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Abstract

We prove a sufficient condition for a graph G to have a matching that
interconnects all the components of a disconnected spanning subgraph ofG.
The condition is derived from a recent extension of the Matroid intersection
theorem due to Aharoni and Berger. We apply the result to the problem
of the existence of a (spanning) 2-walk in sufficiently tough graphs.

1 Introduction

Consider a disconnected spanning subgraph F of a connected graph G. We study
the following question: When can all the components of F be interconnected by
a matching outside F? More precisely, we say that a matching M in G \E(F ) is
F -connecting if F ∪M is a connected graph, and prove a sufficient condition for
the existence of an F -connecting matching in a given graph. Before we state it,
we introduce some terminology.

We begin with a variant of the domination number involving paths of length
2 (which we refer to as 2-paths). A set P of 2-paths in a graph H is dominating if
every edge of H is incident with an edge of some 2-path in P . The v-domination
number γv(H) of H is the minimum size of a dominating set of 2-paths in H. If H
contains an isolated edge, then there is no dominating set of 2-paths; accordingly,
γv(H) is defined to be infinite. (The letter ‘v’ in this notation is meant to
symbolize a 2-path.)

If X is a set of edges of a graph G, we write GX for the graph with vertex set
V (G) and edge set X. For a graph H, ω(H) stands for the number of components
of H.
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Theorem 1. Let F be a spanning subgraph of a connected graph G. If

γv(GX) ≥ ω(G \X)− 1

for all X ⊆ E(G) \ E(F ), then G has an F -connecting matching.

The proof of Theorem 1 is based on a recent result of Aharoni and Berger [1]
(see Theorem 5 below) that extends the celebrated matroid intersection theo-
rem [6]. From this, we first derive a corollary on spanning trees satisfying a given
set of restrictions (in Section 3) and Theorem 1 itself (in Section 4).

In the last section, we apply our result to a problem concerning spanning
walks in sufficiently tough graphs. Recall that the toughness τ(G) of a graph G
is the minimum, over all sets X ⊂ V (G) such that G \X is disconnected, of the
ratio |X|

ω(G \X)
.

A graph G is said to be t-tough for all t such that 0 < t ≤ τ(G). A long-
standing conjecture of Chvátal [5] states that there is a constant T such that all
T -tough graphs are hamiltonian. (For some time, T = 2 was believed to have
this property, but this was disproved by Bauer et al. [4].)

A weaker graph property than containing a Hamilton cycle is containing a 2-
walk, i.e., a closed spanning walk visiting each vertex once or twice. Jackson and
Wormald [9] conjectured that every 1-tough graph has a 2-walk. This conjecture
is still open, but Ellingham and Zha [7] showed that the existence of a 2-walk
follows from a stronger toughness assumption:

Theorem 2. Every 4-tough graph has a 2-walk.

For graphs of high girth, the following improvement was established in [7]
(recall that the girth of a graph G is the least length of a cycle contained in G):

Theorem 3. Let k ≥ 3. If G is a (2 + 2
k−2

)-tough graph of girth k, then G has
a 2-walk.

In Section 5, we show that the following somewhat weaker bound follows easily
from Theorem 1:

Theorem 4. Let k ≥ 4. If G is a (3 + 9
k−3

)-tough graph of girth k, then G has
a 2-walk.

Although the application of Theorem 1 does not yield the best available result,
we believe it is interesting as it indicates a novel connection between matroid
intersection and a hamiltonian-type problem in graphs of sufficient toughness. A
similar connection is used in a different context in the more recent paper [10].
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2 Matroids and simplicial complexes

A simplicial complex on a set V is any nonempty family C of subsets of V such
that if A ⊆ B ∈ C, then A ∈ C. The sets in C are called the faces or simplices
of C. The dimension of a face A is |A| − 1, and the dimension dim(C) of C is
the maximum dimension of a face of C. A simplicial complex C determines a
topological space ‖C‖, the polyhedron of C. Typically, one is interested in the
topological properties of C, such as its connectivity. Let us recall this concept
(see [11] for more information).

A topological space X is k-connected (k ≥ 0) if any continuous mapping
f : S` → X, where ` ≤ k and S` is the `-dimensional sphere, can be continuously
extended to a mapping from an (` + 1)-dimensional ball B`+1 to X. Thus, for
instance, X is 0-connected if and only if any two points are joined by a path
in X. The space X is usually considered to be (−1)-connected if X 6= ∅. The
connectivity of X is the maximum k such that X is k-connected. A simplicial
complex C is defined to be k-connected if its polyhedron is k-connected. The
connectivity of C is defined similarly. However, we shall find it convenient to
use a parameter denoted by η(C), which is defined to be the connectivity of ‖C‖
increased by 2.

If X ⊆ V is a subset of the ground set of a simplicial complex C, then C � X
is the induced subcomplex of C on X, that is, the simplicial complex with ground
set X such that A ⊆ X is a face of C � X if and only if it is a face of C.

In graph theory, a simplicial complex of special importance is the independence
complex I(G) of a graph G. Its ground set is V (G), with simplices being the
independent sets in G. Closely related is the matching complex Match(G) of G,
whose ground set is E(G), and whose simplices are the matchings in G. In fact,
Match(G) is the independence complex of the line graph L(G) of G.

Note that the class of simplicial complexes includes any matroid, although the
latter is usually considered from a different viewpoint. (See [14] for background
on matroid theory.) A matroid is a simplicial complex M such that if A, B are
faces of M and |A| > |B|, then there is an element x ∈ A \B such that B ∪ {x}
is a face of M . We now review some of the basic facts about matroids.

The faces of a matroid M are usually referred to as its independent sets. Any
inclusion-maximal face of M is called a basis of M . All the bases have the same
dimension. The rank of M , denoted by rank(M), is the cardinality of any basis
(i.e., its dimension plus one). If X is a subset of the ground set of M , then
M � X is a matroid, and one defines rankM(X) = rank(M � X). Among the
most common matroids are the ones associated to graphs in the following way.
The polygon matroid M(G) of a graph G has ground set E(G) and its faces are
acyclic sets of edges of G. Thus, if G is connected, then bases of M(G) correspond
to spanning trees of G.

The matroid intersection theorem of Edmonds [6] (see also [14, Theorem
12.3.15]) gives a necessary and sufficient condition for a matroid to have a basis
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that is independent in another given matroid on the same ground set. Aharoni
and Berger [1] obtained a generalization of this result, where one of the matroids
is replaced by an arbitrary simplicial complex. Although their condition is no
longer a necessary one, it does specialize to the condition of Edmonds when used
for two matroids.

Theorem 5. [1, Theorem 4.5] Let M be a matroid and C a simplicial complex
on the same ground set V . If

η(C � X) + rankM(V \X) ≥ rank(M),

for every X ⊆ V , then M has a basis belonging to C.

We remark that Theorem 5 also generalizes known results on the existence of
an independent system of representatives in a graph (see, e.g., [2, 3, 12, 13]).

3 Compatible spanning trees

We shall be concerned with applications of Theorem 5 in a situation where the
matroid M is the polygon matroid of a connected graph H. In such a case, the
bases of M are just the spanning trees of H. Any simplicial complex C with
ground set E(G) can be viewed as defining ‘admissible’ subgraphs of G. We shall
say that a subgraph H ′ ⊂ H is C-compatible if E(H ′) is a face of C. Theorem 5
provides a condition which implies that H has a C-compatible spanning tree:

Proposition 6. Let H be a connected graph and C be a simplicial complex with
E(H) as the ground set. If

η(C � X) ≥ ω(H \X)− 1

for every X ⊆ E(H), then H has a C-compatible spanning tree.

The proof is given below. As a simple illustration, let H be the complete graph
on 4 vertices a, b, c, d. Let us postulate that a set of edges of H is admissible if
it contains no pair of disjoint edges. The corresponding simplicial complex C on
ground set E(H) has 8 maximal faces, all of size 3 (for instance, {ab, ac, ad}). In
fact, C is the octahedron. It is easy to check that the condition in Proposition 6
is satisfied. For example, if X = E(H), then H \ X has 4 components, while
C � X = C is 1-connected. Accordingly, H does have C-compatible spanning
trees (which is, of course, easy to see directly): one of these is {ab, ac, ad}. We
now proceed to the proof of the above proposition.

Proof of Proposition 6. Let M be the polygon matroid M(H) of the graph
H. Thus, the bases of M are the spanning trees of H. To find a C-admissible
spanning tree, we verify the condition of Theorem 5 for C and M .
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Let X ⊆ E(H). It is easy to interpret the ranks in Theorem 5 in the present
setting. The rank of X in M is just n−ω(HX), where n = |V (H)| (see, e.g., [14,
p. 26]). Thus, a C-compatible spanning tree exists whenever

η(C � X) ≥ rank(M)− rankM(E(H) \X)

= (n− 1)− (n− ω(H \X)) = ω(H \X)− 1.

2

4 F -connecting matchings

The topological condition in Proposition 6 may often be hard to verify. We now
consider one case where it is implied by a simpler condition, involving only the
structure of the graph in question.

Consider the independence complex I(H) of a graph H. There are several
lower bounds for η(I(H)) in terms of various kinds of domination numbers of the
graph H (see [2] for a useful overview). The one that suits our purpose best (in
view of the application in Section 5) uses the edge-domination number γE(H) of
H, defined as the minimum size of a set D ⊆ E(H) such that each vertex of H
has a neighbor which is an endvertex of an edge from D. (We refer to such a set
D as a vertex-dominating set of edges.) If H contains an isolated vertex, we set
γE(H) =∞. The following bound is implied by a result of [13] (see [1]):

Theorem 7. For any graph H,

η(I(H)) ≥ γE(H).

Recall from Section 2 that the matching complex Match(G) of a graph G is
the independence complex I(L(G)) of its line graph. Thus, Theorem 7 can be
applied to matching complexes.

We now proceed to prove our main result that was stated in Section 1:

Theorem 1. Let F be a spanning subgraph of a connected graph G. If

γv(GX) ≥ ω(G \X)− 1 (1)

for all X ⊆ E(G) \ E(F ), then G has an F -connecting matching.

Proof. We shall abbreviate G \ E(F ) as G− F . Let the simplicial complex C
be the matching complex I(L(G− F )) of the graph G− F . Define H to be the
multigraph obtained from G by contracting each component of the subgraph F
to a single vertex.
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Observe that if T is a C-compatible spanning tree of H, then the edges of
G corresponding to those in T form an F -connecting matching in G. Thus, it
suffices to find a C-compatible spanning tree of G. We verify the condition of
Proposition 6.

Let X ⊆ E(G− F ). Observe that

C � X = I(L(GX)),

so by Theorem 7,
η(C � X) ≥ γE(L(GX)).

Vertex-dominating sets of edges of L(GX) correspond bijectively to dominating
sets of 2-paths in GX (as defined in Section 1). It follows that γE(L(GX)) =
γv(GX), and so

η(C � X) ≥ γv(GX). (2)

In view of (2), the condition of Proposition 6 holds true whenever

γv(GX) ≥ ω(G \X)− 1.

This is precisely the hypothesis of Theorem 1. The proof is complete. 2

5 Toughness and 2-walks

In this section, we apply Theorem 1 to prove the following theorem (stated in
Section 1):

Theorem 4. Let k ≥ 4. If G is a (3 + 9
k−3

)-tough graph of girth k, then G has
a 2-walk.

Proof. Let G be a graph of girth k and toughness t ≥ 3+9/(k−3). By a result
of Enomoto et al. [8], every 2-tough graph contains a 2-factor; let F be a 2-factor
in G. To prove that G has a 2-walk, it is clearly enough to find an F -connecting
matching (see also [7] where a corresponding structure is called a 1-quasitree).

We now verify the hypothesis (1) of Theorem 1 for any given set X ⊆ E(G) \
E(F ). In fact, we show that

γv(GX) ≥ ω(G \X) (3)

whenever X is nonempty. If GX contains any component consisting of a single
edge, then the left hand side of (1) is infinite and the inequality holds. Thus,
we may assume that no such component exists. In such a case, we can choose a
smallest set P of 2-paths dominating all of E(GX).
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Assume, for the sake of a contradiction, that (3) is false, i.e., |P | < ω(G \X).
Let Y be the set of all the vertices of the 2-paths in P . We have

|Y | ≤ 3 |P | < 3ω(G \X) (4)

and Y dominates all the edges of GX . It follows that G \ Y is a subgraph of
G \ X. We need to lower-bound the number of components of G \ Y . Clearly,
each component of G \X that is not completely contained in Y contains at least
one component of G \ Y . As for the components of G \ X that are contained
in Y , there are at most |Y | /k of these, since each of them contains at least one
cycle of F , and the girth assumption implies that the length of the cycle is at
least k. We conclude:

ω(G \ Y ) ≥ ω(G \X)− |Y |
k

> ω(G \X) · k − 3

k

by (4). Thus
|Y |

ω(G \ Y )
<

3ω(G \X)

(k − 3) · ω(G \X)/k
=

3k

k − 3
. (5)

However, our toughness assumption implies that

|Y |
ω(G \ Y )

≥ 3 +
9

k − 3
,

which in conjunction with (5) gives 3k < 3k, a contradiction. 2

We remark that as in [7], the girth assumption of Theorem 4 can be relaxed:
in the above argument, we only use the fact that G has a 2-factor each of whose
cycles is of length at least k.
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