Disjoint 7T-paths in tough graphs

Tomas Kaiser*

Abstract

Let G be a graph and T a set of vertices. A T-path in G is a path
that begins and ends in 7', and none of its internal vertices are contained
in T. We define a T-path covering to be a union of vertex-disjoint T-
paths spanning all of 7. Concentrating on graphs that are tough (the
removal of any nonempty set X of vertices yields at most | X | components),
we completely characterize the edges that are contained in some T-path
covering. Our main tool is Mader’s S-paths theorem. A corollary of our
result is that each edge of a k-regular k-edge-connected graph (k > 2)
is contained in a T-path covering. This is, in a sense, a best possible
counterpart of the result of Plesnik that every edge of a k-regular (k — 1)-
edge-connected graph of even order is contained in a 1-factor.

1 Introduction

Possibly the most important result in all of matching theory is Tutte’s theo-
rem [11] that gives a necessary and sufficient condition for the existence of a
1-factor in a graph G (we let V(G) denote its vertex set and note that our graphs
may contain multiple edges):

Theorem 1 (Tutte) A graph G has a 1-factor if and only if, for every X C
V(G), the graph G — X has at most | X| components with an odd number of
vertices.

(For background on matching theory, we refer the reader to [4] or [10]. A
good reference for graphs in general is [1].)

Tutte’s theorem has a number of generalizations, including a result of Gallai [2]
on T-paths. For T' C V(G), a path in G is a T-path if it begins and ends in T,
and none of its internal vertices are contained in 7". Gallai’s result (which yields
Theorem 1 upon setting 7' = V(G)) is the following:
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Theorem 2 (Gallai) Let G be a graph and T'C V(G). The mazimum number
of vertez-disjoint T-paths in G is equal to the minimum, over all X C V(G), of

|X|+;UT2K|J,

where the sum is over all components K of G — X.

A further extension of Theorem 2 is due to Mader [5] (see also [9]). Let S be a
partition of 7' C V(G). We define an S-path to be any T-path whose endvertices
are contained in different sets of S. If F' C E(G), we write (F') for the subgraph
of G edge-induced by F, and abbreviate V ((F)) as V (F).

Theorem 3 (Mader) Let G be a graph and S be a partition of T C V(G). The
maximum number of vertex-disjoint S-paths in G is equal to the minimum, over

all X C V(G) and F C E(G — X) such that (F) contains no S-path, of the

quantity
X +ZU(TUV(F)) ﬂK|J’
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where the sum is over all components K of G — X — F.

Although our main concern in this paper is with T-paths, we will need to
work with S-paths and use Theorem 3 as a tool.

Let us return to Theorem 1. By a simple counting argument, Theorem 1
implies the well-known theorem of Petersen [6]:

Theorem 4 (Petersen) FEvery bridgeless cubic graph has a 1-factor.

In fact, one can easily generalize the argument to regular graphs of arbitrary
degree and show that every k-regular (k — 1)-edge-connected graph on an even
number of vertices has a 1-factor. Extending a result of Schonberger [8] for k = 3,
Plesnik [7] proved that more can be said about 1-factors of such graphs:

Theorem 5 (Plesnik) FEvery edge of a k-regular (k — 1)-edge-connected graph
(k > 2) on an even number of vertices is contained in a 1-factor.

A question we study in the present paper is to what extent Theorem 5 carries
over to the context of T-paths. For a graph G and T' C V(G), we define a T-path
covering to be a union of vertex-disjoint T-paths that spans all of T". (Observe
that for T'= V(G), a T-path covering is just a 1-factor of G.) A T-path covering
can only exist if | 7| is even. For this reason, it is natural to work with grafts, i.e.,
pairs (G, T'), where G is a graph and T' C V(G) is a set of even size.

In view of Theorem 5, one might ask the following:
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Figure 1: A graft (G,T); a vertex is black if it is in 7" and white otherwise. G is
cubic and bridgeless, but the thick edge is not contained in any 7T-path covering.

Question 6 Let (G,T) be a graft, where G is k-regular and (k—1)-edge-connected
and |V(G)| is even. Is it true that every edge of G is contained in a T-path
covering?

If £ is odd, the answer is ‘no’. For k = 3, this is shown by the graph in
Figure 1, and counterexamples for larger odd k are easy to find. However, the
real question that motivated the present paper, and originated in our work on
intersections of ‘T-joins’ and edge-cuts in [3], is slightly different: it is what we
obtain from Question 6 upon replacing the number k£ —1 with k. As it turned out,
with this slightly stronger connectivity assumption, the answer is affirmative:

Theorem 7 Suppose that G is a k-reqular k-edge-connected graph, where k > 2,
and (G, T) is a graft. Then every edge of G is contained in a T-path covering.

It is worth noting that for even k, Theorem 7 implies an affirmative answer
to Question 6, because a k-regular graph (k even) is (k — 1)-edge-connected if
and only if it is k-edge-connected. Thus, Theorem 7 is, in a sense, a best possible
counterpart of Theorem 5 for T-path coverings.

It can be shown (cf. the proof of Theorem 7 in Section 5) that every k-
regular k-edge-connected graph G is tough, i.e., the removal of any nonempty set
Y C V(G) produces a graph of at most |Y| components. (A related concept, the
toughness of a graph, is defined at the end of Section 5.) We managed to extend
our analysis to the class of tough graphs, proving a complete characterization of
the edges contained in a T-path covering:

Theorem 8 Let G be a tough graph with |V(G)| > 3 and let (G, T) be a graft.
An edge e of G with ends u and v is contained in a T-path covering if and only
if there is no set X such that

(i) {u,v} CX CT,
(i1)) G — X has precisely | X| components, and

(i1i) each of these components contains an odd number of vertices in T .



We conclude this section with several definitions. Let (G,T) be a graft and
H a subgraph of G. We say that H is T-odd if |T NV (H)| is odd; otherwise, H
is T-even. The number of components of H is denoted by w(H). The symbols
wr(H) and @wp(H) denote the number of T-odd and T-even components of H,
respectively.

2 Excess

Let us extend the definition of a T-path covering to S-paths. Throughout this
section, let (G,T) be a graft and S be a partition of 7. We define an S-path
covering to be a union of vertex-disjoint S-paths in G that spans T'. Mader’s min-
max theorem (Theorem 3) directly implies a necessary and sufficient condition
for the existence of an S-path covering. To state it concisely, we introduce the
following parameter. The excess excg (X, F') of a pair (X, F'), where X C V(G)
and F' C E(G — X), is defined as

excar(X, F)=|X|+|X =T|+|V(F) =T| = wrovr) (G — X = F).

We abbreviate exce (X, 0) as exce r(X).

While the excess parameter may seem rather mysterious at first, Proposi-
tion 10 below gives the definition some support. However, we begin with a parity
lemma that will be useful on several occasions.

Lemma 9 If(G,T) is a graft, X CV(G) and F C E(G—X), then excgr(X, F)

18 even.

Proof. Observe that
wrov(G = X = F) = (TUV(F) = X|  (mod 2)
Thus, the sum
X[+ [X =T+ |V(F) =T|+ (TUV(F)) - X| (1)

has the same parity as exce (X, F'). Interpreting the cardinalities in (1) as sums
of contributions from the vertices of V/(G) (e.g., | X| = Y_,.x 1), it is easy to check
that the total contribution of a vertex z is odd if and only if x € TU(V(F)NX).
Since V(F)N X = 0, it follows that (1) has the same parity as |T'|, which is even
by the definition of a graft. Thus, exce (X, F') is even as well. a

Let us define a set F' C FE(G) to be S-admissible if (F) contains no S-path
and each component of (F') contains at least two vertices of T



Proposition 10 Let (G,T) be a graft and S be a partition of T. There exists
an S-path covering in G if and only if for all X C V(G) and all S-admissible
F C E(G — X), it holds that

excgr(X, F) > 0. (2)

Proof. By Theorem 3, an S-path covering exists if and only if for each X C
V(G) and F C E(G — X) such that (F') contains no S-path, one has

x| [T LVEROK] 1T -

where K ranges over components of G — X — F. Noting that the effect of round-
ing is to subtract 1/2 for each (T"U V(F'))-odd component of G — X — F, and
multiplying by two, we can rewrite (3) as

2|X|+> (T UV(F)NK| - wrovm(G - X = F) > |T.
K

The sum of [(T'UV (F)) N K| just equals |(T"U V(F)) — X|. Furthermore, since
2 X| + (T UV(F)) = X| = |T| = [X| +|X = T| + |V(F) = T,
we finally obtain that (3) is equivalent to
[ X[+ |X =T+ [V(F) = T| > wrovr) (G — X — F),

or in other words, to (2). So far, we have proved that an S-path covering exists
if and only if (2) holds for each X C V(G) and F C E(G — X) such that (F)
contains no S-path.

We need to prove a little more: namely that the validity of (2) for just the
S-admissible sets F' ensures the existence of an S-path covering. Thus, let X C
V(G) and F' C E(G — X) be such that (2) fails, (F) contains no S-path, and
F' is an inclusionwise minimal set with these properties. By the definition of
S-admissible sets, (F') has a component with edge set F such that

V(F)NT| < 1. (4)

We show that X and F' = F — Fj still violate (2), contradicting the minimality
of F.
Observe that, for trivial reasons,

V() =T|=|V(F)=T| - |V(F) =T
and

wrov (e (G =X = F') > wrovry (G — X = F) — |V(Fy)].



Thus, we can estimate excq (X, F”) as

excor(X, F') = |X|+|X = T|+ |V(F') = T| — wrov) (G — X — F')
<X+ X =T+ (|[V(F) =T| = |V(Fp) = T1)
— (wrov () (G — X = F) — [V (Fb)])
= excer(X, F)+ [T NV(F)|.

By (4) and Lemma 9, we conclude that
excar(X, F') = excar(X, F) <0,
a contradiction with the minimality of F'. The proof is complete. ]

Observe that if S is a partition into singleton sets, then the only S-admissible
set I C E(G) is F = (). Hence the following corollary (which also follows directly
from Theorem 2):

Corollary 11 A graft (G,T) admits a T-path covering if and only if for all
X CV(G),
excgr(X) > 0. (5)

3 Case I: e i1s incident with T

In this section, we prove the ‘if” part of Theorem 8 for edges e with at least one
end in 7. The other case is considered in Section 4. The results are used in the
proof of Theorem 8 in Section 5.

Lemma 12 Let e be an edge of a graft (G,T) with endvertices u and v, at least
one of which is contained in T. Consider the graft (G',T") given by

G'=G—e— (TN{u,v}),
T =T & {u,v},

where @ denotes the symmetric difference. Then e is contained in a T-path
covering in G if and only if G' admits a T'-path covering.

Proof. It is straightforward to check that if P is any T-path covering in G' and
e € E(P), then by removing e and the vertices of TN {u, v}, we obtain a T"-path
covering in GG'. Conversely, adding e and its endvertices to a T’-path covering in
G’ produces a T-path covering in G containing e. O

The main result of this section is the following:



Proposition 13 Let e be an edge of a graft (G,T) with endvertices u and v, at
least one of which is contained in T. If G is tough and there is no set X C V(Q)
with the properties (i)-(iii) from Theorem 8, then e is contained in a T-path
COVETING.

Proof. Assume that there is no set X satisfying (i)-(iii). Let the graft (G',T")
be defined as in Lemma 12; by the lemma, it suffices to show that G’ admits a
T'-path covering. Corollary 11 implies that it is enough to show that each set
X' C V(@) satisfies the following inequality:

eXCG/7T/ (X/) Z 0. (6)

We proceed by contradiction. Suppose that (6) fails for a certain set X’. In a
series of claims, we show that the set X C V(G), defined by

X =X"U(TNn{u,v}),

has properties (i)—(iii) from the theorem, contradicting our assumption. The end
of the proof of each claim is marked by A.

Claim 1 We have excgr(X) < exca r(X') + 2.

Let us examine the effect of passing from the triple (G, T, X) to (G',T’,X’) on
the excess parameter. Roughly speaking, the difference

excer(X) — excorr(X) = (1X] — [X']) + (X = T| - [ X'~ T')

— (wr(G — X) — WT/(G/ — X’)) (7)

can be interpreted as a sum of contributions, from uw and v, to the three terms
on the right hand side. For instance, u contributes 1 to the first term if u is in
X but not in X’. Note that by the definition of X, this happens if and only if
w € T. In fact, it is easy to see that

| X' = 1X| = {u, 0} 07T
Similarly, we have
X' —T'N=|X-T|—- {u,v} N (X -=T)|.
Substituting into (7) and noting that {u,v} N T C X, we obtain

excgr(X) —excer (X') = [{u, v} N X|

_ (wT(G — X) — WT’(G/ _ X/)) (8)

(We remark that this equality will also be useful in the proof of a later claim.)
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Consider now the last term on the right hand side of (8). Every T"-odd
component K of G' — X' is also a T-odd component of G — X, unless K contains
u or v. Thus:

wp(G' = X') Swr(G = X) + [{u, v} — X].
Combining with (8), we obtain that

excar(X) — excor p(X') < [{u,v} N X| 4+ {u,v} — X]|
= {u,v}| =2.

This proves the claim. A
Claim 2 The number excgr(X) is zero.

Since excer v (X') < 0, Claim 1 implies that excgr(X) < 1. By Lemma 9,
excgr(X) is even and hence exce r(X) < 0. Since G is tough, we have

w(G@—-X) <|X],
and so in particular excg r(X) > 0. The claim follows. A
Claim 3 We have w7(G — X) =|X —T| = 0.
By Claim 2, wp(G — X) = | X |+ |X — T'| and therefore
wG@—=X)=|X|+|X-T|+or(G - X).
Suppose that X # (). Since G is tough, we have w(G — X) < | X, which yields
|IX =T+ awr(G—X)<0

which proves the assertion.

It remains to handle the case that X is empty. By the definition of X, we
have X’ = () and u,v ¢ T. Thus, exce v (X') < 0 implies that wy(G') > 0; in
particular, G’ is disconnected. On the other hand, GG, being tough, is connected.
However, V(G') = V(G) and the only edge of G missing in G’ is e. It follows
that e is a bridge in G. Since |V(G)| > 3, one of u and v (say, u) has degree
at least 2 in G. But then w(G — {u}) > 2 and G is not tough, a contradiction.
Thus, the case X = () cannot occur. A

Claim 4 Both u and v are in X.



Observe first that
wr (G —X') <w(G - X) =wr(G - X),

where the last equality follows from Claim 3. Using equation (8) from the proof
of Claim 1, we get:

excgr(X) — excor (X') < {u, v} N X|.

Assuming that u or v is not in X and recalling that by Lemma 9, the excess is
an even number, we conclude that

excar(X) < excerm(X') <0,

a contradiction with Claim 2. AN

We can now finish the proof of Proposition 13. By Claims 3 and 4, {u,v} C
X CT,ie., the set X has property (i) from the theorem. Claims 2 and 3 imply
that w(G — X) = | X (property (ii)) and that all components of G — X are T-odd
(property (iii)). The proof is complete. O

4 Case II: e 1s not incident with 7T

We now turn to the case that neither end of the edge e in Theorem 8 is in 7". The
lemma below is the reason why we need to use Mader’s theorem (Theorem 3)
rather than the more specific Gallai’s theorem (Theorem 2).

Lemma 14 Let e be an edge of a graft (G,T) with endvertices u and v, where
T N{u,v} =0. Define a partition S’ of T" =T U {u,v} by

S'={{t}: teTYu {{u,v}}.

The edge e is contained in a T-path covering in G if and only if G admits an
S'-path covering.

Proof. Given a T-path covering in G that contains e, we can construct an
S’-path covering by removing e. Conversely, if P is an S’-path covering, then u
and v are on different paths of P, so we may add e to obtain a T-path covering
containing e. O

The following proposition is an analogue of Proposition 13 for the present
case:

Proposition 15 Let e be an edge of a graft (G,T) with endvertices v and v,
where T N {u,v} = 0 and G is tough. The edge e is contained in a T-path
covering.



Proof. Let 7" = T U {u,v} and let &’ be the partition of 7" defined in
Lemma 14. We need to prove that G admits an &’-path covering. For this, we
use Proposition 10. Let X C V(G) and let F' C E(G — X) be an S’-admissible
set. Assume, for the sake of a contradiction, that

exXCa, 1 (X, F) <0 (9)

and that F'is inclusionwise minimal with this property.
If F =0, then (9) implies

wr(G—X) > |X|+|X =T,

contrary to the toughness assumption which asserts that w(G — X)) < |X|. Thus,
we may assume that F' is nonempty.

Claim 1 (F) is connected and V(F)NT" = {u,v}.

Since F' is an S’-admissible set, every component of (F) contains at least two
vertices of T”. On the other hand, (F) contains no S’-path, and every path
joining two vertices of 7" other than w and v is an S’-path. It follows that (F)
has exactly one component, contains u and v, and does not contain any other
vertices of T". JAN

Claim 2 FEach vertex of (F) is in a different component of G — X — F. Further-
more, all the components of G — X — F intersected by (F) are (T" UV (F))-odd.

Let k = |V (F)| and ¢ be the number of (T"UV (F'))-odd components of G—X — F
intersected by (F). By the minimality of F,

excar (X, 0) > 0. (10)
On the other hand, we may estimate excg (X, 0) as
excar (X, 0) < excar (X, F)+c— (k—2), (11)
since, clearly,
wruv ) (G =X = F) <wp(G—-X) +c¢

and by Claim 1,
V(F)-T'|=k—2.
By (9) and Lemma 9, excg (X, F') is at most —2, while by (10) and (11), it is
at least k — 2 — ¢. Consequently, ¢ > k (hence ¢ = k) and the claim follows. For
later use, we infer from (11) that excg v (X) < excgr (X, F) + 2, and hence by
(10>’
exca,(X) = 0. (12)

A
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Claim 3 The component K of G — X containing (F) is T'-even.

Again, let k = |V (F)|. By Claim 2, all the k components of K —F are (T"UV (F))-
odd. Exactly k& — 2 of the components contain one vertex from V(F) — 7", and
hence are T’-even. The remaining two components of K — F' contain no vertex
from V(F) — 7", and hence are T"-odd. In total, the number of vertices of 7" in
K is even. A

We are now in a position to finish the proof of Proposition 15. Using (12) and
the definition of excess, we conclude that | X| < wp(G — X). On the other hand,
Claim 3 implies that wp(G — X) < w(G — X). Putting the inequalities together,
we get

|X| < w(G - X),

which contradicts the assumption that G is tough. This contradiction shows
that (9) is never satisfied, so G indeed admits an §’-path covering. O

5 Proof of the characterization

In this section, we prove our main results. Theorem 7 will be obtained as a
corollary of Theorem 8 which is proved first. The basic ingredients of the proof
are Propositions 13 and 15 of the preceding sections.

Proof of Theorem 8. Let (G,T) be a graft, G a tough graph, and let e be an
edge of G with ends u and v.

We prove the ‘only if’ part first. Consider a T-path covering in GG containing
e. For the contradiction, assume that there is a set X C T with properties (i)
(iii). Set X' = X — {u,v}. By Lemma 12, the graft (G',T") (as defined in the
lemma) has a T"-path covering, whence by Corollary 11,

eXCG/’T/(X,> 2 0. (13)

Note that by (i), G' = G —{u,v} and 7" = T — {u, v}. Clearly, G' — X' = G- X,
and so wr (G" — X') = wr(G — X). We compute:

eXCGlyT/(X/) = ’XI’ + ’X/ — T/‘ — wT/(G’ — X/)
=(|X]-2)+0—-wr(G-X) =|X|—-2—|X|
= 2,

a contradiction to (13).
The ‘if” part follows from the combination of Proposition 13 and Proposi-
tion 15. O

It is now easy to derive the result on k-regular k-edge-connected graphs:

11



Proof of Theorem 7. Let (G,T) be a graft with G k-regular and k-edge-
connected, and let e be an edge of G. Assuming that e is not contained in any
T-path covering, we aim to use Theorem 8 to reach a contradiction.

We first prove that G is tough. Given a set Y C V(G), let m be the number
of edges with one end in Y and the other end in a component of G — Y. On
the one hand, m > k- w(G — Y) since each component of G — Y is joined to the
rest of the graph (hence to Y') by at least k edges. On the other hand, since G
is k-regular, m < k- |Y|, with equality if and only if Y is an independent set.
Putting the two inequalities together, we obtain that

w(G—-Y)<|Y] (14)

and equality can only hold if Y is independent. Since (14) holds for each Y, G is
tough.

Thus, Theorem 8 implies that there is a set X C V(G) with properties (i)—
(iii) listed in the theorem. By (i), X includes both ends of e; therefore, it is not
independent. Consequently, we get a strict inequality in (14) for Y = X. This
contradiction with property (ii) finishes the proof. O

We conclude the paper with another corollary of Theorem 8. To state it,
we need to recall the definition of the toughness parameter. A graph G is t-
tough (where ¢ > 0 is a real number) if for every set X C V(G), the number
of components of G — X is either 1 or at most |X|/t. Observe that a graph is
1-tough if and only if it is tough as defined in Section 1. The toughness 7(G) of a
connected graph G is the largest ¢ such that G is t-tough (or oo if G is complete,
in which case it is t-tough for all £ > 0).

Corollary 16 Let (G,T) be a graft with G tough. If any of the following condi-
tions holds, then every edge of G is contained in a T-path covering:

(a) T is an independent set,
(b) G has toughness T7(G) > 1.

Proof. By Theorem 8, if an edge e with ends u and v is not contained in a 7'-
path covering, then there is a set X with the properties given in the theorem. To
prove part (a), note that {u,v} C X C T is impossible if T" is independent. Part
(b) follows from the fact that the equality w(G — X) = |X| implies 7(G) < 1,
contrary to the assumption. |
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