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Abstract

Let G be a graph and T a set of vertices. A T -path in G is a path
that begins and ends in T , and none of its internal vertices are contained
in T . We define a T -path covering to be a union of vertex-disjoint T -
paths spanning all of T . Concentrating on graphs that are tough (the
removal of any nonempty set X of vertices yields at most |X| components),
we completely characterize the edges that are contained in some T -path
covering. Our main tool is Mader’s S-paths theorem. A corollary of our
result is that each edge of a k-regular k-edge-connected graph (k ≥ 2)
is contained in a T -path covering. This is, in a sense, a best possible
counterpart of the result of Plesńık that every edge of a k-regular (k− 1)-
edge-connected graph of even order is contained in a 1-factor.

1 Introduction

Possibly the most important result in all of matching theory is Tutte’s theo-
rem [11] that gives a necessary and sufficient condition for the existence of a
1-factor in a graph G (we let V (G) denote its vertex set and note that our graphs
may contain multiple edges):

Theorem 1 (Tutte) A graph G has a 1-factor if and only if, for every X ⊆
V (G), the graph G − X has at most |X| components with an odd number of
vertices.

(For background on matching theory, we refer the reader to [4] or [10]. A
good reference for graphs in general is [1].)

Tutte’s theorem has a number of generalizations, including a result of Gallai [2]
on T -paths. For T ⊆ V (G), a path in G is a T -path if it begins and ends in T ,
and none of its internal vertices are contained in T . Gallai’s result (which yields
Theorem 1 upon setting T = V (G)) is the following:
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Theorem 2 (Gallai) Let G be a graph and T ⊂ V (G). The maximum number
of vertex-disjoint T -paths in G is equal to the minimum, over all X ⊆ V (G), of

|X|+
∑
K

⌊ |T ∩K|
2

⌋
,

where the sum is over all components K of G−X.

A further extension of Theorem 2 is due to Mader [5] (see also [9]). Let S be a
partition of T ⊆ V (G). We define an S-path to be any T -path whose endvertices
are contained in different sets of S. If F ⊆ E(G), we write 〈F 〉 for the subgraph
of G edge-induced by F , and abbreviate V (〈F 〉) as V (F ).

Theorem 3 (Mader) Let G be a graph and S be a partition of T ⊂ V (G). The
maximum number of vertex-disjoint S-paths in G is equal to the minimum, over
all X ⊆ V (G) and F ⊆ E(G − X) such that 〈F 〉 contains no S-path, of the
quantity

|X|+
∑
K

⌊ |(T ∪ V (F )) ∩K|
2

⌋
,

where the sum is over all components K of G−X − F .

Although our main concern in this paper is with T -paths, we will need to
work with S-paths and use Theorem 3 as a tool.

Let us return to Theorem 1. By a simple counting argument, Theorem 1
implies the well-known theorem of Petersen [6]:

Theorem 4 (Petersen) Every bridgeless cubic graph has a 1-factor.

In fact, one can easily generalize the argument to regular graphs of arbitrary
degree and show that every k-regular (k − 1)-edge-connected graph on an even
number of vertices has a 1-factor. Extending a result of Schönberger [8] for k = 3,
Plesńık [7] proved that more can be said about 1-factors of such graphs:

Theorem 5 (Plesńık) Every edge of a k-regular (k − 1)-edge-connected graph
(k ≥ 2) on an even number of vertices is contained in a 1-factor.

A question we study in the present paper is to what extent Theorem 5 carries
over to the context of T -paths. For a graph G and T ⊆ V (G), we define a T -path
covering to be a union of vertex-disjoint T -paths that spans all of T . (Observe
that for T = V (G), a T -path covering is just a 1-factor of G.) A T -path covering
can only exist if |T | is even. For this reason, it is natural to work with grafts, i.e.,
pairs (G, T ), where G is a graph and T ⊆ V (G) is a set of even size.

In view of Theorem 5, one might ask the following:
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Figure 1: A graft (G, T ); a vertex is black if it is in T and white otherwise. G is
cubic and bridgeless, but the thick edge is not contained in any T -path covering.

Question 6 Let (G, T ) be a graft, where G is k-regular and (k−1)-edge-connected
and |V (G)| is even. Is it true that every edge of G is contained in a T -path
covering?

If k is odd, the answer is ‘no’. For k = 3, this is shown by the graph in
Figure 1, and counterexamples for larger odd k are easy to find. However, the
real question that motivated the present paper, and originated in our work on
intersections of ‘T -joins’ and edge-cuts in [3], is slightly different: it is what we
obtain from Question 6 upon replacing the number k−1 with k. As it turned out,
with this slightly stronger connectivity assumption, the answer is affirmative:

Theorem 7 Suppose that G is a k-regular k-edge-connected graph, where k ≥ 2,
and (G, T ) is a graft. Then every edge of G is contained in a T -path covering.

It is worth noting that for even k, Theorem 7 implies an affirmative answer
to Question 6, because a k-regular graph (k even) is (k − 1)-edge-connected if
and only if it is k-edge-connected. Thus, Theorem 7 is, in a sense, a best possible
counterpart of Theorem 5 for T -path coverings.

It can be shown (cf. the proof of Theorem 7 in Section 5) that every k-
regular k-edge-connected graph G is tough, i.e., the removal of any nonempty set
Y ⊆ V (G) produces a graph of at most |Y | components. (A related concept, the
toughness of a graph, is defined at the end of Section 5.) We managed to extend
our analysis to the class of tough graphs, proving a complete characterization of
the edges contained in a T -path covering:

Theorem 8 Let G be a tough graph with |V (G)| ≥ 3 and let (G, T ) be a graft.
An edge e of G with ends u and v is contained in a T -path covering if and only
if there is no set X such that

(i) {u, v} ⊆ X ⊆ T ,

(ii) G−X has precisely |X| components, and

(iii) each of these components contains an odd number of vertices in T .
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We conclude this section with several definitions. Let (G, T ) be a graft and
H a subgraph of G. We say that H is T -odd if |T ∩ V (H)| is odd; otherwise, H
is T -even. The number of components of H is denoted by ω(H). The symbols
ωT (H) and ω̃T (H) denote the number of T -odd and T -even components of H,
respectively.

2 Excess

Let us extend the definition of a T -path covering to S-paths. Throughout this
section, let (G, T ) be a graft and S be a partition of T . We define an S-path
covering to be a union of vertex-disjoint S-paths in G that spans T . Mader’s min-
max theorem (Theorem 3) directly implies a necessary and sufficient condition
for the existence of an S-path covering. To state it concisely, we introduce the
following parameter. The excess excG,T (X,F ) of a pair (X,F ), where X ⊆ V (G)
and F ⊆ E(G−X), is defined as

excG,T (X,F ) = |X|+ |X − T |+ |V (F )− T | − ωT∪V (F )(G−X − F ).

We abbreviate excG,T (X, ∅) as excG,T (X).
While the excess parameter may seem rather mysterious at first, Proposi-

tion 10 below gives the definition some support. However, we begin with a parity
lemma that will be useful on several occasions.

Lemma 9 If (G, T ) is a graft, X ⊆ V (G) and F ⊆ E(G−X), then excG,T (X,F )
is even.

Proof. Observe that

ωT∪V (F )(G−X − F ) ≡ |(T ∪ V (F ))−X| (mod 2)

Thus, the sum

|X|+ |X − T |+ |V (F )− T |+ |(T ∪ V (F ))−X| (1)

has the same parity as excG,T (X,F ). Interpreting the cardinalities in (1) as sums
of contributions from the vertices of V (G) (e.g., |X| = ∑x∈X 1), it is easy to check
that the total contribution of a vertex x is odd if and only if x ∈ T ∪ (V (F )∩X).
Since V (F )∩X = ∅, it follows that (1) has the same parity as |T |, which is even
by the definition of a graft. Thus, excG,T (X,F ) is even as well. 2

Let us define a set F ⊆ E(G) to be S-admissible if 〈F 〉 contains no S-path
and each component of 〈F 〉 contains at least two vertices of T .
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Proposition 10 Let (G, T ) be a graft and S be a partition of T . There exists
an S-path covering in G if and only if for all X ⊆ V (G) and all S-admissible
F ⊆ E(G−X), it holds that

excG,T (X,F ) ≥ 0. (2)

Proof. By Theorem 3, an S-path covering exists if and only if for each X ⊆
V (G) and F ⊆ E(G−X) such that 〈F 〉 contains no S-path, one has

|X|+
∑
K

⌊ |(T ∪ V (F )) ∩K|
2

⌋
≥ |T |

2
, (3)

where K ranges over components of G−X −F . Noting that the effect of round-
ing is to subtract 1/2 for each (T ∪ V (F ))-odd component of G − X − F , and
multiplying by two, we can rewrite (3) as

2 |X|+
∑
K

|(T ∪ V (F )) ∩K| − ωT∪V (F )(G−X − F ) ≥ |T | .

The sum of |(T ∪ V (F )) ∩K| just equals |(T ∪ V (F ))−X|. Furthermore, since

2 |X|+ |(T ∪ V (F ))−X| − |T | = |X|+ |X − T |+ |V (F )− T | ,
we finally obtain that (3) is equivalent to

|X|+ |X − T |+ |V (F )− T | ≥ ωT∪V (F )(G−X − F ),

or in other words, to (2). So far, we have proved that an S-path covering exists
if and only if (2) holds for each X ⊆ V (G) and F ⊆ E(G − X) such that 〈F 〉
contains no S-path.

We need to prove a little more: namely that the validity of (2) for just the
S-admissible sets F ensures the existence of an S-path covering. Thus, let X ⊆
V (G) and F ⊆ E(G − X) be such that (2) fails, 〈F 〉 contains no S-path, and
F is an inclusionwise minimal set with these properties. By the definition of
S-admissible sets, 〈F 〉 has a component with edge set F0 such that

|V (F0) ∩ T | ≤ 1. (4)

We show that X and F ′ = F − F0 still violate (2), contradicting the minimality
of F .

Observe that, for trivial reasons,

|V (F ′)− T | = |V (F )− T | − |V (F0)− T |

and

ωT∪V (F ′)(G−X − F ′) ≥ ωT∪V (F )(G−X − F )− |V (F0)| .
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Thus, we can estimate excG,T (X,F ′) as

excG,T (X,F ′) = |X|+ |X − T |+ |V (F ′)− T | − ωT∪V (F ′)(G−X − F ′)
≤ |X|+ |X − T |+ (|V (F )− T | − |V (F0)− T |)
− (ωT∪V (F )(G−X − F )− |V (F0)|)

= excG,T (X,F ) + |T ∩ V (F0)| .

By (4) and Lemma 9, we conclude that

excG,T (X,F ′) = excG,T (X,F ) < 0,

a contradiction with the minimality of F . The proof is complete. 2

Observe that if S is a partition into singleton sets, then the only S-admissible
set F ⊆ E(G) is F = ∅. Hence the following corollary (which also follows directly
from Theorem 2):

Corollary 11 A graft (G, T ) admits a T -path covering if and only if for all
X ⊆ V (G),

excG,T (X) ≥ 0. (5)

3 Case I: e is incident with T

In this section, we prove the ‘if’ part of Theorem 8 for edges e with at least one
end in T . The other case is considered in Section 4. The results are used in the
proof of Theorem 8 in Section 5.

Lemma 12 Let e be an edge of a graft (G, T ) with endvertices u and v, at least
one of which is contained in T . Consider the graft (G′, T ′) given by

G′ = G− e− (T ∩ {u, v}),
T ′ = T ⊕ {u, v} ,

where ⊕ denotes the symmetric difference. Then e is contained in a T -path
covering in G if and only if G′ admits a T ′-path covering.

Proof. It is straightforward to check that if P is any T -path covering in G and
e ∈ E(P ), then by removing e and the vertices of T ∩{u, v}, we obtain a T ′-path
covering in G′. Conversely, adding e and its endvertices to a T ′-path covering in
G′ produces a T -path covering in G containing e. 2

The main result of this section is the following:
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Proposition 13 Let e be an edge of a graft (G, T ) with endvertices u and v, at
least one of which is contained in T . If G is tough and there is no set X ⊆ V (G)
with the properties (i)–(iii) from Theorem 8, then e is contained in a T -path
covering.

Proof. Assume that there is no set X satisfying (i)–(iii). Let the graft (G′, T ′)
be defined as in Lemma 12; by the lemma, it suffices to show that G′ admits a
T ′-path covering. Corollary 11 implies that it is enough to show that each set
X ′ ⊆ V (G′) satisfies the following inequality:

excG′,T ′(X
′) ≥ 0. (6)

We proceed by contradiction. Suppose that (6) fails for a certain set X ′. In a
series of claims, we show that the set X ⊆ V (G), defined by

X = X ′ ∪ (T ∩ {u, v}),

has properties (i)–(iii) from the theorem, contradicting our assumption. The end
of the proof of each claim is marked by 4.

Claim 1 We have excG,T (X) ≤ excG′,T ′(X
′) + 2.

Let us examine the effect of passing from the triple (G, T,X) to (G′, T ′, X ′) on
the excess parameter. Roughly speaking, the difference

excG,T (X)− excG′,T ′(X
′) = (|X| − |X ′|) + (|X − T | − |X ′ − T ′|)
− (ωT (G−X)− ωT ′(G′ −X ′))

(7)

can be interpreted as a sum of contributions, from u and v, to the three terms
on the right hand side. For instance, u contributes 1 to the first term if u is in
X but not in X ′. Note that by the definition of X, this happens if and only if
u ∈ T . In fact, it is easy to see that

|X ′| = |X| − |{u, v} ∩ T | .

Similarly, we have

|X ′ − T ′| = |X − T | − |{u, v} ∩ (X − T )| .

Substituting into (7) and noting that {u, v} ∩ T ⊆ X, we obtain

excG,T (X)− excG′,T ′(X
′) = |{u, v} ∩X|
− (ωT (G−X)− ωT ′(G′ −X ′)).

(8)

(We remark that this equality will also be useful in the proof of a later claim.)
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Consider now the last term on the right hand side of (8). Every T ′-odd
component K of G′−X ′ is also a T -odd component of G−X, unless K contains
u or v. Thus:

ωT ′(G
′ −X ′) ≤ ωT (G−X) + |{u, v} −X| .

Combining with (8), we obtain that

excG,T (X)− excG′,T ′(X
′) ≤ |{u, v} ∩X|+ |{u, v} −X|

= |{u, v}| = 2.

This proves the claim. 4

Claim 2 The number excG,T (X) is zero.

Since excG′,T ′(X
′) < 0, Claim 1 implies that excG,T (X) ≤ 1. By Lemma 9,

excG,T (X) is even and hence excG,T (X) ≤ 0. Since G is tough, we have

ω(G−X) ≤ |X| ,

and so in particular excG,T (X) ≥ 0. The claim follows. 4

Claim 3 We have ω̃T (G−X) = |X − T | = 0.

By Claim 2, ωT (G−X) = |X|+ |X − T | and therefore

ω(G−X) = |X|+ |X − T |+ ω̃T (G−X).

Suppose that X 6= ∅. Since G is tough, we have ω(G−X) ≤ |X|, which yields

|X − T |+ ω̃T (G−X) ≤ 0

which proves the assertion.
It remains to handle the case that X is empty. By the definition of X, we

have X ′ = ∅ and u, v /∈ T . Thus, excG′,T ′(X
′) < 0 implies that ωT ′(G

′) > 0; in
particular, G′ is disconnected. On the other hand, G, being tough, is connected.
However, V (G′) = V (G) and the only edge of G missing in G′ is e. It follows
that e is a bridge in G. Since |V (G)| ≥ 3, one of u and v (say, u) has degree
at least 2 in G. But then ω(G− {u}) ≥ 2 and G is not tough, a contradiction.
Thus, the case X = ∅ cannot occur. 4

Claim 4 Both u and v are in X.
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Observe first that

ωT ′(G
′ −X ′) ≤ ω(G−X) = ωT (G−X),

where the last equality follows from Claim 3. Using equation (8) from the proof
of Claim 1, we get:

excG,T (X)− excG′,T ′(X
′) ≤ |{u, v} ∩X| .

Assuming that u or v is not in X and recalling that by Lemma 9, the excess is
an even number, we conclude that

excG,T (X) ≤ excG′,T ′(X
′) < 0,

a contradiction with Claim 2. 4
We can now finish the proof of Proposition 13. By Claims 3 and 4, {u, v} ⊆

X ⊆ T , i.e., the set X has property (i) from the theorem. Claims 2 and 3 imply
that ω(G−X) = |X| (property (ii)) and that all components of G−X are T -odd
(property (iii)). The proof is complete. 2

4 Case II: e is not incident with T

We now turn to the case that neither end of the edge e in Theorem 8 is in T . The
lemma below is the reason why we need to use Mader’s theorem (Theorem 3)
rather than the more specific Gallai’s theorem (Theorem 2).

Lemma 14 Let e be an edge of a graft (G, T ) with endvertices u and v, where
T ∩ {u, v} = ∅. Define a partition S ′ of T ′ = T ∪ {u, v} by

S ′ = {{t} : t ∈ T} ∪ {{u, v}} .
The edge e is contained in a T -path covering in G if and only if G admits an
S ′-path covering.

Proof. Given a T -path covering in G that contains e, we can construct an
S ′-path covering by removing e. Conversely, if P is an S ′-path covering, then u
and v are on different paths of P , so we may add e to obtain a T -path covering
containing e. 2

The following proposition is an analogue of Proposition 13 for the present
case:

Proposition 15 Let e be an edge of a graft (G, T ) with endvertices u and v,
where T ∩ {u, v} = ∅ and G is tough. The edge e is contained in a T -path
covering.
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Proof. Let T ′ = T ∪ {u, v} and let S ′ be the partition of T ′ defined in
Lemma 14. We need to prove that G admits an S ′-path covering. For this, we
use Proposition 10. Let X ⊆ V (G) and let F ⊆ E(G −X) be an S ′-admissible
set. Assume, for the sake of a contradiction, that

excG,T ′(X,F ) < 0 (9)

and that F is inclusionwise minimal with this property.
If F = ∅, then (9) implies

ωT ′(G−X) > |X|+ |X − T ′| ,
contrary to the toughness assumption which asserts that ω(G−X) ≤ |X|. Thus,
we may assume that F is nonempty.

Claim 1 〈F 〉 is connected and V (F ) ∩ T ′ = {u, v}.

Since F is an S ′-admissible set, every component of 〈F 〉 contains at least two
vertices of T ′. On the other hand, 〈F 〉 contains no S ′-path, and every path
joining two vertices of T ′ other than u and v is an S ′-path. It follows that 〈F 〉
has exactly one component, contains u and v, and does not contain any other
vertices of T ′. 4

Claim 2 Each vertex of 〈F 〉 is in a different component of G−X−F . Further-
more, all the components of G−X − F intersected by 〈F 〉 are (T ′ ∪ V (F ))-odd.

Let k = |V (F )| and c be the number of (T ′∪V (F ))-odd components of G−X−F
intersected by 〈F 〉. By the minimality of F ,

excG,T ′(X, ∅) ≥ 0. (10)

On the other hand, we may estimate excG,T ′(X, ∅) as

excG,T ′(X, ∅) ≤ excG,T ′(X,F ) + c− (k − 2), (11)

since, clearly,
ωT ′∪V (F )(G−X − F ) ≤ ωT ′(G−X) + c

and by Claim 1,
|V (F )− T ′| = k − 2.

By (9) and Lemma 9, excG,T ′(X,F ) is at most −2, while by (10) and (11), it is
at least k − 2− c. Consequently, c ≥ k (hence c = k) and the claim follows. For
later use, we infer from (11) that excG,T ′(X) ≤ excG,T ′(X,F ) + 2, and hence by
(10),

excG,T ′(X) = 0. (12)

4
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Claim 3 The component K of G−X containing 〈F 〉 is T ′-even.

Again, let k = |V (F )|. By Claim 2, all the k components of K−F are (T ′∪V (F ))-
odd. Exactly k − 2 of the components contain one vertex from V (F ) − T ′, and
hence are T ′-even. The remaining two components of K − F contain no vertex
from V (F )− T ′, and hence are T ′-odd. In total, the number of vertices of T ′ in
K is even. 4

We are now in a position to finish the proof of Proposition 15. Using (12) and
the definition of excess, we conclude that |X| ≤ ωT (G−X). On the other hand,
Claim 3 implies that ωT (G−X) < ω(G−X). Putting the inequalities together,
we get

|X| < ω(G−X),

which contradicts the assumption that G is tough. This contradiction shows
that (9) is never satisfied, so G indeed admits an S ′-path covering. 2

5 Proof of the characterization

In this section, we prove our main results. Theorem 7 will be obtained as a
corollary of Theorem 8 which is proved first. The basic ingredients of the proof
are Propositions 13 and 15 of the preceding sections.

Proof of Theorem 8. Let (G, T ) be a graft, G a tough graph, and let e be an
edge of G with ends u and v.

We prove the ‘only if’ part first. Consider a T -path covering in G containing
e. For the contradiction, assume that there is a set X ⊆ T with properties (i)–
(iii). Set X ′ = X − {u, v}. By Lemma 12, the graft (G′, T ′) (as defined in the
lemma) has a T ′-path covering, whence by Corollary 11,

excG′,T ′(X
′) ≥ 0. (13)

Note that by (i), G′ = G−{u, v} and T ′ = T −{u, v}. Clearly, G′−X ′ = G−X,
and so ωT ′(G

′ −X ′) = ωT (G−X). We compute:

excG′,T ′(X
′) = |X ′|+ |X ′ − T ′| − ωT ′(G′ −X ′)

= (|X| − 2) + 0− ωT (G−X) = |X| − 2− |X|
= −2,

a contradiction to (13).
The ‘if’ part follows from the combination of Proposition 13 and Proposi-

tion 15. 2

It is now easy to derive the result on k-regular k-edge-connected graphs:
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Proof of Theorem 7. Let (G, T ) be a graft with G k-regular and k-edge-
connected, and let e be an edge of G. Assuming that e is not contained in any
T -path covering, we aim to use Theorem 8 to reach a contradiction.

We first prove that G is tough. Given a set Y ⊆ V (G), let m be the number
of edges with one end in Y and the other end in a component of G − Y . On
the one hand, m ≥ k · ω(G− Y ) since each component of G− Y is joined to the
rest of the graph (hence to Y ) by at least k edges. On the other hand, since G
is k-regular, m ≤ k · |Y |, with equality if and only if Y is an independent set.
Putting the two inequalities together, we obtain that

ω(G− Y ) ≤ |Y | (14)

and equality can only hold if Y is independent. Since (14) holds for each Y , G is
tough.

Thus, Theorem 8 implies that there is a set X ⊆ V (G) with properties (i)–
(iii) listed in the theorem. By (i), X includes both ends of e; therefore, it is not
independent. Consequently, we get a strict inequality in (14) for Y = X. This
contradiction with property (ii) finishes the proof. 2

We conclude the paper with another corollary of Theorem 8. To state it,
we need to recall the definition of the toughness parameter. A graph G is t-
tough (where t > 0 is a real number) if for every set X ⊂ V (G), the number
of components of G − X is either 1 or at most |X| /t. Observe that a graph is
1-tough if and only if it is tough as defined in Section 1. The toughness τ(G) of a
connected graph G is the largest t such that G is t-tough (or ∞ if G is complete,
in which case it is t-tough for all t > 0).

Corollary 16 Let (G, T ) be a graft with G tough. If any of the following condi-
tions holds, then every edge of G is contained in a T -path covering:

(a) T is an independent set,

(b) G has toughness τ(G) > 1.

Proof. By Theorem 8, if an edge e with ends u and v is not contained in a T -
path covering, then there is a set X with the properties given in the theorem. To
prove part (a), note that {u, v} ⊆ X ⊆ T is impossible if T is independent. Part
(b) follows from the fact that the equality ω(G−X) = |X| implies τ(G) ≤ 1,
contrary to the assumption. 2
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