-depth at most p. This partition will be defined as a color-
ing ¢: V(G) — {1,2,...,C(p)}. For any set P of p parts let Gp be
the graph induced by all the parts in P. It is easy to see that any
graph G with td(G) < p has a p-centered coloring ¢ by td(G( colors:
we simply assign to any connected subgraph H of G the minimal level
of a vertex of H in the tree F satisfying H C clos(F') (see the definition
of tree depth at the beginning of this section. Consider the following
(“product”) coloring ¢ defined as

c(v) = (e(v), (ep(v); |P] = p, P C{1,2,...,C(p)})).
Take the product of the coloring of G by C(p) colors and of the
colorings of the Gp as a new coloring of G (with X (p) = C(p)N(p,p —

C(p)

1)( 7)) colors). Let H be a connected subgraph of G. Then, either H
gets at least p + 1 colors, or V(H) is included in some subgraph G p
of GG induced by p parts. In the later case, some color appears exactly
once in H. 0

Recall that the mazimum average degree mad(G) of a graph G is the
maximum over all subgraphs H of G of the average degree of H, that is
mad(G) = maxpycg % The distance d(z,y) between two vertices
x and y of a graph is the minimum length of a pth linking x and y, or
oo if  and y do not belong to same connected component.

We introduce several notations:

e The radius p(G) of a connected graph G is:

G) = mi d(r,
(O) = i, i, o)

o A center of G is a vertex 7 such that max,cy () d(r, z) = p(G).

Definition 2.1. Let G be a graph. A ball of G is a subset of vertices
inducing a connected subgraph. The set of all the families of pairwise
disjoint balls of G is noted B(G).

Let P = {V4,...,V,} be a family of pairwise disjoint balls of G.

e The radius p(P) of P is p(P) = maxxep p(G[X])

e The quotient G /P of G by P is a graph with vertex set {1,...,p}
and edge set E(G/P) = {{i,j}: (VixV;)NE(G) # 0 or V;NV; #
0}.

We introduce several invariants that generalize the one of maximum
average degree:

Definition 2.2. The greatest reduced average density (grad)of G with
rank r is B(G/P
V.(G) = max [E(G/P)|

PEB(G) |P|
p(P)<r
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For the sake of simplicity, we also define:
The grad of G:

V(G) = max V,(G) = ma ;5%:

Notice the two following well known facts (usually expressed by mean

of the maximum average degree):

Lemma 2.6. Let G be a graph. Then G has an orientation such that
the mazimum indegree of G is at most k if and only if k > Vo(G).

Lemma 2.7. Let G be a graph. Then G is |2V(G)|-degenerated,
hence |2Vo(G) + 1]-colorable.

The following is our key definition:

Definition 2.3. A class of graphs C has bounded expansion if there
exists a function f: N — N such that for every graph G € C and every
r holds

(2) Vi (G) < f(r).
f is called the expansion function.
The following is a special case of the main result of [13]
Theorem 2.8. For a class C of graphs are the following statements

equivalent

e C has bounded expansion,
e C has low tree-depth colorings,
e C has p-centered coloring for every p > 1.

3. A CONSTRUCTION

Definition 3.1. Let G, H be graphs and let P be a system of subsets
of V(G). We say that G is P-locally homomorphic to H and we denote

G T~ H if for every subset A € P:
G[A] — H.

We shall deal mostly with the following systems: If ¢: V(G) — X
is a function and p a positive integer then we can consider the system
P ={ACV(G);|p(A)] < p}. This system will be denoted by P4 . In
this case we also say that G is (¢, p)-locally homomorphic to H (instead

of Pyy,p-locally homomorphic). This is also denoted by G "~ H.

FEzample 1. For H = K, and ¢ an identical map V(G) — V(G) a
graph G is (¢, p)-locally homomorphic to H iff the odd-girth of G is
> p.

The following is a modification of a construction introduced in [12]:
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Definition 3.2. Let G, H be finite graphs and let 1 < p < |[V(H)| be
an integer. For v € V(H), define A, = {(I,v);] € (V(pH)): v e I},
where (V(pH)) stands for the subsets of V(H) with cardinality p. Define
the sets V, = V(G)* W = Uvevn Vo and the function a: W —
V(H) by a(z) =vif z € V,,.

The p-truncated H -power G of G is the graph with vertex set W

and with the edge set F' defined as follows: {z,2'} € Fiff z € V,, 2’ €
Vi, and for every I € A, N Ay holds {z(; ), ZEI,U/)} € E(G).

Remark 3.1. KIT{I is isomorphic to H.
A (Vi1
Remark 3.2. The order of G is |V(H)|.|V(G)|\ »—
The function a: V(G™') — V(H) is called the color projection of
G™'. This is justified by

Lemma 3.3. The color projection o of G is a homomorphism from
G to H:
a: GV —~ H

Proof. By definition, for any edge {z, 2’} of G, there exists an edge
{v,v'} of H such that z € A, and 2’ € Ay, i.e. v = «(z) and V' =
a(z). O

Lemma 3.4. Let o be the color projection of G . Then the graph
G s (a, p)-locally homomorphic to G:

(a,p

ot P

Proof. Let A be a subset of V(G™') such that |a(A)] < p. Let I
be any subset of V(H) of cardinality p such that a(A) C I. Ac-
cording to the definition of G, {z(Iﬂ(z)),zEI,a(Z,))} € E(G) for any
{z,2'} € E(GW[A]). Tt follows that the mapping z — Z(La(z) 18 a
homomorphism from G [A4] to G. O

Lemma 3.5. Let G, H,U be finite graphs, let p be an integer. As-
sume that v: G — H is a homomorphims and that G is (v, p)-locally
homomorphic to U. Schematically:

Assume G AN H

(v:p)
v

U

Then there exists a homomorphism f: G —— UM such that v =
foa. Moreover, UM is (e, p)-locally homomorphic to U.
Schematically, this can be expressed by the following scheme:



8 JAROSLAV NESETRIL AND PATRICE OSSONA DE MENDEZ

G H
(v:p) \ Ta
v H
< Ty
v (,p) u

Proof. For I € (V(pH)) put Gy = G[y~*(I)] and let g; be a homomor-
phism from G; to U. Define f as follows: Given z € V(G) we define
f(z) € gamma(zx) by the following formula f(z)(I,v(z)) = gr(z) (see
the above definition of Trf ). Obviously foa =~. We prove that f is
a homomorphism.

Let {z,y} be any edge. It is {y(z),v(y)} € E(H) as v: G — H.
For any I which contains both (z) and ~y(y) holds

@) 1a@): F W) e = {91(2), 91(y)} € E(U).

It follows that {f(z), f(y)} is an edge of U™ and thus f is a homo-
morphism. U

This lemma highlights a fundamental property of G™' which we will
state as follows:

Lemma 3.6. Let G, H, U be finite graphs and let p be an integer. Then:
there is a homomorphism G —— Uty iff there exists a homomorphism
v: G—— H and G is (v, p)-locally homomorphic to U. Schematically,
this may be depicted as follows:

G——=UN = G—=H

Proof. First, assume f: G —= U M. Let a be the color projection of
UM to H. Put v = ao f. We have yv: G — H. Let A C V(G).
The condition |y(A)| < p is equivalent to the condition |a(f(A))| < p.
Hence the homomorphism f: G —=U iy’ together with the («a, p)-local
homomorphism of ﬂf to U implies (7, p)-local homomorphism of ﬁf
to U. The reverse implications follows from the previous lemma. [

It is interesting to note that if we consider G = U we get:

Corollary 3.7. G —— G «— G—=H. In particular, G is
homomorphism-equivalent to el

Theorem 3.8. A class of graphs C has restricted dualities iff for any
finite set F of graphs there exist a graph H and a graph U € Forby,(F)
such that for every G € C N Forby(F) there exists a homomorphism
v: G ——= H for which G is (v, p)-locally homomorphic to U, where
p=max{|V(F)|; F € F}.
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Proof. If C has restricted dualities and a set F of graphs has a dual D%
then we may put U = H = D%.

Now assume that graphs U, H and a homomorphism 7 exist. Put
p = max{|V(F)|; F € F}. In this situation we prove that U is a dual
of . Then for every F' € F holds FF —+—= U . (Suppose contrary,

let F —L= UM, By Lemma 3.5 U™ is (p, p)-locally homomorphic
to U and this together with |g(V(F))| < |V(F)| < p would imply
F——U. It F—— G for every F € F then G —— Uty according to
Lemma 3.6. If G — U™ then F — G as F —— G would imply
F— U, O

4. RESTRICTED DUALITIES

We shall need one more (“finitness”) result proved in [15], Corol-
lary 3.3:

Lemma 4.1. For any positive integer p there exists a number F (G))
any graph G with td(G) < p is hom-equivalent to one of its induced
subgraph of order at most F (td(G)).

Theorem 4.2. Let F be a finite set of finite connected graphs. Then,
for any class of graph K with bounded expansion there exists a finite
graph U(IC, F) € Forby(F) such that any graph of K N Forby(F) has a
homomorphism to U(K, F).

Proof. Let p = maxper |V(F)| + 1. There exists an integer N, such
that any graph G € K has a proper N-coloring in which any p colors
induce a graph of tree depth at most p. According Lemma 4.1, there
exists a finite set D, of graphs with tree depth at most k, so that
any graph with tree-depth at most £ is hom-equivalent to one graph
in the set. Let U(Dy, F) be the disjoint union of the graphs in Dy N
Forby, (F'). In this situation we can use Theorem 3.8 and put U (K, F) =
U(Dy, F)te+D)-0N, O

5. CONCLUDING REMARKS

1. On Hadwiger conjecture
Let us list the following corollary of Theorem 4.2

Corollary 5.1. Let IC be a proper minor closed class of graphs. Let
F be a finite set of finite connected graphs. Then there exists a finite
graph U(IC, F) € Forby(F) such that any graph of K N Forby(F) has a
homomorphism to U(KC, F).

It is well known ([5]) that one can reformulate the Hadwiger con-
jecture as the existence of a maximum (in the homomorphism order)
for every proper minor closed class. Let h = h(K) be the Hadwiger
number of the class IC. Then Kj 1 € K and Corollary 5.1 gives at least
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a Kj1-free bound of the class K. In fact we can get a bound with any
set of the same local properties as the class I itself.

2. On bounded expansion classes

Let K be the class of all graphs G which have bounded expansion
with the expansion function f. Formally, K = {G;V,.(G) < f(r),r =
1,2,...}. Assume that p is minimal with K, ¢ K. Then V((G) <
p — 1 for every G € K. Thus every G € K is p — 1-degenerated, If
f is monotonne then also K, € K and thus K has maximum. Thus
Hadwiger conjecture holds for bounded expansion classes determined
by a monotonne expansion function.

Note also that for constant expansion functions the bounded expan-
sion classes are proper just minor closed classes. This may be seen as
follows:

Assume that I is bounded expansion class bounded by a constant
function C. Explicitely, we assume that for every G € K holds V,.(G) <
C' and thus also V(G) < C. Let H be a minor of G. Then obviously
V(H) < V(G) < C and thus K is minor closed. It follows that Kooy
is a forbidden minor of .

3. On distal colorings - exact powers

We now explain a particular consequence of our main result in a
greater detail. Let G be a graph, p a positive integer. Denote by
G* the graph (V, E*) where {x,y} is an edge of E* iff there exists a
path P in G from x to y of length p. The graph G* could be called
ezact p-power of G. Clearly graphs G* and all graphs G, p even, may
have unbounded chromatic number even for the case of trees (consider
subdivision stars), and the only (obvious) bound is x(G%) < A(G)P+1.
Similarly, for any odd p there are 3-colorable graphs G for which is the
chromatic number x(G*) may be arbitrarily large. However for p odd
and arbitrary proper minor closed class and even class with bounded
expansion we have the following (perhaps surprising):

Theorem 5.2. For any class KC with bounded expansion and for every
odd integer p > 1, there exists an integer N = N(IC,p) such that all
the graphs G*,G € K and odd—girth(G) > p have chromatic number
< N: For any G € K,

odd —girth(G) > p = x(G*) < N

Theorem 5.2 follows immediately from Theorem 4.2. It suffices to
consider F = {C,}. In this case any graph U (K, F) € Forby,(F) and
any homomorphism ¢: G —— U(K,F) gives a desired coloring by
N =|(|[V(U(K,F)) colors.

With a little more care one can prove the following result which we
state without proof (as it may be generalized in yet another direction,
see [10]. We take time for a definition of ezact distance graph: Let G
be a graph, p a positive integer. Denote by Gl the graph (V, E*)
where {z,y} is an edge of El! iff the distance of x and y in G is p.
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Theorem 5.3. For any class KC with bounded expansion and for every
odd integer p > 1, there exists an integer N' = N(K,p) such that all
the graphs G™). G € K have chromatic number < N.

Note that in both Theorems 5.2,5.3 we cannot replace the conditions
in the definition of powers G®, GI*!l by the existence of a path (or even
induced path) of length p. See [10] for a more detailed disscussion).

4. On universality of posets. It follows from [6] that the class
S PG of all finite series paralel graphs is universal partial ordered class.
What this means (using non-trivial result that the homomorphism or-
der of all finite graphs is universal, [6, 5]) is that to every finite graph
G we can associate a series parallel graph ®(G) such that for any two
graphs G, H

G<H < oG) < dH).

Thus bounded tree width graphs form a homomorphism universal
class. Note that for the tree depth such a statement is deeply not true as
we cannot even find an infinite antichain. In fact up to homomorphism
equivalence the class of all graphs with a bounded tree depth is a finite
class (see Lemma 4.1). Also this indicate that low tree-depth partitions
are much more restrictive than low tree width partitions.

5. Regular partitions.

Implicit in our proof of restricted dualities is the following partition
result. By Lemma 4.1 there exists a finite set ﬁp of graphs with tree
depth p, so that any graph with tree-depth p is hom-equivalent to one
graph in the set. This implies:

Theorem 5.4. For every class K with bounded expansion and for every
positive integer p there exists a positive integer N = N (K, p) such that
for every graph G € K there exists a coloring V(G) = Vi U ... U Vy
such that the subgraph G; of G induced by any j = |J| classes has the
following property:

e cach component of G; is homomorphism aequivalent to one of
the graphs in the finite set D,.

This stronger decomposition theorem may be used for an alternative
proof of Theorem 4.2. Finally note that our results may be regarded as
(very) regular partitions of graphs with bounded expansion. While the
celebrated Szemeredi regularity lemma [21] applies to dense graphs the
classes of bounded expansion are on the other side of spectrum: their
edge densities are (hereditarily) small. For these classes one can the
achieve a very regular partitions, essentially describing all components
which may occur in graphs induced by a few color classes.
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