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Abstract

Let X be a set of points in general position in the plane. General
position means that no three points lie on a line and no two points
have the same x-coordinate. Y ⊆ X is a cup, resp. cap, if the points
of Y lie on the graph of a convex, resp. concave function. Denote the
points of Y by p1, p2, . . . , pm according to the increasing x-coordinate.
The set Y is open in X if there is no point of X above the polygonal
line p1, p2, . . . , pm. Valtr [12] showed that for every positive integers
k and l there exists a positive integer g(k, l) such that any g(k, l)-
point set in the plane in general position contains an open k-cup or
an open l-cap. This is a generalization of the Erdős-Szekeres theorem
on cups and caps. We show a simple proof for this theorem and we
also show better recurreces for g(k, l). This theorem implies results
on empty polygons in k′-convex sets proved by Károlyi et. al. [5], Kun
and Lippner [7] and Valtr [11],[12]. A set of points is k′-convex if it
determines no triangle with more than k′ points inside.

∗Supported by the project 1M0021620808 of the Ministry of Education of the Czech
Republic.
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1 Definitions and Notations

All sets of points will be throughout this paper in general position in the
plane. By general position we mean that no three points lie on a line and no
two points have the same x-coordinate. Let X be a set of n points and denote
its points by p1, p2, . . . pn according to the increasing x-coordinate. Let
Y ⊆ X be a set of points q1, q2, . . . qk again ordered by the x-coordinate. For
i = 1,2, . . . k−1, let si be the slope of the line qiqi+1. The set Y = {q1, . . . , qk}
is a k-cup or a k-cap if the sequence s1, s2, . . . , sk is increasing or decreasing,
respectively (see figure 1). In other word if the points lie on the graph of a
convex, resp. concave function. The point q1 is the left endpoint of Y and
the point qk is the right endpoint of Y .

empty
4-cup

empty
5-cap

Figure 1: The set of points on the polygonal line is open. There is also an
empty 4-cup and an empty 5-cap in the figure.

The set Y is open inX if there is no point p ∈ X with x(q1) < x(p) < x(qk)
lying above the polygonal line q1q2 . . . qk. The upper envelope of Y is the
polygonal line qi1 , qi2 , . . . , qit where 1 = i1 < i2 < · · · < it = k such that it
is the graph of a concave function and there is no point of Y above this line
(see figure 2). The point pL is the left neighbor of the point p in set the Y , if
pL ∈ Y and there is no point q ∈ Y such that x(pL) < x(q) < x(p). Similarly
is defined the right neighbor.

Figure 2: The black polygonal line is the upper envelope of the points in the
figure.
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2 Introduction

The Erdős-Szekeres theorem [1] says that for every positive integer k there
exists a positive integer N such that any N -point set in the plane contains k
points that are vertices of a convex polygon. There are several proofs of the
theorem using Ramsey theory and a proof using cups and caps. The latter
proof gives a much better upper bound on N .

Define f(k, l) to be the smallest positive integer for which X contains a
k-cup or an l-cap whenever X has at least f(k, l) poinst. Erdős and Szekeres
[1] proved that f(k, l) =

(

k+l−4
k−2

)

+ 1.
Erdős also asked if for every k there exists N such that any N -point set X

in the plane contains k vertices of an empty convex polygon. Empty polygon
is a polygon with no point of X in its interior. We say that Y ⊆ X is a k-hole
if Y lies in the vertices of an empty convex k-gon. His conjecture holds up
to k = 5 [3]. In 1983 Horton [4] showed that it is not true for all k ≥ 7. The
question for k = 6 was open for a long time. Using a computer Overmars [10]
found a configuration of 29 points without empty hexagon and very recently
Gerken [2] showed that the conjecture holds also for k = 6. See [8] or [9] for
a survey.

What is the sufficient condition for the existence of a k-hole? The set X
is l-convex if and only if every triangle determined by points of X contains
at most l points of X in its interior. The l-convex sets were introduced by
Valtr [11] and he also showed the following theorem:

Theorem 1 (Valtr). For every positive integers k and l there exists a posi-

tive integer N such that any l-convex N-point set X in the plane contains a

k-hole.

Denote by n(k, l) the smallest positive integer N such that any l-convex
N -point set contains a k-hole. In 2001 Károlyi, Pach and Toth [5] proved
this theorem for l = 1. Later Karolyi, Valtr [6] determined the exact value of
n(k, 1). The first proof for general l was given by Valtr [11]. He was followed
by Kun and Lippner [7] who improved the bound to n(k, l) ≤ (l+ 2)(l+2)k−1.

Finally Valtr [12] again improved the bound to n(k, l) ≤ 2(
k+l
l+2)−1 + 1. The

last Valtr’s proof generalizes the result on cups and caps used in the proof of
Erdős-Szekeres theorem to open cups and open caps.

Theorem 2 (Valtr). For every positives integers k and l there exits a posi-

tive integer N such that any N-point set in the plane contains an open k-cup
or an open l-cap.

We show a simple proof of theorem 2 in section 3. Theorem 1 for l-convex
sets is a corrolary of theorem 2. If we have an (l − 3)-convex N -point set
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X and we want to find a (k + 1)-hole, we use the projective transformation,
which sends the horizontal line l passing through the highest point of the
convex hull of X to the infinity. We can assume that there is exactly one
point of X on the line l, otherwise we can rotate the point set X a little.
We obtain an (N − 1)-point set X̄. We apply theorem 2 on the set X̄ and
receive either an open k-cup or an open l-cap. In the backward projective
transformation the open k-cup corresponds to a (k + 1)-hole and the open
l-cap corresponds to a triangle cointaing at least (l − 2)-points, but that
contradicts the (l − 3)-convexity of the set X. See Valtr [12] for the details.

We define g(k, l) as the smallest number N such that any N -point set in
general position contains an open k-cup or an open l-cap. Valtr [12] showed
the following bounds:

2(
bk/2c+bl/2c−2

bk/2c−1 ) ≤ g(k, l) ≤ 2(
k+l−2

l−1 )−1.

In section 4 we show the recurrences estimating g(k, l) from above (lemma
2). As a corrolary of the recurrences we calculate some upper bounds (lemma
3 and lemma 4), but they do not give us as good bounds as the recurrences
themselves. At the end of the section we give a tight upper bound for l = 4
(lemma 5). In section 5 we show the recurrences estimating g(k, l) from
below (lemma 6). We also remark, that this recurrence is not tight and show
the idea, how it can be improved. The summary of the previous lemmas is
in the following theorem.

Theorem 3 (recurrences). g(k, 2) = 2, g(2, l) = 2, g(k, 3) = k, g(3, l) = l,
g(k, 4) = 2k−1 and for k, l ≥ 4 we have

g(k, l) ≤ g(k − 2, l) · [2g(k, l − 1)− 3] + 2

g(k, l) ≥ g(k − 2, l) · (g(k, l − 2)− 2) + 2g(k − 1, l).

3 The very short proof of Theorem 2

Define h(k, l,m) to be the largest number N such that there is an N -point
set in general position which contains neither an open k-cup nor an open
l-cap nor an open m-cap ending in the rightmost point. It is easy to see that
h(k, l, 2) = 1 and h(k, l, l) = g(k, l)− 1.

Lemma 1. h(k, l,m) ≤ h(k − 1, l, l) · h(k, l,m− 1) + 1 for k, l ≥ 3.

Proof. Let P be the set of points in general position maximizing h(k, l,m).
That means that P is h(k, l,m)-point set which contains neither an open
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k-cup nor an open l-cap nor an open m-cap ending in the rightmost point.
Denote the rightmost point of P by r. We construct sets Ti by the following
algorithm. The construction is ilustrated in the following figure.

ro4

o3

o2

o1

T1

T2

T3

Q := P ; i := 1;
while Q 6= ∅ do

Find the upper envelope of Q;
oi := the left neighbor of r

on the upper envelope of Q;
Ti := the points of Q lying to

the left of oi including oi;
Q := Q− Ti; i := i + 1;

Any open cap in Ti ending in the point oi can be extended by the point
r and becomes an open cap in P ending in the rightmost point of P . Thus
|Ti| ≤ h(k, l,m− 1).

Let O = {o1, o2, . . . }. The set O is open in P . O contains neither an open
k-cup nor an open l-cap, because it would be the open cup or the open cap
in P . Moreover O does not contain an open (k − 1)-cup, because this cup
can be extended by the point r. It is because the point r lies above every
line determined by two points of O. Hence |O| ≤ h(k − 1, l, l).

There are at most |O| ≤ h(k − 1, l, l) sets Ti each containing at most
h(k, l,m−1) points and the rightmost point r. That gives us the recurrence.

Now it is easy to solve the recurrence. We know that h(k, l, 2) = 1 and
h(k − 1, l, l) = g(k − 1, l) − 1. Denote g(k − 1, l) − 1 by a. By applying
the recurrence from lemma 1 (l − 2)-times we get g(k, l) − 1 = h(k, l, l) ≤
a(a(a . . . (a · 1 + 1) · · · + 1) + 1) + 1 = al−2 + al−3 + al−4 + · · · + a + 1 =
(al−1 − 1)/(a − 1). Assuming that a ≥ 2 which means k ≥ 4 and l ≥ 3 we
get g(k, l) − 1 < al−1 − 1 < g(k − 1, l)l−1 − 1. Because g(3, l) = l we get
g(k, l) ≤ l(l−1)k−3

. That finishes the first proof.

4 The proof of better upper bound

In the first part (lemma 2 and claim 3) we show the recurrences for g(k, l)
and in the second part we solve the recurrences (lemma 3 and lemma 4). At
the end of the section we show the proof of the tight upper bound for g(k, 4)
(lemma 5).

Lemma 2. g(k, l) ≤ g(k − 2, l) · [2g(k, l − 1)− 3] + 2 for k, l ≥ 3.
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Proof. Let X = {x1, x2, . . . , xn} be a set of n = g(k, l)− 1 points in general
position with neither an open k-cup nor an open l-cap.

Maximal open cup is the open cup which cannot be extended to a larger
cup in X. Let L be the set of left endpoints of maximal open cups with at
least 2 points. So for every open cup with the left endpoint x 6∈ L, there is a
point in X to the left of x, which extends the open cup. The leftmost point
of X is in L, because the two leftmost points of X form an open 2-cup.

Denote the size of L by t and the points of L by r1, r2, . . . , rt. The points
of L divide the set X into t + 1 vertical strips. Denote the sets of points
strictly contained in each strip by Xi for i = 0, 1, 2, . . . , t. The leftmost strip
is empty, because r1 is the leftmost point of X.

Claim 1. Every open cup in Xi can be extended in X by one point to the

left and therefore |Xi| ≤ g(k − 1, l)− 1.

The left endpoint of an open cup in Xi is not in L and thus there is a
point in X extending the open cup. Hence there is no open (k − 1)-cup in
Xi and we get |Xi| ≤ g(k − 1, l)− 1.

For i = 1, 2, . . . , t − 1 denote the set of points of the upper envelope of
Xi ∪ {ri, ri+1} by Ui (see the following figure). Let Y be the union of Ui for
i = 1, 2, . . . , t − 1. The set Y is open in X. That’s why if there is an open
k-cup resp. an open l-cap in the set Y , then there is the same open k-cup
resp. l-cap in the whole set X (see figure 1).

X1

X2

X3

U1

U2

U3

r1

r2

r3

rt

Claim 2. The set Y does not contain an open (l − 1)-cap. Thus |Y | ≤
g(k, l − 1)− 1.

Let us prove it by contradiction. Assume that there is an open (l−1)-cap
C = {s1, . . . , sl−1} in Y . By the width of the cap we mean |x(s1)− x(sl−1)|.
From all the open (l − 1)-caps in Y choose such a one whose width is the
smallest.
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Now we show that either there is a narrower open (l− 1)-cap in Y or the
open cap C can be extended in X to the right by one point so we have an
open l-cap in X.

Where does the point sl−1 lie? If it lies in L then sl−1 is also the left
endpoint of maximal open cup in X. See the following figure. Either the
open cup or the open cap can be extended by one point.

sl� 1

Thus sl−1 ∈ Ui − L for some i (it is an interior point of Ui). If there are
at least two points of C in Ui then the cap can be extended by the right
neighbor of sl−1 in Ui. See the following figure on the left. There must be
some right neighbor because sl−1 6∈ L.

sl� 1

Ui

sl� 1

sl� 2

q

Ui
Uj

In the remaining case sl−1 is the only point of C in Ui. The point sl−2

lies in Uj for some j < i. See previous figure on the right. Denote the left
neighbor of sl−1 in Y by q. If the triangle sl−2sl−1q is empty then we have
the open (l − 1)-cap s1, . . . , sl−2, q which is narrower than C. Otherwise
choose w ∈ X to be the point in the triangle qsl−2sl−1 with the largest angle
6 qsl−2w. The open l-cap s1, . . . , sl−2, w is again narrower than C. This
finishes the proof of the claim.

Claim 3. g(k, l) ≤ g(k − 1, l) · g(k, l − 1) for k, l ≥ 2.

By the previous claims there are t ≤ |Y | ≤ g(k, l − 1)− 1 vertical strips
each containing at most g(k − 1, l)− 1 points plus one for the point ri. The
leftmost strip is empty. We get g(k, l)−1 ≤ [g(k−1, l)−1+1] · [g(k, l−1)−1]
and the claim follows.

Using another trick we can get a better recurrence. Similarly as we defined
L to be the set of all left endpoints of maximal open cups with at least two
points, we can define R to be the set of all right endpoints of maximal open
cups with at least two points. For the set R we have similar claims as for
the set L because of symmetry.

Denote the points of R∪L by P = {p1, . . . , pt̄}. The points of P split the
plane into t̄+ 1 vertical strips. Denote the set of points strictly contained in
each strip by Z0, Z1, . . . , Zt̄. Since the leftmost point of X is in L and the
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rightmost point of X in R, the outer strips are empty. For every set Zi the
first claim hold, because Zi ⊆ Xj for some j. So every open cup in Zi can
be extended in X by one point to the left. From the symmetric arguments
it can also be extended by one point to the right. Thus the set Zi does not
contain an open (k − 2)-cup and we have |Zi| ≤ g(k − 2, l)− 1.

The number of strips is t̄+1 = |L|+ |R|+1. The outer strips are empty
and the others contain at most g(k − 2, l)− 1 points. By claim 2 the size of
L, resp. R is at most |Y | ≤ g(k, l− 1)− 1. Altogether we get the recurrence:
g(k, l)− 1 ≤ [2g(k, l− 1)− 3] · [g(k− 2, l)− 1 + 1] + 1. Don’t forget to count
the points of P .

Lemma 3. g(k, l) ≤ 2(
k+l−4

k−2 ) for k, l ≥ 2.

Proof. We prove the formula by induction on k and l. For k = 2 or l = 2 we
have g(k, l) = 2 and the formula holds. From the recurrence in claim 3 we

get g(k, l) ≤ g(k − 1, l) · g(k, l − 1) ≤ 2(
k−1+l−4

k−3 ) · 2(
k+l−1−4

k−2 ) = 2(
k+l−4

k−2 )

Lemma 4. g(k, l) ≤ 2(
k/2+l−3

k/2−1 )+2k/2+l−3−1
for k even and k, l ≥ 2.

Proof. We prove the formula by induction on k and l. For k = 2 or l = 2 we
have g(k, l) = 2 and the formula holds. For k, l ≥ 3 apply recurrence from
lemma 2 and get g(k, l) ≤ g(k − 2, l) · [2g(k, l − 1)− 3] + 2 ≤ 2 · g(k − 2, l) ·
g(k, l − 1). Now apply the induction hypothesis and get

g(k, l) ≤ 2 · 2(
k/2−1+l−3

k/2−2 )+2k/2−1+l−3−1 · 2(
k/2+l−1−3

k/2−1 )+2k/2+l−1−3−1

from which the lemma follows.

Lemma 5. g(k, 4) ≤ 2k−1 for k ≥ 2.

Proof. We prove it by induction on k. For k = 2, the maximal set with
neither an open 2-cup nor an open 4-cap is just one point. So g(2, 4) = 2.

Let Xk,4 be a maximal set with neither an open k-cup nor an open 4-cap.
The upper envelope of Xk,4 must have three points. If it has more points
then we have an open 4-cap. If it has only two points then we can place one
new point to the left of Xk,4 and deep below. This set also contain neither
an open k-cup nor an open 4-cap and is larger. That condradict with the
maximality of Xk,4.

Let p be the middle point of the upper envelope of Xk,4. Denote the set
of points to the left of p by L and the set of points to the right of p by R.
Every line determined by two points of L goes below p. Otherwise we have
an open 4-cap. So every open cup in L can be extended by the point p. Thus
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L contains neither an open (k − 1)-cup nor an open 4-cap. The size of L is
at most 2k−2 − 1 from the induction hypothesis. Similarly the size of R is at
most 2k−2 − 1. Altogether with the point p we have 2k−1 − 1 points, that is
what we wanted to prove.

The lower bound obtained from lemma 6 is g(k, 4) ≥ 2k−1 and hence the
bound is tight.

5 Lower bound

5.1 The recurrence

Lemma 6. g(k, l) ≥ g(k − 2, l) · (g(k, l − 2)− 2) + 2g(k − 1, l) for k, l ≥ 3.

Proof. Valtr [12] shows the construction proving the recurrence g(k, l) ≥
g(k, l − 2) · g(k − 2, l). This construction can be slightly improved.

The set Yk,l with no open k-cup and no open l-cap can be constructed
inductively from the sets L = Yk,l−2, S = Yk−2,l as follows.

The points of L divide the plane into t = |L| + 1 vertical strips. For
i = 1, . . . , t place a tiny copy Si of S into the strip i in such a way that all lines
determined by a pair of points in Si go below L and all lines determined by
a pair of points in L go above Si. See Valtr [12] for details. The modification
is such that instead of the outer sets S1 and St we can place tiny copies of
Yk−1,l.

The lower bound g(k, l) ≥ 2(
k/2+l/2−2

k/2−1 ) for k, l even can be proved by
induction from the recurrence g(k, l) ≥ g(k, l− 2) · g(k − 2, l). See Valtr[12].

5.2 Other improvements

Let Xk,l be the maximal set of points with neither open k-cup nor open l-cap.

Lemma 7. Every point p ∈ Xk,l is either the left end point of open (k−1)-cup
or the right end point of open (l − 1)-cap.

Let us note, that p cannot be both the left end point of open (k− 1)-cup
and the right end point of open (l− 1)-cap, because we would have an open
k-cup or open l-cap. See the second figure in the proof of lemma 2.

Proof. Assume that there is a point p for which none of the conditions hold.
Then we can double the point p to the points p and p′. Consider the vertical
line passing thought p and rotate it very slightly counter clockwise. Denote
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this line by l. Line l is much steeper than any other line determined by two
points in Xk,l. Now shift p′ for very small ε along l. Denote the set by X ′

k,l.
The set X ′

k,l contains neither an open k-cup nor an open l-cap. If there
will be such a cup, resp. cap then it has to contain both points p and p′,
otherwise it correspond to to an open k-cup, resp. open l-cap in Xk,l. Denote
this cup, resp. cap by C. Since p and p′ are neigbours in X ′

k,l, they must
be neighbours also in C. The line pp′ is much steeper than any other line in
X ′

k,l so the points p, p′ can be only on the left end of an open cup or on the
right end of an open cap. If there is an open k-cup or an open l-cap in X ′

k,l

then we have an open (k− 1)-cup, resp. open (l− 1)-cap in original set Xk,l.
By this construction we got the set X ′

k,l with neither an open k-cup nor an
open l-cap and with more points than Xk,l. That contradict its maximality.

There is a symmetric version of this lemma where you change the words
left to right and vice-versa. The lower bound on g(k, l) can be further im-
proved by an application of lemma 7 or by its symmetric version.
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[8] J. Matoušek: Lectures on discrete geometry, Springer 2002.

10
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