# Homomorphisms of triangle-free graphs without a $K_{5}$-minor 

Reza Naserasr ${ }^{\text {a }}$, Yared Nigussie ${ }^{\text {b }}$ and Riste Škrekovski ${ }^{\text {c }}$<br>${ }^{\text {a }}$ Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. naserasr@math.uwaterloo.ca<br>${ }^{\mathrm{b}}$ Department of Applied Mathematics and Institute for Theoretical Computer Science(ITI) Charles University Malostranské nám.25, 11800<br>Praha 1 Czech Republic. yared@kam.mff.cuni.cz.<br>${ }^{\text {c }}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia. skreko@kam.mff.cuni.cz.


#### Abstract

In the course of extending Grötzsch's theorem, we prove that every triangle-free graph without a $K_{5}$-minor is 3 -colorable. It has been recently proved that every triangle-free planar graph admits a homomorphism to the Clebsch graph. We also extend this result to the class of triangle-free graphs without a $K_{5}$-minor. This is related to some conjectures which generalize the Four-Color Theorem. While we show that our results cannot be extended directly, we conjecture that every $K_{6}$ -minor-free graph of girth at least 5 is 3 -colorable.


## 1 Introduction

Graphs in this paper are finite and loopless, they might have multiple edges in which case we rather use the term multigraph. We will use the standard notations of graph theory mainly following Diestel [2] and Hell and Nešetřil [8]. A graph $H$ is said to be a minor of $G$ if it can be constructed from $G$ by deleting vertices, deleting edges and contracting edges. Given a finite set $\mathcal{M}$ of graphs we define $\operatorname{Forb}_{m}(\mathcal{M})$ to be the set of all graphs which have no minor from $\mathcal{M}$. If $\mathcal{M}=\{H\}$, then we simply write $\operatorname{Forb}_{m}(H)$.

Let $G, G^{\prime}$ be two graphs. We say there is a homomorphism of $G$ to $G^{\prime}$, and write $G \preceq G^{\prime}$, if there exists a map $f: V(G) \rightarrow V\left(G^{\prime}\right)$ such that $u v \in E(G)$ implies $f(u) f(v) \in E\left(G^{\prime}\right)$. This binary relation is a quasi order on the class
of all graphs and with this order naturally comes the concepts of bounds, maximums and cuts. To be precise, given a class $\mathcal{C}$ of graphs and a subset $A$ of $\mathcal{C}$ we say $A$ is a cut of $\mathcal{C}$ if for every $G \in \mathcal{C}$ there is an $H$ in $A$ such that either $G \preceq H$ or $H \preceq G$. A 1 -cut of $\mathcal{C}$ is a graph $H \in \mathcal{C}$ such that $A=\{H\}$ is a cut of $\mathcal{C}$. A graph $B$ is a bound for $\mathcal{C}$ if for every graph $G \in \mathcal{C}$ we have $G \preceq B$. A bound $M$ for $\mathcal{C}$ is called a maximum if it is also an element of $\mathcal{C}$.

The study of cuts and bounds in the homomorphism order of graphs is initiated by Nešetřil and Ossona de Mendez [12], (see also Chapter 3 of [8]). Using this terminology some of the most famous theorems and conjectures in the theory of coloring of graphs can be restated quite nicely. For example, consider the following classical theorem of Grötzsch:

Theorem 1 Every triangle-free planar graph is 3-colorable.
Let $\mathcal{P}$ be the class of all planar graphs (i.e., $\left.\operatorname{Forb}_{m}\left(\left\{K_{5}, K_{3,3}\right\}\right)\right)$. Then Theorem 1 is equivalent to stating that $K_{3}$ is a 1 -cut of $\mathcal{P}$. Similarly, the Four-Color Theorem is claiming that $K_{4}$ is a maximum of $\mathcal{P}$. A less obvious result is a restatement of Hadwiger's conjecture, which claims that every $k$-chromatic graph contains a $K_{k}$-minor. It is shown in $[10,12]$ that this is equivalent to:

Conjecture 2 Every minor closed family of graphs has a maximum with respect to the homomorphism order.

Another nontrivial example is a reformulation of a conjecture of P. Seymour. In a generalization of an equivalent form of the Four-Color Theorem, introduced by Tait [17], Seymour [16] conjectured that:

Conjecture 3 Every planar $k$-graph is $k$-edge-colorable.
A $k$-graph is a $k$-regular multigraph which does not have any odd edge-cut of size smaller than $k$. An odd edge-cut is a partition $(X, Y)$ of the vertices of $G$ such that $|X|$ or $|Y|$ is odd. The size of an edge-cut is the number of edges with one end in $X$ and the other end in $Y$.

For odd values of $k$, a reformulation of Conjecture 3 is given by Naserasr [9]. Let $H_{2 k+1}$ be a connected component of the Cayley graph $C\left(\mathbb{Z}_{2}^{2 k+1}, S_{2 k+1}\right)$ where $S_{2 k+1}$ is the set of $2 k+1$ vectors with exactly two consecutive 1's in a cyclic order. Then the following is shown to be equivalent to Conjecture 3 for the corresponding value of $2 k+1$.

Conjecture 4 Every planar graph of odd-girth at least $2 k+1$ admits a homomorphism to $H_{2 k+1}$.

As it is shown in [9], the equivalence of Conjecture 3 and Conjecture 4 together with a proof of Conjecture 3 by Guenin [5] for $k=5$ implies the following
theorem. Note that $H_{5}$ is a triangle-free graph known as the Clebsch graph and also as the Greenwood-Gleason graph.

Theorem 5 Every triangle-free planar graph admits a homomorphism to $H_{5}$.
A generalization of Conjectures 3 and 4 has been recently introduced by Guenin [6]. While Guenin's conjecture is general, stated for both even and odd values of $k$ and in terms of edge-colorings and homomorphisms both, for simplicity we only state the homomorphism version of his conjecture and only for odd values. For a definition of odd-minor we refer to [6]. However, we would like to mention that the class of graphs with no odd- $K_{5}$-minor strictly includes the class of $K_{5}$-minor-free graphs.

Conjecture 6 Every graph of odd-girth at least $2 k+1$ and with no odd- $K_{5}$ minor admits a homomorphism to $H_{2 k+1}$.

It has also been recently conjectured in [11] that:
Conjecture 7 For $k \geq 5$ every 1-cut of the class $\operatorname{Forb}_{m}\left(K_{k}\right)$ is a complete graph.

In the last section of this paper we construct a graph $H \in \operatorname{Forb}_{m}\left(K_{k}\right)$ homomorphically incomparable to $K_{j}$ for each $3 \leq j \leq k-2$ and $k \geq 6$. This together with a validity of Conjectures 2 and 7 imply that $K_{1}, K_{2}$ and $K_{k-1}$ are the only 1-cuts of $\operatorname{Forb}_{m}\left(K_{k}\right)$ for $k \geq 6$.

Section 2 is about the extensions of Grötzsch's theorem. In Section 3, we extend Theorem 5 to the class $\operatorname{Forb}_{m}\left(K_{5}\right)$. The last section is devoted to examples and open problems.

## 2 Homomorphism to $K_{3}$

In this section we first introduce some extensions of the Grötzch's theorem within planar graphs. Then, using these extensions, we generalize Grötzsch's theorem to the class of triangle-free graphs without a $K_{5}$-minor.

### 2.1 Some strengthening of Grotzsch's theorem within planar graphs

The following strengthening of Grötzsch's theorem was first introduced by Grünbaum [4] in 1973. The proof published by Grünbam turned out to be incomplete. A correct proof was given by Aksionov [1] a year later.

Theorem 8 Every planar graph with at most three triangles is 3-colorable.

The assumption that there are at most three triangles cannot be weakened because $K_{4}$ and $H_{7}$ (obtained by the Hajós sum of two copies of $K_{4}$ ) are 4 -chromatic and each contains four triangles.

We now give an easy strengthening of the above result, allowing our plane graph-a planar graph with a fixed planar drawing- to have more triangles but arranged in a specific way. For this, we need the following definitions: Let $G$ be a plane graph and let $C$ be a cycle of $G$. Then, the interior of $C$, denoted by $\operatorname{Int}(C)$, is the subgraph of $G$ which is induced by the vertices inside or on $C$. The $\operatorname{Out}(C)$ is defined analogously. Let $\mathcal{C}_{3}(G)$ be the set of all triangles of $G$. Let $C_{1}, C_{2} \in \mathcal{C}_{3}(G)$. We say that $C_{1}$ is smaller than $C_{2}$ (or $C_{2}$ is bigger than $C_{1}$ ) and write $C_{1} \leq C_{2}$, if $C_{1}$ is a subgraph of $\operatorname{Int}\left(C_{2}\right)$. If $C_{1} \leq C_{2}$ and $C_{2} \not \leq C_{1}$, then we write $C_{1}<C_{2}$ and if $C_{1} \not \leq C_{2}$ and $C_{2} \not \leq C_{1}$, then we say that these two triangles are incomparable. Notice that $\left(\mathcal{C}_{3}(G), \leq\right)$ is a partial order.

Finally, we say that a planar graph $G$ has a nice structure of triangles if the following two conditions are satisfied for some planar drawing of $G$.
(i) $G$ has at most three pairwise incomparable triangles, and
(ii) for any three pairwise incomparable triangles of $G$, there is no other triangle of $G$ which is bigger than all of these three triangles.

Theorem 9 Every planar graph with a nice structure of triangles is 3-colorable.

Proof. Let $G$ be a planar graph embedded in the plane with a nice structure of triangles and let $\mathcal{C}_{3}=\mathcal{C}_{3}(G)$. The proof is by induction on the number of triangles of $G$. If this number is at most three, then we apply Theorem 8. So we may assume that $\left|\mathcal{C}_{3}\right| \geq 4$.

We claim that $G$ has a triangle $C$ such that each of $\operatorname{Int}(C)$ and $\operatorname{Out}(C)$ contains a triangle of $G$ distinct from $C$. This is easy to see, because by $(i)$ there must be two triangles $X$ and $X^{\prime}$ with $X>X^{\prime}$. If there is a triangle bigger than $X$ or incomparable to $X$, then we let $C=X$ and we are done. Otherwise, $X$ is bigger than at least three other triangles, by (ii) there are triangles $X_{1}$ and $X_{2}$ in $\operatorname{Int}(X)$ with $X_{1} \geq X_{2}$, now $C=X_{1}$ has the property.

By the choice of $C$, each one of $\operatorname{Int}(C)$ and $\operatorname{Out}(C)$ has less triangles than $G$. Moreover, each one of the plane graphs induced by $\operatorname{Int}(C)$ and $\operatorname{Out}(C)$ has a nice structure of triangles. By the induction hypothesis, we have a 3 -coloring for each of the two graphs. After a permutation of the colors, if needed, these two colorings agree on $C$, thereby producing a 3 -coloring of $G$.

In the next proposition we show that almost every 3-coloring of any three vertices on a same face of a triangle-free plane graph is extendible to a 3coloring of the graph. The only exception is when we have three pairwise nonadjacent vertices colored with three different colors. Note that in this case they may have a common neighbor, in which case the coloring is obviously not extendible.

Proposition 10 Let $G$ be a plane triangle-free graph and let $A=\{x, y, z\}$ be a set of three vertices on a same face of $G$. Let $c: A \rightarrow\{1,2,3\}$ be a proper coloring such that if $A$ is an independent set, then $c$ does not color vertices of $A$ all differently. Then, c can be extended to a proper 3-coloring of $G$.

Proof. We first connect any two vertices $a, b \in A$ with $c(a) \neq c(b)$ in a way that the new graph is also a plane graph. Next we identify any two vertices with $a, b \in A$ with $c(a)=c(b)$ and then remove any possible multiple edge. Let the resulting graph be $G^{\prime}$ and let $A^{\prime}$ be the set of vertices of $G^{\prime}$ that correspond to vertices in $A$. Note that $G^{\prime}$ is also a plane graph and also that $1 \leq\left|A^{\prime}\right| \leq 3$ and any two vertices of $A^{\prime}$ are adjacent and colored differently.

We will prove that $G^{\prime}$ has a nice structure of triangles, therefore, proving that $G^{\prime}$ is 3 -colorable by Theorem 9. A 3-coloring of $G^{\prime}$ then can easily be lifted to a 3-coloring of $G$. Let $H=G[A]$ be the subgraph of $G$ induced by $A$ and $H^{\prime}=G^{\prime}\left[A^{\prime}\right]$. In order to show that $G^{\prime}$ has a nice structure of triangles we will consider several cases regarding the number of edges of $H$.
(i) First suppose $H$ has two edges, so it is a 2-path $x y z$. Note that $c(x) \neq$ $c(y), c(y) \neq c(z)$ and that $x z \notin E(G)$. Now, if $c(x) \neq c(z)$, then $G^{\prime}=G+$ $x z$. So every triangle of $G^{\prime}$ contains $x z$, hence $G^{\prime}$ has at most two pairwise incomparable triangles (one on each side of $x z$ ). If $c(x)=c(z)$, then $G^{\prime}=G / x z$ and again any triangle of $G^{\prime}$ contains the vertex of the identification. Since each such a triangle corresponds to a 3-path in $G$, we may have again at most two pairwise incomparable triangles in $G^{\prime}$. Thus, $G^{\prime}$ has a nice structure of triangles.
(ii) Suppose now that $H$ has only one edge, say $x y$. Then, $c(x) \neq c(y)$. If $c(z) \neq c(x)$ and $c(z) \neq c(y)$, then $G^{\prime}=G+x z+y z$. Notice that $H^{\prime}$ is a triangle of $G^{\prime}$ and every other triangle of $G^{\prime}$ contains precisely one of the edges $x z$ and $y z$. Thus, $G^{\prime}$ may contain at most three pairwise incomparable triangles. Note that there is no other triangle bigger than all of them and, therefore, $G^{\prime}$ has a nice structure of triangles. Now, without loss of generality, we may assume that $c(y)=c(z)$. Then $c(x) \neq c(z)$. In this case, $G^{\prime}=G+x z / y z=G / y z$ and the argument of the case (i) can be applied to show that $G^{\prime}$ has a nice structure of triangles.
(iii) Finally suppose that $H$ has no edge. If $c(x)=c(y)=c(z)$, then $G^{\prime}$ is obtained from $G$ by identifying all these three vertices. Thus, each triangle
of $G^{\prime}$ contains the identification vertex and it corresponds to a 3-path joining two of the three vertices $x, y$ and $z$ in $G$. Therefore, by the planarity, there are at most three incomparable triangles in this graph and if there is any set of three incomparable triangles, then there is no other triangle bigger than all of them. Thus, also in this case $G^{\prime}$ has a nice structure of triangles.

Note that by the assumptions not all of $x, y, z$ have distinct colors, so for the last case, we may assume that $c(y)=c(z) \neq c(x)$. Notice that in this case we add the edge $x y$ and identify $y, z$ into a vertex, say $w$. Thus, each triangle of $G^{\prime}$ contains the vertex $w$. Again it is easy to check that $G^{\prime}$ has a nice structure of triangles.

The following is a special case of Proposition 10 but because of its application in extending the Götzsch theorem to the class $\operatorname{Forb}_{m}\left(K_{5}\right)$ we state it independently.

Corollary 11 Let $G$ be a plane triangle-free graph and let $x, y$ be two vertices on a same face $f$ of $G$. Then, every proper coloring of $x, y$ can be extended to a 3-coloring of $G$.

### 2.2 Extension of Grötzsch's theorem to $K_{5}$-minor-free graphs

We will use the following fundamental theorem of Wagner [21] (see also [2]).
Theorem 12 Let $G$ be an edge-maximal $K_{5}$-minor-free graph on at least 4 vertices. Then, $G$ can be constructed recursively, by pasting along $K_{2}$ 's and $K_{3}$ 's, from plane triangulations and copies of the Wagner graph.

The Wagner graph, $V_{8}$, is constructed from an 8-cycle (we call it the outer cycle) by connecting the antipodal vertices (these edges will be called the diagonal edges). Note that the Wagner graph is triangle-free and 3-colorable (because it is cubic). The graph is depicted in Figure 1 in two different ways. Our definition of this graph is based on the representation on the right hand side of this figure. To prove the main theorem of this section we will need the following easy lemma about Wagner graph:

Lemma 13 If $e$ is an edge of $V_{8}$ then $V_{8}-e$ admits a 3-coloring such that the end vertices of e receive a same color.

In order to make our arguments easy to follow we introduce the following notations: Let $\mathcal{T}=T_{1}, T_{2}, \ldots, T_{r}$ be a sequence of graphs where each $T_{i}$ is either a plane triangulation or a copy of $V_{8}$. We construct another sequence $\mathcal{G}=\left\{G_{i}\right\}_{i=1}^{i=r}$ of graphs as follows: $G_{1}=T_{1}, G_{i}$ is obtained from $G_{i-1}$ and $T_{i}$ by pasting $T_{i}$ to $G_{i-1}$ along a $K_{2}$ or a $K_{3}$. Given an edge-maximal $K_{5}$-minor-free


Fig. 1. Two different representations of the Wagner graph
graph $G$, the sequence $\mathcal{T}$ is said to be a Wagner sequence of a graph $G$, if $G=G_{r}$ for some sequence $\mathcal{G}$ constructed from $\mathcal{T}$.

Note that each edge-maximal $K_{5}$-minor-free graph has a Wagner sequence by Theorem 12. A member of a Wagner sequence is called a brick. A Wagner sequence is called a good Wagner sequence if every triangle $x y z$ that is in at least two bricks is a face of each one of the bricks it belongs to. Note that for every Wagner sequence there exists a good Wagner sequence. That is because, if a brick $T_{i}$ is pasted along a triangle $C$ to $G_{i-1}$, where $C$ is a separating triangle of $T_{i}$ (i.e., not a face), then we can split $T_{i}$ into two new bricks $\operatorname{Int}(C)$ and $\operatorname{Out}(C)$. It is also important to note that for each $i, 1 \leq i \leq r$, the subsequence $T_{1}, T_{2}, \ldots, T_{i}$ is a (good) Wagner sequence of the subgraph $G_{i}$ of $G$.

Next we extend these notations to any $K_{5}$-minor-free graph. Given $K_{5}$-minorfree graphs $G$ and $G^{\prime}$ with $V(G)=V\left(G^{\prime}\right)$ and $G \subseteq G^{\prime}$ any Wagner sequence of $G^{\prime}$ is also a Wagner sequence of $G$. A good Wagner sequence of $G$ is defined analogously. Finally we define the Wagner number of a $K_{5}$-minor-free graph $G$ to be the length of a shortest good Wagner sequence of $G$ and we denote it by $\mathrm{wg}(G)$.

Theorem 14 Every $K_{5}$-minor-free triangle-free graph is 3-colorable.
Proof. The theorem is true for triangle-free graphs with no $K_{5}$-minor and $\operatorname{wg}(G)=1$ by Grötzsch's theorem and the fact that Wagner graph is 3colorable. Suppose $G$ is a minimal counterexample with respect to the Wagner number and assume it has Wagner number $r \geq 2$. Let $\hat{G}$ be an edge-maximal $K_{5}$-minor-free extension of $G$ from which the good Wagner sequence of size $r$ for $G$ is produced and let $T_{1}, T_{2}, \ldots, T_{r}$ be the corresponding good Wagner sequence. There are two type of edges in $\hat{G}$ : The ones in $E(G)$, which we call them thick edges. The ones not in $E(G)$, which we call them thin edges.

Our aim is to provide a coloring $c_{i}$ for each $T_{i}$ (inductively) so that $c_{i}$ is an extension of the already colored vertices of $T_{i}$ and that it is proper with respect to thick edges. Toward this we prove a bit stronger statement. We require, moreover, that if $x y z$ is a thin triangle in more than one brick, then its vertices are assigned at most two different colors all together. Note that we may assume $G$ is the smallest counterexample to this stronger statement with respect to Wagner number, also that this additional condition is trivially true for $r=1$.

By our choice of $G$, the subgraph $G_{r-1}$ of $G$ has a 3-coloring that satisfies our additional assumption as well (note that $T_{1}, T_{2}, \ldots, T_{r-1}$ is a good Wagner sequence of $G_{r-1}$ ). Now, if $T_{r}$ is pasted to $G_{r-1}$ along a $K_{2}$, then, using Corollary 11, the 3 -colorability of $V_{8}$ and Lemma 13 , we are done. If $T_{r}$ is pasted to $G_{r-1}$ along a triangle which is not a thin triangle then simply apply Proposition 10. So we may assume $T_{r}$ is pasted to $G_{r-1}$ along a thin triangle $x y z$. If this triangle is in at least two other $T_{i}$ 's, $1 \leq i \leq r-1$, then we are done-again using Proposition 10-because $x y z$ has received at most two colors by our additional assumption.

Finally, let $x y z$ be a thin triangle that is only in $T_{r}$ and $T_{j}$ for some $j, 1 \leq$ $j \leq r-1$. Insert a new vertex $t$ to $G_{r-1}$ and join it to $x, y$ and $z$. Let $G_{r-1}^{\prime}$ be the new graph. Let also $T_{r-1}^{\prime}$ be a triangulation obtained from $T_{r-1}$ by inserting $t$ inside the $x y z$-face and joining it to $x, y$ and $z$ using thick edges. Note that $T_{1}, T_{2}, \ldots, T_{r-2}, T_{r-1}^{\prime}$ is a good Wagner sequence of $G_{r-1}$. So, by the choice of $r, G_{r-1}^{\prime}$ admits a 3 -coloring satisfying all our requirements. In this coloring $x, y, z$ must receive at most two different colors. Therefore, if we take the induced coloring on $G_{r-1}$, then this coloring, by Proposition 10, will be extendible to $G_{r-1}+T_{r}=G$. This extended coloring satisfies our additional assumption as well.

## 3 Homomorphism to the Clebsch graph

Let $k \geq 1$ and let $S_{k}=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a set of $k$ vectors in $\mathbb{Z}_{2}^{k}$ such that $\sum_{i=1}^{k} s_{i}=0\left(\right.$ in $\left.\mathbb{Z}_{2}^{k}\right)$ and no proper subset of $S$ sums to 0 . For example, one can take the set of all vectors with two consecutive 1's in a cyclic order. Let $\Gamma_{k}$ be the subgroup of $\mathbb{Z}_{2}^{k}$ generated by $S_{k}$. It is an elementary group theory fact that $\Gamma_{k}$ is isomorphic to $\mathbb{Z}_{2}^{k-1}$ for any choice of $S_{k}$. For the example of $S_{k}$ we chose, elements of $\Gamma_{k}$ are those $k$-vectors in $\mathbb{Z}_{2}^{k}$ that have an even number of 1 's in their coordinates.

We now define $H_{k}$ to be the Cayley graph $C\left(\Gamma_{k}, S_{k}\right)$. Vertices of this Cayley graph are the elements of $\Gamma_{k}$ and two vertices are adjacent if and only if their difference is in $S_{k}$. We will show below that $H_{k}$ is independent from the choice
of $S_{k}$. Note that, since $S_{k}$ is a generator of $\Gamma_{k}, H_{k}$ is a connected graph.
For $k=1,2,3$ and 4 the graph $H_{k}$ is isomorphic to $K_{1}, K_{2}, K_{4}$ and $K_{4,4}$, respectively. For $k=5, H_{5}$ is isomorphic to the Clebsch graph. $H_{5}$ contains two disjoint copies of the Wagner graph, this can be observed easily in a representation as in Figure 2.


Fig. 2. Clebsch graph
It is easy to check that $H_{2 k}$ is bipartite, $H_{2 k+1}$ has odd-girth $2 k+1$ and that $\chi^{\prime}\left(H_{k}\right)=k$, see [9]. A canonical edge-coloring $\varphi$ of $H_{k}$ is a $k$-edge-coloring of $H_{k}$, using the elements of $S_{k}$, obtained as follows: Each element $s$ of $S_{k}$ induces a perfect matching because it matches each vertex $x$ of $H_{k}$ to a unique vertex $x+s$. All together these perfect matchings form a $k$-edge-coloring of $H_{k}$.

Let $S_{k}^{*}=\Gamma_{k} \backslash S_{k} \cup\{0\}$. Note that every element of $\Gamma_{k}$ can be represented as the sum of the elements of $S_{k}$ in two different ways. When working with odd values of $k$ we can make this representation unique by only considering the shorter term. For example $S_{5}^{*}=\left\{s_{i}+s_{j} \mid s_{i}, s_{j} \in S_{5}\right.$ and $\left.i \neq j\right\}$ (note also that $\left.S_{5}^{*}=\left\{s_{i}+s_{j}+s_{l} \mid 1 \leq i<j<l \leq 5\right\}\right)$. The complement $H_{k}$ of $H_{k}$ is the Cayley graph $C\left(\Gamma_{k}, S_{k}^{*}\right)$. The canonical edge-coloring of $\bar{H}_{k}$ is defined analogously.

An important characteristic of the canonical edge-coloring $\varphi$ of $H_{k}$ is that it satisfies the following property:

Property $\mathbf{P}_{\mathbf{c}}$. For every given cycle $C$ of $G$ the following holds $\sum_{e \in C} \varphi(e)=0$.
In fact this property allows us to reconstruct the labeling of the vertices (up to an automorphism of $H_{k}$ ) from a given canonical edge-coloring. To do this,
we label an arbitrary vertex $x$ with 0 , then for any other vertex $y$ we choose an $x y$ path $P$ and label $y$ by $\sum_{e \in P} \varphi(e)$. This proves that any permutation $\sigma$ of $S_{k}$ induces an automorphism of $H_{k}$, note that this induced automorphism is not unique, in fact there are $2^{k-1}$ such automorphisms as we have that many choices for a vertex to be labeled 0 . Moreover, since an automorphism of any graph is also an automorphism of its complement, a permutation $\sigma$ of $S_{k}$ also induces an automorphism of $\bar{H}_{k}$.

The property $P_{c}$ divides the set of cycles of $H_{k}$ into two groups with respect to the canonical edge-coloring of $H_{k}$. Given a cycle $C$, either every color appears an even number of times (which might be zero) or every color appears an odd number of times (in particular they all must appear). Now, if we change our choice of the difference set from $S_{k}$ to $\hat{S}_{k}$, then the bijection from $S_{k}$ to $\hat{S}_{k}$ will not change the parity and, therefore, it will not affect the property $P_{c}$. The relabeling, using this new canonical edge-coloring, is an isomorphism between $\left(\Gamma_{k}, S_{k}\right)$ and $\left(\hat{\Gamma}_{k}, \hat{S}_{k}\right)$. This shows that $H_{k}$ is independent form the choice of $S_{k}$. It also follows from this argument that $H_{k}$ is edge-transitive.

The following conjecture is the focus of this section:
Conjecture 15 The class of $K_{5}$-minor-free graphs of odd-girth at least $2 k+1$ is bounded by $H_{2 k+1}$.

This conjecture is closely related to some other conjectures. In particular it is a generalization of Conjecture 4 and it is a relaxation of Conjecture 6 , which in turn is also a relaxation of the Cycling conjecture, see [6,15]. The first case of the Conjecture 15 (i.e., $k=1$ ) is shown by Wagner [21] to be equivalent to the Four-Color Theorem. In this section, using Theorem 5, we verify the conjecture for $k=2$ (so the Four-Color Theorem is used in our proof).

Theorem 16 Every triangle-free graph in $\operatorname{Forb}_{m}\left(K_{5}\right)$ admits a homomorphism to $H_{5}$.

The proof is similar to that of Theorem 14. We will use the Wagner sequence but we first need some definitions and preliminary lemmas together with a strengthening of Theorem 5 for planar graphs.

A mixed graph is a pair $\left(G, G^{\prime}\right)$ of graphs such that $G^{\prime}$ is a subgraph of $G$ and has the same set of vertices as $G$. We can look at a mixed graph as one graph $G$ with two different types of edges: Those in $E(G)$, we will call them thick edges. Those in $E(G) \backslash E\left(G^{\prime}\right)$, we will call them thin edges. A homomorphism of a mixed graph $\left(G, G^{\prime}\right)$ to $\left(H, H^{\prime}\right)$ is a mapping of $V(G)$ to $V(H)$, which not only preserves the adjacency but also preserves the thickness of the edges as well. An isomorphism (and an automorphism) of mixed graphs is defined analogously. For more on homomorphism of mixed graphs we refer to [14]. The canonical edge-coloring of the mixed graph $\left(K_{16}, H_{5}\right)$ is the combined
canonical edge-colorings of $H_{5}$ and $\bar{H}_{5}$.
Our first lemma of this section is about the transitivity of the Clebsch graph. Informally speaking we prove that $\left(K_{16}, H_{5}\right)$ is triangle transitive and that any isomorphism between two mixed triangles of this mixed graph extends to an automorphism of the whole graph.

Lemma 17 Let $A$ and $B$ be two subsets of the vertices of the mixed graph $\left(K_{16}, H_{5}\right)$. Suppose $|A|=|B| \leq 3$ and that the mixed subgraph $\left(X_{A}, X_{A}^{\prime}\right)$ induced by $A$ is isomorphic to the mixed subgraph $\left(X_{B}, X_{B}^{\prime}\right)$ induced by $B$. Let $\phi$ be such an isomorphism. Then, there is an automorphism $\theta$ of the mixed graph $\left(K_{16}, H_{5}\right)$ such that $\left.\theta\right|_{A}=\phi$.

Proof. The case $|A|=|B|=1$ follows from the fact that every Cayley graph, in particular $H_{5}$, is vertex transitive. For the case $|A|=|B|=2$ note that the Clebsch graph and its complement both (and, therefore, also $\left(K_{16}, H_{5}\right)$ ) are edge transitive. Let $\theta$ be an automorphism of $\left(K_{16}, H_{5}\right)$ which maps the edge induced by $A$ to the edge induced by $B$. If $\phi$ and $\theta$ agree on $A$, then we are done. Otherwise, let $s$ be the color of the edge induced by $B$ in the canonical edge-coloring of $\left(K_{16}, H_{5}\right)$. Note that $\theta_{s}$, defined by $\theta_{s}(x)=x+s$, is an automorphism of $\left(K_{16}, H_{5}\right)$ which switches the two vertices of $B$. Now $\theta_{s} \circ \theta$ is an automorphism of $\left(K_{16}, H_{5}\right)$ that agrees with $\phi$ on $A$.

For the last case we have $|A|=|B|=3$. Note that $X_{A}$ and $X_{B}$ have the same number of thick edges, moreover this number cannot be three as $H_{5}$ is a triangle-free graph. If $X_{A}$ has two thick edges corresponding to $s_{i}$ and $s_{j}$, then the thin edge corresponds to $s_{i}+s_{j}$. If $X_{A}$ has only one thick edge corresponding to $s_{i}$, then the two thin edges correspond to $s_{j}+s_{k}$ and $s_{r}+s_{t}$ with all the five different elements of $S_{5}$ being used here. Finally, if there is no thick edge in $X_{A}$, then they are colored by $s_{i}+s_{j}, s_{i}+s_{k}$ and $s_{j}+s_{k}$.

It is easy to check that in either one of these cases there exists a permutation $\sigma$ of $S_{5}$ which changes the color of the edge $x y$ of $X_{A}$ to the color of the edge $\phi(x) \phi(y)$ of $X_{B}$. Let $\theta_{\sigma}$ be an induced automorphism of $\left(K_{16}, H_{5}\right)$ by $\sigma$. Let $\theta^{\prime}$ be the automorphism of $\left(K_{16}, H_{5}\right)$ defined by $\theta^{\prime}(t)=t+\phi\left(x_{0}\right)-\theta_{\sigma}\left(x_{0}\right)$ where $x_{0}$ is a fixed element of $A$. It is now easy to check that $\theta^{\prime} \circ \theta_{\sigma}$ is an automorphism of $H_{5}$ which agrees with $\phi$ on $A$.

The following result is a generalization of Theorem 5 .
Theorem 18 Let $\left(G, G^{\prime}\right)$ be a mixed graph such that $G$ is planar and $G^{\prime}$ is triangle-free. Then, there is a homomorphism of $\left(G, G^{\prime}\right)$ to $\left(K_{16}, H_{5}\right)$.

Proof. Let $\left(G, G^{\prime}\right)$ be a mixed graph such that $G$ is planar and $G^{\prime}$ is trianglefree. For every thin edge $u v$ first we add a new copy (of $u v$ ) so that there are two (multiple) edges $u v$ and then we subdivide one of them once the other
one twice. In this way, the edge $u v$ is replaced by a 5 -cycle in which $u$ and $v$ are nonadjacent vertices. Let $G^{\prime \prime}$ be the simple graph obtained from $G$ in this way.

Note that every vertex of $G$ is also a vertex of $G^{\prime \prime}$ and that an edge of $G$ is an edge of $G^{\prime \prime}$ if and only if it is a thick edge. It follows from construction of $G^{\prime \prime}$ that it is a triangle-free planar graph, therefore, by Theorem 5 , it maps to $H_{5}$. The restriction of this homomorphism to the vertices of $G$ is a homomorphism of $\left(G, G^{\prime}\right)$ to $\left(K_{16}, H_{5}\right)$. To see this, note that thick edges of $G$ are also edges of $G^{\prime \prime}$ and, therefore, are mapped to the thick edges of $\left(K_{16}, H_{5}\right)$. For a thin edge $u v$ of $G$, note that $G^{\prime \prime}$ contains a 5-cycle having $u$ and $v$ as non adjacent vertices. Since $H_{5}$ is a triangle-free graph, image of every 5 -cycle must be a 5 -cycle and, therefore, $u$ and $v$ are mapped to a pair of nonadjacent vertices of $H_{5}$, that is a thin edge in $\left(K_{16}, H_{5}\right)$.

To prove the main theorem of this section we require another lemma which is about homomorphisms of (mixed) Wagner graph to the Clebsch graph. To prove this lemma we will use the following interpretation of homomorphisms to $H_{5}$ and $\left(K_{16}, H_{5}\right)$.

Let $f$ be a homomorphism of a given graph $G$ to $H_{5}$. Then $f$ induces a (not necessarily proper) edge-coloring of $G$ using the canonical edge-coloring of $H_{5}$. We denote this edge-coloring by $f^{\prime}$. It is not hard to check that $f^{\prime}$ satisfies the property $P_{c}$. Using this property once again we see that $f^{\prime}$ also uniquely determines $f$ (up to an automorphism of $H_{5}$ ). Suppose $G$ is a connected graph and let $f^{\prime}$ be an edge-coloring of $G$, using the five elements of $S_{5}$, that satisfies the property $P_{c}$. For a fixed vertex $x$ of $G$ define $f(x)=0$ and then for any other vertex $y$ choose an $x y$-path $P$ and define $f(y)=\sum_{e \in P} f^{\prime}(e)$. If a graph has more than one component, then repeat this on each component. For simplicity, an edge-coloring using elements of $S_{5}$ which satisfies the property $P_{c}$ will be called an $S_{5}$-edge-coloring.

Analogously, an $\left(S_{5}^{*}, S_{5}\right)$-edge-coloring $f^{\prime}$ of a mixed graph $\left(G^{\prime}, G\right)$ is a (not necessarily proper) edge-coloring of $G$ such that thin edges receive their colors from $S_{5}^{*}$, thick edges receive their colors from $S_{5}$ and $f$ satisfies the property $P_{c}$. Again it is easily seen that a mixed graph $\left(G, G^{\prime}\right)$ admits a homomorphism to $\left(K_{16}, H_{5}\right)$ if and only if it admits an $\left(S_{5}^{*}, S_{5}\right)$-edge-coloring.

Lemma 19 For every subgraph $V_{8}^{\prime}$ of $V_{8}$ (on the same set of vertices) the mixed graph ( $V_{8}, V_{8}^{\prime}$ ) admits a homomorphism to $\left(K_{16}, H_{5}\right)$.

Proof. We will show that ( $V_{8}, V_{8}^{\prime}$ ) admits an $\left(S_{5}^{*}, S_{5}\right)$-edge-coloring. We start with a reference $S_{5}$-edge-coloring $c$ of $V_{8}$. There is a homomorphism of $V_{8}$ to $H_{5}$ because $V_{8}$ is in fact a subgraph of $H_{5}$. The canonical edge-coloring of $H_{5}$ now induces an $S_{5}$-edge-coloring on $V_{8}$. Note that this coloring is unique up to a permutation of $S_{5}$. The four diagonal edges are colored by a same
color and every pair of parallel edges of the 8-cycle receive a same color but distinct from the color of the other edges. It is also not difficult to find a homomorphism of $V_{8}$ to $\bar{H}_{5}$, in fact $\bar{H}_{5}$ consists of two disjoint copies of $H_{5}$ (see [3]) and, therefore, contains $V_{8}$ as a subgraph. So for the rest of the proof we will assume that $V_{8}^{\prime}$ has at least one thick edge.

Let $A$ be the set of edges in an edge-cut of $V_{8}$. Note that if we change the color of every edge in $A$ from $c(e)$ to $\gamma+c(e)$, with a fixed $\gamma \in \Gamma_{k}$, then the new edge-coloring (we call it $c^{\prime}$ ) still satisfies the property $P_{c}$. However $c^{\prime}(e)$ does not necessarily belong to $S_{5}$ anymore. In fact $c^{\prime}(e)$ may even be zero based on the choice of $\gamma$.

To prove the lemma, we will show that by a careful choice of $\gamma$ and by repeated applications of the above edge-cut operation we can change the color of every edge not in $V_{8}^{\prime}$ to an element of $S_{5}^{*}$ while keeping the color of other edges in $S_{5}$. To simplify the proof we introduce two local operators.

Claim 1 (Single operator). Suppose $e_{1}, e_{2}$ and $e_{3}$ are the three edges of $V_{8}$ being incident to a vertex $v$. Then, there is a $\gamma \in \Gamma_{k}$ such that $\gamma+c\left(e_{i}\right)$ is in $S_{5}$ if $e_{i}$ is a thick edge and is in $S_{5}^{*}$ otherwise.

Proof. Let $c\left(e_{1}\right)=x, c\left(e_{2}\right)=y$ and $c\left(e_{3}\right)=z$. Note that $x, y$ and $z$ are distinct elements of $S_{5}$. Let $t$ be one of the two other elements of $S_{5}$. Based on the number of $e_{i}^{\prime}$ 's in $V_{8}^{\prime}$ we have four different cases. If they are all in $V_{8}^{\prime}$, then we do nothing (i.e., $\gamma=0$ ). If there are two of them in $V_{8}^{\prime}$, say $e_{1}$ and $e_{2}$, then let $\gamma=x+y$. We now have $c^{\prime}\left(e_{1}\right)=y, c^{\prime}\left(e_{2}\right)=x$ and $c^{\prime}\left(e_{3}\right)=x+y+z$. If there is only one of them in $V_{8}^{\prime}$, say $e_{1}$, then let $\gamma=t+x$. The new colors are $c^{\prime}\left(e_{1}\right)=t, c^{\prime}\left(e_{2}\right)=t+x+y$ and $c^{\prime}\left(e_{3}\right)=t+x+z$. Finally, if none of them is in $V_{8}^{\prime}$, then let $\gamma=t$. $e_{i}$ 's are now colored by $t+x, t+y$ and $t+z$.

Claim 2 (Double operator). Let $e_{0}=u v$ be an edge of the outer cycle of $V_{8}$ and let $e_{1}$ and $e_{2}$ be the two other edges incident to $v$ and $e_{3}$ and $e_{4}$ the two other edges incident to $u$. Then, there are $\gamma_{1}, \gamma_{2} \in \Gamma$ such that, by adding $\gamma_{1}$ to $c\left(e_{1}\right)$ and $c\left(e_{2}\right), \gamma_{2}$ to $c\left(e_{3}\right)$ and $c\left(e_{4}\right)$ and $\gamma_{1}+\gamma_{2}$ to $c\left(e_{0}\right)$, the color of each thick $e_{i}$ remains in $S_{5}$ but each thin $e_{i}$ receives its color from $S_{5}^{*}$.

Proof. We assume $c\left(e_{0}\right)=x, c\left(e_{1}\right)=y, c\left(e_{3}\right)=z$ and $c\left(e_{2}\right)=c\left(e_{4}\right)=t$ (therefore $e_{2}$ and $e_{4}$ are the diagonal edges). Hence, $x, y, z$ and $t$ are distinct elements of $S_{5}$. Let $r$ be the remaining element of $S_{5}$.

If both $e_{1}$ and $e_{2}$ are in $V_{8}^{\prime}$, then we are done by applying Single operator at $u$. So we may assume at least one of $e_{1}$ or $e_{2}$ (similarly at least one of $e_{3}$ or $e_{4}$ ) is a thin edge. Suppose there are exactly two thin edges among $e_{1}, e_{2}, e_{3}$ and $e_{4}$. We assume $e_{0}$ is a thick edge and we give a detailed proof of how Double operator works on each possible case. For the corresponding cases of when $e_{0}$
is a thin edge we only give the value for $\gamma_{1}$ and $\gamma_{2}$ and leave the details to the reader.

- $e_{1}$ and $e_{3}$ are not in $V_{8}^{\prime}$. We let $\gamma_{1}=\gamma_{2}=t+x$. Then new colors are: $c^{\prime}\left(e_{0}\right)=c^{\prime}\left(e_{2}\right)=c^{\prime}\left(e_{4}\right)=x, c^{\prime}\left(e_{1}\right)=t+x+y$ and $c^{\prime}\left(e_{3}\right)=t+x+z$. (If $e_{0}$ is a thin edge, then we will let $\gamma_{1}=t+z$ and $\gamma_{2}=t+y$.)
- $e_{1}$ and $e_{4}$ are not in $V_{8}^{\prime}$. We let $\gamma_{1}=t+z$ and $\gamma_{2}=x+z$. This changes the colors as follows: $c^{\prime}\left(e_{0}\right)=t, c^{\prime}\left(e_{1}\right)=y+t+z, c^{\prime}\left(e_{2}\right)=z, c^{\prime}\left(e_{3}\right)=x$ and $c^{\prime}\left(e_{4}\right)=t+z+x$. (If $e_{0}$ is a thin edge, then we will let $\gamma_{1}=t+r$ and $\gamma_{2}=z+r$.) Note that the case when $e_{2}$ and $e_{3}$ are not in $V_{8}^{\prime}$ is symmetric to this case.
- $e_{2}$ and $e_{4}$ are not in $V_{8}^{\prime}$. We let $\gamma_{1}=x+y$ and $\gamma_{2}=y+z$. The final colors are $c^{\prime}\left(e_{0}\right)=z, c^{\prime}\left(e_{1}\right)=x, c^{\prime}\left(e_{2}\right)=t+x+y, c^{\prime}\left(e_{3}\right)=y$ and $c^{\prime}\left(e_{4}\right)=t+y+z$. (If $e_{0}$ is a thin edge, then we will let $\gamma_{1}=r+y$ and $\gamma_{2}=y+z$.)

If there are three or more thin edges among $e_{1}, e_{2}, e_{3}$ and $e_{4}$, then we may assume, without loss of generality, that both $e_{1}$ and $e_{2}$ are thin. In this case, we first let $\gamma_{1}=x+r$. Therefore, changing the color of $e_{0}$ to $r, e_{1}$ to $y+x+r$ and $e_{2}$ to $t+x+r$. Now, since the edges incident to $v$ are colored from $S_{5}$ using three different colors, $\gamma_{2}$ can be find by applying Single operator at $u$. $\diamond$

Single and Double operators are like local changes. In order to complete our proof, we need to show that these changes can be done globally without conflicting each other. For this purpose, assume there is at least one edge $e$ of the outer cycle of $V_{8}$ that is also in $V_{8}^{\prime}$. Let $v_{1}, v_{2}, v_{3}$ and $v_{4}$ be the four vertices at distance 1 from $e$, assuming that $v_{3} v_{4}$ is the edge parallel to $e$. Notice that these four vertices cover all the edges of $V_{8}$ except $e$. Moreover, $v_{3} v_{4}$ is the only edge incident to two of these vertices. Now, we apply Single operator at $v_{1}$ and at $v_{2}$ and Double operator at $\left\{v_{3}, v_{4}\right\}$.

The remaining cases are when none of the edges of the outer cycle are in $V_{8}^{\prime}$. In this case, in the clockwise order (of the outer cycle) we add the color of every edge of the outer cycle to the color of the next edge. This way all the edges of the outer cycle have colors from $S_{5}^{*}$ and it is again easy to check that this new coloring satisfies the property $P_{c}$. Since we have assumed $\left(V_{8}, V_{8}^{\prime}\right)$ has at least one thick edge, there are at most three diagonal thin edges. We choose a set $A$ of independent vertices of $V_{8}$ that covers the thin diagonal edges, making sure each selected vertex is incident to one such diagonal edge. For each vertex $u$ in $A$ we add the sum of the colors of two edges of the outer cycle incident to $u$ to all three edges incident to $u$. This only exchanges the colors of the two edges of the outer cycle while it changes the color of the corresponding diagonal edge from an element of $S_{5}$ to an element of $S_{5}^{*}$. This proves the final case of the lemma.

We are now ready to prove the following stronger form of Theorem 16.

Theorem 20 Let $\left(G, G^{\prime}\right)$ be a mixed graph where $G$ is a maximal $K_{5}$-minorfree graph and $G^{\prime}$ is a triangle-free graph. Then ( $G, G^{\prime}$ ) admits a homomorphism to $\left(K_{16}, H_{5}\right)$.

Proof. Our proof is by contradiction. Assume $\left(G, G^{\prime}\right)$ is the smallest counterexample with respect to Wagner number of $G$. Let $T_{1}, T_{2}, \ldots, T_{r}$ be the good Wagner sequence of $G$. Each member $T_{i}$ of this sequence can be considered as a mixed graph $\left(T_{i}, T_{i}^{\prime}\right)$ where the edges in $E\left(T_{i}\right) \cap E\left(G^{\prime}\right)$ are the thick edges and edges in $E\left(T_{i}\right) \backslash E\left(G^{\prime}\right)$ are the thin edges. Let $\left(G_{r-1}, G_{r-1}^{\prime}\right)$ be the mixed graph induced by $G_{r-1}$. By the choice of $r,\left(G_{r-1}, G_{r-1}^{\prime}\right)$ admits a homomorphism to $\left(K_{16}, H_{5}\right)$, call this homomorphism $f_{1}$.

Now, if $T_{r}$ is isomorphic to $V_{8}$, then, by Lemma 19, there is a homomorphism $f_{2}$ of $\left(T_{r}, T_{r}^{\prime}\right)$ to $\left(K_{16}, H_{5}\right)$. Since $T_{r}$ and $G_{r-1}$ have only an edge in common, using Lemma 17 we may choose $f_{2}$ so that the image of the end vertices of this edge under $f_{2}$ is the same as their image under $f_{1}$. A homomorphism of $\left(G, G^{\prime}\right)$ can now be obtained from combining $f_{1}$ and $f_{2}$.

If $T_{r}$ is a triangulation, then we can find a homomorphism $f_{3}$ of $\left(T_{r}, T_{r}^{\prime}\right)$ to $\left(K_{16}, H_{5}\right)$ using Theorem 18. Moreover, since $T_{r}$ and $G_{r-1}$ have at most 3 vertices in common, using Lemma 17, we may choose $f_{3}$ so that it agrees with $f_{1}$ on these common vertices. The homomorphism of $\left(G, G^{\prime}\right)$ is again obtained from combining $f_{1}$ and $f_{3}$.

## 4 Examples and Remarks

In the first part of this section we show that our results from Sections 2 and 3 cannot extend to the class $\operatorname{Forb}_{m}\left(K_{6}\right)$. We have some remarks and a conjecture in the second part.

### 4.1 Examples

A graph is called apex if by removing at most one vertex it becomes planar. It is clear that an apex graph is $K_{6}$-minor-free. Our first example is a triangle-free apex graph which is not 3 -colorable. It was conjectured by Thomas [18] that every triangle-free apex graph is 3 -colorable. This conjecture was disproved by Hare [7]. Here we provide an smaller counterexample to this conjecture.

Proposition 21 There exists a triangle-free 4-chromatic apex graph.
Proof. The graph $G$, depicted in Figure 3, is our example. $G$ is clearly an apex graph as by removing vertex $y$ it becomes planar. It is also easily seen
that $G$ is triangle-free. $G$ is 4-colorable because $G-y$ is a triangle-free planar graph and therefore, by Grötzsch's theorem, is 3 -colorable. It is only left to prove that $G$ is not 3 -colorable. Assume contrary, that $G$ is 3 -colorable. Let $c$ be a 3 -coloring of $G$.


Fig. 3. A triangle-free 4-chromatic apex graph.
We first claim that $c(x)=c(y)=1$. Let $G^{\prime}$ be the subgraph of $G$ induced by $v_{i}$ 's, $u_{i}^{\prime}$ 's, $x$ and $y$. Note that $G^{\prime}$ is obtained from the Grötzsch's graph by removing a vertex of degree 3 . We show that in any 3 -coloring of $G^{\prime}$ vertices $x$ and $y$ must receive a same color. This will prove our claim because $c$ also induces a 3 -coloring on $G^{\prime}$. Let $c_{1}$ be a 3 -coloring of $G^{\prime}$ such that $c_{1}(y)=1$ and $c_{1}(x) \neq 1$. For each $v_{i}$ if $c_{1}\left(v_{i}\right)=1$, then we change the color of $v_{i}$ to $c_{1}\left(u_{i}\right)$. This new coloring is still a proper 3 -coloring of $G^{\prime}$ but the color 1 does not appear on the 5 -cycle induced by $x$ and $v_{i}$ 's, a contradiction.

To complete our proof we notice that the set of vertices not colored 1 must induce a bipartite graph. Since $v_{2}$ is the only vertex of the 5 -cycle induced by $\left\{w_{1}, w_{2}, v_{2}, u_{3}, v_{4}\right\}$ that is not adjacent to $x$ or $y$, we must have $c\left(v_{2}\right)=1$. But then every vertex of the 5 -cycle induced by $\left\{v_{1}, u_{2}, v_{3}, t_{1}, t_{2}\right\}$ is adjacent to a vertex of color 1 . This contradicts the fact that $c$ was a 3 -coloring.

Our next example is also an apex graph, but this one is $K_{4}$-free and 5chromatic.

Proposition 22 There exists a $k_{4}$-free 5 -chromatic graph in $\operatorname{Forb}_{m}\left(K_{6}\right)$.
Proof. An example of such a graph is depicted in Figure 4, we call this graph $H$. Note that $H$ is also an apex graph and, therefore, $K_{6}$-minor-free. The fact that it is $K_{4}$-free can be checked easily. We prove that it is 5 -chromatic.

Let $H^{\prime}$ be the subgraph of $H$ which is obtained by removing two doted edges (i.e., $x_{0} y_{3}$ and $x_{0} t_{3}$ ). It is easy to check that $H^{\prime}$ is a 4 -chromatic graph (it is


Fig. 4. A $K_{4}$-free 5-chromatic apex graph.
planar and contains the odd wheel $W_{5}$ ). We claim that in any 4 -coloring of this graph either $y_{3}$ or $t_{3}$ receives the same color as $x_{0}$. To see this, note that in a 4 -coloring of $H^{\prime}$ each $x_{i}, i=1,2, \ldots, 5$ receives a color different from that of $x_{0}$. Furthermore, at least one of $x_{3}$ and $x_{4}$ (by symmetry, say $x_{3}$ ) receives a color different from that of $x_{1}$. Now it is easy to see that $y_{1}$ must be colored the same as $x_{0}, y_{2}$ must be colored the same as $x_{2}$ and finally $y_{3}$ gets the color of $x_{0}$. This proves that $H$ is not 4-colorable. Since $H$ is an apex graph, it is 5 -colorable. Therefore, it is 5 -chromatic.

Using Propositions 21 and 22 we can generally state that:
Corollary 23 For every $k \geq 6$ and $3 \leq j \leq k-2$, the class $_{\operatorname{Forb}}^{m}\left(K_{k}\right)$ contains a graph homomorphically incomparable to $K_{j}$.

Proof. For $k=6$, the graph homomorphically incomparable to $K_{j}$ is constructed in Proposition 21 (for $j=3$ ) and Proposition 22 (for $j=4$ ). For a general $k$ and $j$ all we need to do is to add a disjoint copy of a complete graph of an appropriate size to $G$ (from Proposition 21) or $H$ (from Proposition 22) and join all its vertices to all the vertices of $G$ (or $H$ ).

The following proposition proves that Theorem 15 cannot be extended to the class of triangle-free graphs in $\operatorname{Forb}_{m}\left(K_{6}\right)$ either.

Proposition 24 Let $F$ be the graph of Figure 5. Then $F$ is a triangle-free graph in $\operatorname{Forb}_{m}\left(K_{6}\right)$ that does not admit a homomorphism to $H_{5}$.

Proof. The fact that $F$ is triangle-free is clear from the picture. To see that $F$ does contain a $K_{6}$-minor let $F^{\prime}$ be the graph obtained from $F$ by contracting $u_{1} x$ and $u_{2} y$. Note that the size of the largest clique-minor of $F$ and $F^{\prime}$ are the same. Also that $F^{\prime}$ is of maximum degree 4 . If $K_{6}$-which is a 5 -regular graph-is a minor of $F^{\prime}$, then every vertex of this minor must be formed from identifying at least 2 vertices of $F^{\prime}$. But $F^{\prime}$ has only 10 vertices. This proves that $K_{6}$ is not a minor of $F$, i.e., $F \in \operatorname{Forb}_{m}\left(K_{6}\right)$.

To prove that $F$ does not admit a homomorphism to $H_{5}$ we show that it does not admit an $S_{5}$-edge-coloring. By contradiction, assume $c^{\prime}$ is an $S_{5}$-edge-


Fig. 5. A $\Delta$-free graph in $\operatorname{Forb}_{m}\left(K_{6}\right)$ which does not map to the Clebsch graph.
coloring of $F$. We first claim that $c^{\prime}\left(v_{i} u_{1}\right) \neq c^{\prime}\left(v_{i} u_{2}\right)$. Because if $c^{\prime}\left(v_{i} u_{1}\right)=$ $c^{\prime}\left(v_{i} u_{2}\right)$, then the induced homomorphism by $c^{\prime}$ maps $u_{1}$ and $u_{2}$ to a same vertex. This is not possible because if $u_{1}$ and $u_{2}$ are mapped to a same vertex, then the image of the 3 -path joining $u_{1}$ and $u_{2}$ must contain a triangle or a loop.

Next we claim that for each $1 \leq i<j \leq 3$ the set $\left\{c^{\prime}\left(v_{i} u_{1}\right), c^{\prime}\left(v_{i} u_{2}\right)\right\}$ is the same as the set $\left\{c^{\prime}\left(v_{j} u_{1}\right), c^{\prime}\left(v_{j} u_{2}\right)\right\}$. This is followed from the fact that $\left\{v_{i}, v_{j}, u_{1}, u_{2}\right\}$ induces a 4 -cycle, and that every cycle, in particular this 4 cycle, must satisfy the property $P_{c}$. Then, it follows that from the three edges joining $u_{1}$ to $v_{i}, i=1,2,3$ there are at least two being colored the same by $c^{\prime}$. But every pair of these edges belong to a 5 -cycle and no two edges of a 5 -cycle can receive a same color in an $S_{5}$-edge-coloring.

### 4.2 Remarks

A short proof of Grötzsch theorem is published by Thomassen [19]. In fact Thomassen proved a stronger result that every planar graph of girth at least 5 is 3 -choosable. We do not know whether this can be extended to the class of $K_{5^{-}}$ minor-free graphs. (Thomassen's proof is based on the planar representations of these graphs). Notice that girth 5 is needed here. A triangle-free planar graph which is not 3-choosable is constructed by Voigt [20].

It follows from a general result of Nešetřil and Ossona de Mendez [13] that the class of $K_{5}$-minor-free graphs of odd-girth at least $2 k+1$ is bounded by a graph $B$ of odd-grith $2 k+1$. To our knowledge this is the best supportive result for Conjecture 15.

While we showed, in this section, that our results cannot be extended to the class $\operatorname{Forb}_{m}\left(K_{6}\right)$, we conjecture that absence of both triangles and 4-cycles
still implies a similar result on the class of $K_{6}$-minor-free graphs.
Conjecture 25 Every $K_{6}$-minor-free graph of girth at least five is 3-colorable.
We would also like to remark that Thomas [18] has conjectured that every triangle-free graph in $\operatorname{Forb}_{m}\left(K_{6}\right)$ is 4-colorable.

Acknowledgment Parts of this research was conducted at Charles University, Prague, we are grateful for their hospitality and we would like to acknowledge the support by ITI, Institute for Theoretical Computer Science. The first author was a Post doctoral fellow at Royal Military College of Canada for parts of this research. The second author was partially supported by DIMATIA. The third author acknowledges a partial support by Ministry of Science of Slovakia, Research program P1-0297.

## References

[1] V. A. Aksionov, Concerning the extension of the 3-coloring of planar graphs (in Russian), Diskrete Anal. Issled. Oper. 16, (1974) 3-19.
[2] R. Diestel, Graph Theory, Springer-Verlag, New York, (2000).
[3] R. E. Greenwood, A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7, (1955) 1-7.
[4] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14, (1973) 390-408.
[5] B. Guenin, Edge coloring plane regular multigraphs, to appear.
[6] B. Guenin, Packing odd circut covers: A conjecture, manuscript.
[7] D. Hare, personal communication.
[8] P. Hell, J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, (2004).
[9] R. Naserasr, Homomrphism and edge colourings of planar graphs, submited.
[10] R. Naserasr, Y. Niguusie, On a new reformulation of Hadwiger's conjecture, (to appear in Discrete Math.)
[11] J. Nešetřil, Y. Nigussie, On the 1-cuts of clique-minor-free graphs, manuscript.
[12] J. Nešetřil, P. Ossona de Mendez, Cuts and bounds, KAM-DIMATIA Series, 592 (2002).
[13] J. Nešetřil, P. Ossona de Mendez, Tree depth, subgraph coloring and homomorphism bounds, (to appear in European J. of Combin.)
[14] J. Nešetřil, A. Raspaud, Colored homomorphisms of colored mixed graphs. J. Combin. Theory Ser. B 80 (2000) 147-155.
[15] A. Schrijver, Combinatorial Optimization-Polyhedra and Efficiency, volume C, Springer, (2003) PP. 1408-1409.
[16] P. D. Seymour, On Tutte's extension of the four-colour problem, J. Combin. Theory Ser. B 31 (1981) 82-94.
[17] P. G. Tait, Remarks on the previous communication, Proceeding of the Royal Society of Edinbrugh 10 (1878-1880) 729.
[18] R. Thomas, Personal communication.
[19] C. Thomassen, A short list color proof of Grötzsch's theorem, J. Combin. Theory Ser. B 88 (2003) 189-192.
[20] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328.
[21] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 144 (1937) 570-590.

