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Abstract

Spider graphs are the intersection graphs of subtrees of subdivisions
of stars. Thus, spider graphs are chordal graphs that form a common
superclass of interval and split graphs. Motivated by previous results on
the existence of Hamilton cycles in interval, split and chordal graphs, we
show that every 3/2-tough spider graph is hamiltonian. The obtained
bound is best possible since there are (3/2 − ε)-tough spider graphs that
do not contain a Hamilton cycle.

1 Introduction

We study the existence of Hamilton cycles in a special class of graphs with an
additional toughness assumption. The notion of toughness is well-established and
closely related to hamiltonian graphs [8, 9]. A graph G is β-tough if for every set
A of its vertices, G \ A is connected or the number κ(G \ A) of its components
does not exceed |A|/β. Clearly, if G is hamiltonian, then G is 1-tough (but the
converse does not hold). A famous conjecture of Chvátal [6] from 1973 asserts
that the converse holds at least in an approximate sense:

Conjecture 1. There exists a constant β such that every β-tough graph is hamil-
tonian.
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Conjecture 1 was believed to be true with β = 2, but in 2000, Bauer, Broersma
and Veldman [1] provided a construction of (9/4 − ε)-tough graphs that are not
hamiltonian (for every ε > 0). The close connection between toughness and
hamiltonicity can be demonstrated on the concept of 2-walks, closed spanning
walks visiting each vertex at most twice: every 4-tough graph has a 2-walk and
there exist (17/24 − ε)-tough graphs with no 2-walk [7]. Let us remark that a
conjecture of Jackson and Wormald [10] asserts that every 1-tough graph has a
2-walk. A result of Win [15] in this direction asserts that every 1-tough graph
contains a spanning tree with maximum degree three. In particular, it has a
closed spanning walk visiting each vertex at most three times.

Conjecture 1 has been established for several special classes of graphs includ-
ing interval graphs, split graphs and chordal graphs. Interval graphs are the
intersection graphs of intervals on a line, i.e., a graph is interval if there exists a
family of intervals that correspond to its vertices and two intervals intersect if and
only if the corresponding vertices are adjacent. The paper of Keil [11] contains
an implicit proof that every 1-tough interval graph is hamiltonian. Since every
hamiltonian graph must be 1-tough, this result is the best possible.

Split graphs are graphs whose vertex set can be partitioned into an indepen-
dent set and a clique. Kratsch, Lehel and Muller [12] showed that every 3/2-tough
split graph is hamiltonian. Since there exists a (3/2 − ε)-tough split graph that
is not hamiltonian [6, p. 223] (for every ε > 0), their result is the best possible.
Finally, chordal graphs are graphs that do not contain an induced cycle of length
four or more. The best known result for this class of graphs is the result of Chen
et al. [5] that every 18-tough chordal graph is hamiltonian. On the other hand, a
construction of (7/4− ε)-tough non-hamiltonian chordal graphs was given in [1].
It was conjectured in [2] that every 2-tough chordal graph is hamiltonian. Let us
notice at this point that chordal graphs form a superclass of both interval graphs
and split graphs.

All the three classes of graphs mentioned above (interval graphs, split graphs
and chordal graphs) have nice characterizations as intersection graphs of con-
nected subgraphs of special classes of graphs. A graph G is the intersection
graph of subgraphs H1, . . . , Hn of a graph H if the vertices of G one-to-one corre-
spond to the subgraphs H1, . . . , Hn and two vertices of G are adjacent if and only
if the corresponding subgraphs intersect. Note that every graph is an intersection
graph of (connected) subgraphs of a graph.

In this paper, we study a subclass of chordal graphs that is a proper superclass
of interval and split graphs. Its definition is motivated by characterizations of
interval, split and chordal graphs as intersection graphs of special families of trees
(see, e.g., [3]): a graph is an interval graph if and only if it is an intersection graph
of subpaths of a path. A graph is a split graph if and only if it is an intersection
graph of subtrees of a star, i.e., a graph K1,n. Finally, a graph is chordal if and
only if it is an intersection graph of subtrees of a tree.

Spiders form a class of graphs that contain both paths and stars. A graph is
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a spider if it is a subdivision of a star. The vertex of the spider of degree greater
than two (if any) is called the central vertex and the paths from its leaves to the
central vertex are legs. A graph G is a spider graph if it is an intersection graph
of subtrees of a spider. Clearly, every interval graph and every split graph is a
spider graph, and spider graphs are chordal.

We show that every 3/2-tough spider graph is hamiltonian, matching the
bound obtained for the split graphs in [12]. Since there are (3/2 − ε)-tough
non-hamiltonian split graphs, our bound is the best possible. We obtain our
result for spider graphs using the result on the existence of Hamilton cycles in 1-
tough interval graphs as a black box. Our argument employs Hall’s theorem and
the matroid intersection theorem. In this way, we provide an alternative proof
that 3/2-tough split graphs are hamiltonian. In order to make the paper more
accessible to the reader, we first show how our arguments apply to split graphs,
and later we generalize the proof to the class of spider graphs. We believe that our
work might be useful in improving the bound on the toughness that guarantees
the existence of a Hamilton cycle in chordal graphs.

2 Hamilton cycles in split graphs

We first provide a short proof that 3/2-tough split graphs are hamiltonian. We
believe that presenting our arguments first for split graphs will help the reader
follow the proof of the general result. The reader is also invited to consult Figure 1
where the steps of the proof presented in this section are visualized. We start
with establishing the following auxiliary lemma:

Lemma 1. Let G be a split graph with the parts A and B where A is the inde-
pendent set and B is the clique. Let G∗ be the multigraph obtained from G by
replacing each edge of G by a pair of parallel edges. If G is 3/2-tough, then G∗

contains a spanning bipartite subgraph G′ with the parts A and B such that the
degree of every vertex of A in G′ is three and the degree of every vertex of B in
G′ is at most two.

Proof. We first form an auxiliary bipartite graph H as follows: for every vertex
a ∈ A, H contains three vertices a1, a2 and a3, and for every vertex b ∈ B, H
contains two vertices b1 and b2. Vertices ai and bj are joined by an edge if the
vertices a and b are adjacent in G. Let A′ and B′ be the parts of G′ comprised
of the vertices corresponding to A and B, respectively.

We show that H contains a matching M covering the vertices of A′. If this
is not the case, then (by Hall’s theorem, see e.g. [4] if necessary) there exists a
subset A′

0 ⊆ A′ such that |NH(A′
0)| < |A′

0|. Let A0 be the set of the vertices a
such that A′

0 contains at least one vertex of the triple corresponding to a. Clearly,
|A0| ≥ |A′

0|/3. Let B0 = NG(A0). By the construction of H , |B0| = |NH(A′
0)|/2.
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We infer the following:

|NG(A0)| = |B0| = |NH(A′
0)|/2 < |A′

0|/2 ≤ 3|A0|/2 .

Observe that the vertices of A0 are isolated in the graph G \ B0. Since |B0| <
3|A0|/2, the graph G is not 3/2-tough.

We have shown that H contains a matching M that covers the vertices of A′.
Consider the following subgraph G′ of G∗: two vertices a ∈ A and b ∈ B are
joined by an edge if M contains an edge aibj for some i ∈ {1, 2, 3} and j ∈ {1, 2}.
If there are two such edges in M , G′ contains the pair of parallel edges between
a and b. The graph G′ contains no edges between vertices of B. Since M covers
the vertices of A′, the degree of each vertex a ∈ A is three in G′. On the other
hand, by the construction of H , the degree of each vertex b ∈ B is at most two
in G′.

The core of our argument is the matroid intersection theorem. We refer the
reader to the monographs [13, 14] for an introduction to matroid theory.

Theorem 2 (Matroid intersection theorem). Let M1 and M2 be two ma-
troids on the same support set X. There exists a subset of X of size N that is
independent in both M1 and M2 if and only if the following holds for all subsets
Y of X:

rM1
(Y ) + rM2

(X \ Y ) ≥ N

where rMi
is the rank function of the matroid Mi.

We now establish another auxiliary lemma:

Lemma 3. Let G be a split graph with the parts A and C where A is the inde-
pendent set and C is the clique. If G is 3/2-tough, then G contains a subgraph
G′′ comprised of disjoint paths such that each vertex of A is an internal vertex of
a path of G′′.

Proof. Let G′ be a subgraph of G∗ with the properties described in the statement
of Lemma 1. We define two matroids M1 and M2 on the set E(G′). The matroid
M1 is the cycle matroid of G′, i.e., a set Y ⊆ E(G′) is independent in M1 if
and only if it is acyclic. In particular, the set comprised of two parallel edges
is dependent. The second matroid M2 is a special type of transversal matroid
defined as follows: a set Y ⊆ E(G′) is independent in M2 if and only if each
vertex of A is incident with at most two edges of Y .

If there exists a set Y ⊆ E(G′) of size 2|A| that is independent in both M1 and
M2, then the edges of Y form a subgraph G′′ of G that is comprised of disjoint
paths such that each vertex of A is an internal vertex of a path of G′′. Indeed,
since Y is independent in M1, G′′ is acyclic (and simple). Since the size of Y is
2|A| and Y is independent in M2, each vertex of A is incident with exactly two
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(i) a graph G

(ii) the graph G∗ and a subgraph G′

the edges of the clique of G∗ are omitted

(iii) a subgraph G′′ (iv) a Hamilton cycle

Figure 1: Main steps of the construction of a Hamilton cycle in a split graph.

edges of Y . Finally, since the degrees of vertices of C in G∗ are at most two, the
subgraph G′′ is comprised of one or more disjoint paths.

We now verify the condition of Theorem 2 for the existence of a set of size
2|A| independent in both M1 and M2. Assume that the condition is violated for
a set Y ⊆ E(G′), i.e., rM1

(Y ) + rM2
(E(G′) \ Y ) < 2|A|. First, we show that we

can assume that each vertex v of A is incident to none or three edges of Y . If v
is incident with one edge, then remove this edge from Y . This removal decreases
the rank of Y in M1 by one and preserves the rank of its complement in M2.
Hence, the new set also violates the condition of Theorem 2. If v is incident with
two edges of Y , include the remaining edge incident with v into the set Y . This
decreases the rank of E(G′) \ Y in M2 by one and increases the rank of Y in M1

by at most one. Again, the new set also violates the inequality.
Let C1, . . . , Cm be the components of the subgraph spanned by the edges of

Y . Let k be the number of vertices of A incident with three edges of Y and let
ki be the number of such vertices contained in the component Ci, i = 1, . . . , m.
The rank of E(G′) \ Y in M2 is 2(|A| − k). We bound the rank of Y in M1,
which equals to the sum of sizes of spanning trees of the components C1, . . . , Cm.
The component Ci contains ki vertices of A and at least 3ki/2 vertices of B
(because of the degree condition). Hence, the size of its spanning tree is at least
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d5ki/2e − 1 ≥ 2ki. We can now conclude that:

rM1
(Y ) + rM2

(E(G′) \ Y ) ≥
m
∑

i=1

ki + 2(|A| − k) = 2|A| .

This contradicts our assumption that Y violates the condition of Theorem 2 and
consequently the existence of the desired subgraph G′′ is established.

We are now ready to provide a proof that 3/2-tough split graphs are hamil-
tonian:

Theorem 4. Every 3/2-tough split graph G contains a Hamilton cycle.

Proof. Let A be the part of G corresponding to the independent set. By Lemma 3,
G contains a subgraph G′′ comprised of disjoint paths such that every vertex of
A is an internal vertex of a path G′′. Since the end vertices of the paths are
all contained in the part corresponding to the clique of G, they can be joined
together. We conclude that G is hamiltonian.

3 Hamilton cycles in interval graphs

When proving our main result on the existence of Hamilton cycles in spider
graphs, we will be facing two obstacles while extending the proof presented in
Section 2 to spider graphs. The first is that the vertices not contained in the
“central clique” do not form an independent set but rather an union of interval
graphs. In this section, we study hamiltonicity of interval graphs in order to
construct such cycles with additional properties needed for arguments later. We
start by recalling a result from [11] on the existence of Hamilton cycles in interval
graphs that was mentioned in Section 1:

Theorem 5. An interval graph G is hamiltonian if and only if G is 1-tough.

Using Theorem 5, we show that there exist Hamilton cycles of a special type
in certain 1-tough interval graphs:

Lemma 6. Let G be the intersection graph of subpaths of a path P = w1 · · ·w`,
` ≥ 2. Let v1, . . . , vn, n ≥ 3, be the vertices of G and P1, . . . , Pn subpaths of P
corresponding to the vertices v1, . . . , vn. Assume that the subpath P1 consists of
the vertex w1 alone and P1 is the only such subpath among P1, . . . , Pn. Let Pα be
the shortest subpath containing w1 that is different from P1, and Pβ be the longest
such subpath. If G is 1-tough, then G contains a Hamilton cycle on which the
vertices vα, v1 and vβ are consecutive.
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Proof. Note first that α 6= β since G is 1-tough. We modify G into a different
interval graph G′. Let us define a new collection of subpaths of P :

P ′
i =











Pi if i ∈ {1, α, β},
Pi if w1 6∈ Pi, and

Pi \ w1 otherwise.

Let G′ be the intersection graph of subpaths P ′
1, . . . , P

′
n of the path P . The

vertices of G′ can be identified with the vertices of G, and G′ then forms a
subgraph of G. Note that the vertex v1 has degree two in G′ and its only two
neighbors are the vertices vα and vβ.

We show that G′ is 1-tough. Let A be a subset of V (G′). Next, we distinguish
two cases based on whether A contains the vertex vα or not. If vα 6∈ A, then the
components of G \ A and G′ \ A are precisely the same: each path from which
w1 was removed can be prolonged back to w1 without changing the structure of
G′ \ A. Since G is 1-tough, κ(G′ \ A) = κ(G \ A) ≤ |A|.

The other case to consider is that vα ∈ A. Let A′ = A \ {vα} and let B
be the set of all vertices of G corresponding to the paths of length at least two
that contain the vertex w1. We have already established that κ(G′ \ A′) ≤ |A′|.
Assume that κ(G′ \ A) > |A|. Then, the vertex vα is adjacent to at least three
different components of G′\A. Let C1 and C2 be two of the components of G′\A
such that neither C1 nor C2 contains the vertex v1.

We claim that B ⊆ A: otherwise, consider a vertex b ∈ B \ A. Since Pα is
the shortest path containing w1 among P2, . . . , Pn, it holds that NG(vα) ⊆ NG(b).
Consequently, NG′(vα) \ {v1} ⊆ NG′(b), b is adjacent to a vertex of C1 as well as
to a vertex of C2 in G′ and C1 and C2 are not two distinct components of G′ \A.
We conclude that A contains all vertices vi such that Pi contains w1. Hence,
B ⊆ A and the components of G \ A and G′ \ A are the same. The assumption
that G is 1-tough yields that κ(G′ \ A) = κ(G \ A) ≤ |A|.

Since G′ is 1-tough, it has a Hamilton cycle by Theorem 5. Such a Hamilton
cycle is also a Hamilton cycle of G and the vertices vα, v1 and vβ are consecutive
in the cycle since the only two neighbors of v1 in G′ are the vertices vα and vβ.
The lemma has been established.

In our considerations in Section 4, we will be adding new vertices to interval
graphs in order to increase their toughness. If G is the intersection graph of
subpaths P1, . . . , Pn of a path P = w1 · · ·w`, there are several different ways of
adding new paths such that the resulting intersection graph is 1-tough. However,
if we assume that all the new paths contain the vertex w1, then there is a unique
minimal set of paths with this property. We state more precisely and prove this
claim in what follows. In order to simplify our notation, we write [wi, wj] for
the subpath of P between the vertices wi and wj (inclusively) and 〈P1, . . . , Pn〉
denotes the intersection graph of subpaths P1, . . . , Pn.
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Lemma 7. Let G be the graph 〈P1, . . . , Pn〉 for a family of subpaths P1, . . . , Pn

of a path P = w1 · · ·w`, ` ≥ 2, such that G is not 1-tough and assume that
P1 = [w1, w1]. There exist integers ` ≥ k1 ≥ · · · ≥ kr ≥ 2 with the following
property: the graph 〈P1, . . . , Pn, Q1, . . . , Qr〉 for Q1 ⊇ · · · ⊇ Qr ⊇ [w1, w1] is
1-tough if and only if [w1, wki

] ⊆ Qi for every i = 1, . . . , r.

Note that it can be assumed that P1 = [w1, w1] without loss of generality since
every intersection graph of subpaths of a path can be modified to an intersection
graph satisfying this condition.

The integers k1, . . . , kr can be computed in the following way: for i = 2, . . . , `,
let τi be the following maximum:

τi =



























max
A⊆V (G)

κ(〈P1, . . . , Pn, [w1, wi−1]〉 \ A) − |A|

if 〈P1, . . . , Pn, [w1, wi−1]〉 is disconnected, and

max
A⊆V (G),A 6=∅

κ(〈P1, . . . , Pn, [w1, wi−1]〉 \ A) − |A| otherwise.

It is important that the maximum is taken over subsets of the vertices of G,
not of the vertices of 〈P1, . . . , Pn, [w1, wi−1]〉. It is easy to see that all τi are
non-negative integers and τ2 ≥ τ3 ≥ · · · ≥ τ` ≥ 0. Moreover, if the graph
〈P1, . . . , Pn, Q1, . . . , Qr〉 from Lemma 7 is 1-tough, then at least τi of the paths
Q1, . . . , Qr must contain the subpath [w1, wi], i.e., it must hold that kτi

≥ i.
In fact, this fully determines the integers k1, . . . , kr (see Figures 2 and 3 for an
example) as stated in the next lemma. Let us recall that two sequences a1, . . . , aA

and b1, . . . , bB of integers are conjugate if A = b1, B = a1, ai is the number of
bj ’s greater or equal to i and bi is the number of aj ’s greater or equal to i.

Lemma 8. Let G = 〈P1, . . . , Pn〉 as in Lemma 7 and let τ2, . . . , τ` be the numbers
defined as above. The sequence k1, . . . , kr from Lemma 7 is conjugate to the
sequence τ2, τ2, . . . , τ`, i.e., the number r is equal to τ2 and exactly τi − τi+1 of the
numbers kj are equal to i.

Since the sequences k1, . . . , kr and τ2, τ2, . . . , τ` are conjugate, the following
lemma immediately follows:

Lemma 9. It holds that τki+1 ≤ i − 1 for every i = 1, . . . , r (setting τ`+1 = 0).

In order to further simplify the notation used in the proof of Lemmas 7 and 8,
we set P = {P1, . . . , Pn} and Q = {Q1, . . . , Qr} and write, e.g., 〈P,Q〉 for the
intersection graphs of paths contained in the sets P and Q. We now proceed with
the postponed proof:

Proof of Lemmas 7 and 8. First, we establish that if the condition of Lemma 7 is
violated, then 〈P,Q〉 is not 1-tough. Assume that the path Qi does not contain
[w1, wki

]. Since the sequences τ2, τ2, . . . , τ` and k1, . . . , kr are conjugate, less than
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w1 w2 w3 w4 w5

P =

(i) the graph G = 〈P1, . . . , P7〉 and its intersection representation

(ii) the representaion of the graph 〈P1, . . . , P7, [w1, w1]〉

τ2 = 5 − 2 = 3

(iii) the representaion of the graph 〈P1, . . . , P7, [w1, w2]〉

τ3 = 4 − 2 = 2

(iv) the representaion of the graph 〈P1, . . . , P7, [w1, w3]〉

τ4 = 2 − 1 = 1

(v) the representaion of the graph 〈P1, . . . , P7, [w1, w4]〉

τ5 = 2 − 1 = 1

(vi) the representation of the “minimal” 1-tough supergraph of G

k1 = 5, k2 = 3 and k3 = 2

Figure 2: An example of computation of the integers k1, . . . , kr and τ2, τ2, . . . , τ`

from Lemmas 7 and 8 (also see Figure 3). The subpaths P1, . . . , P7 are depicted
by ovals, the added subpaths by bold ovals and the elements of sets witnessing
the equalities in the maximum in the definition of τi by dashed ovals.
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τ2 = 3 τ2 = 3 τ3 = 2 τ4 = 1 τ5 = 1

k1 = 5

k2 = 3

k3 = 2

Figure 3: The conjugation of the sequences k1, . . . , kr and τ2, τ2, . . . , τ` from the
example in Figure 2.

τki
of the paths Q1, . . . , Qr contain [w1, wki

]. Let A′ be the set of the vertices
corresponding to the subpaths Qj that contain the vertex wki

. Note that |A′| <
τki

.
By the definition of τki

, there exists a set A ⊆ V (G) such that the graph
〈P, [w1, wki−1]〉\A has at least |A|+ τki

components. Note that it must hold that
|A| + τki

≥ 2: if the graph 〈P, [w1, wki−1]〉 is disconnected, then τki
≥ 2 follows

directly from the definition, and if the graph is connected, then |A| ≥ 1 (the
maximum in the definition is taken only over non-empty sets A) and τki

≥ 1 (if
τki

= 0, all the numbers k1, . . . , kr would be at least ki +1). Since A′ contains all
the paths among Q1, . . . , Qr that are superpaths of [w1, wki

], it follows that

κ(〈P,Q〉 \ (A ∪ A′)) ≥ κ(〈P, [w1, wki−1]〉 \ A).

The inequalities κ(〈P, [w1, wki−1]〉\A) ≥ |A|+τki
and |A∪A′| < |A|+τki

together
yield that the graph 〈P,Q〉 is not 1-tough.

Assume now that the condition of Lemma 7 is satisfied. Clearly, it is enough
to show that the graph 〈P, [w1, wk1

], . . . , [w1, wkr
]〉 is 1-tough. Let us consider a

subset A of the vertices of the graph 〈P, [w1, wk1
], . . . , [w1, wkr

]〉. Let i be the
smallest index such that the vertex corresponding to the path [w1, wki

] is not
contained in A. If there is no such i, set i = r + 1 (and for completeness, define
kr+1 = 1). If ki = `, then 〈P, [w1, wk1

], . . . , [w1, wkr
]〉 \ A is connected and there

is nothing to prove. By the choice of i, the set A contains at least i − 1 vertices
corresponding to the subpaths [w1, wkj

].
Let A′ = A ∩ V (G). By the choice of i, we have the following:

κ(〈P, [w1, wk1
], . . . , [w1, wkr

]〉 \ A) = κ(〈P, [w1, wki
]〉 \ A).

If the graph 〈P, [w1, wki
]〉 is connected and the set A′ is empty, then the graph

〈P, [w1, wk1
], . . . , [w1, wkr

]〉 \ A is connected and there is nothing to prove. If
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〈P, [w1, wki
]〉 is disconnected or A′ is non-empty, then the following holds by

Lemma 9:

κ(〈P, [w1, wki
]〉 \ A′) ≤ |A′| + τki+1 ≤ |A′| + i − 1 ≤ |A|.

We conclude that the graph 〈P, [w1, wk1
], . . . , [w1, wkr

]〉 is 1-tough.

4 Hamilton cycles in spider graphs

The proof of our main result consists of three steps as in the case of the proof
presented in Section 2. In the first step (that corresponds to Lemma 1), we assign
each leg of a spider vertices corresponding to subtrees containing the central
vertex in such a way that each leg is assigned a sufficient number of such vertices
but each such vertex is assigned to at most two legs. In the second step (the
counterpart of Lemma 3), we use the assignment to build paths covering all the
vertices corresponding to subtrees not containing the central vertex of the spider.
In the final step, we connect the paths to obtain a Hamilton cycle. The next
lemma describes the first step of the proof:

Lemma 10. Let G be the intersection graph of subtrees T1, . . . , Tn of a spider
S with m legs of lengths `1, . . . , `m. Let Li = wi

1 · · ·w
i
`i

be the legs of S where
w1

1 = · · · = wm
1 is the central vertex of the spider. Assume that exactly the first n0

subtrees among T1, . . . , Tn contain the central vertex of S. Let Gi, i = 1, . . . , m,
be the intersection graph formed by the subtrees of S fully contained in the path
wi

2 · · ·w
i
`i

and the single-vertex subtree formed by the vertex wi
1. Finally, let 2 ≤

ki
1 ≤ · · · ≤ ki

ri
be the numbers from the statement of Lemma 7 for the graph Gi.

If the graph G is 3/2-tough and each Gi consists of precisely two components,
then there exists an assignment of subtrees T1, . . . , Tn0

to the legs of S with the
following properties (it is allowed to assign the same subtree twice to the same
leg):

1. each leg Li is assigned at least 3j − 2 subtrees containing the vertex wi
ki

j

for

j = 1, . . . , ri − 1,

2. each leg Li is assigned at least 3ri − 3 subtrees containing the vertex wi
2 =

wi
ki

ri

, and

3. each subtree Ti is assigned at most twice.

At the first sight, one would expect that a leg Li should be assigned 3j subtrees
containing the vertex wi

ki
j

, i.e., three subtrees per each vertex wi
ki

j

. However,

this requirement is too strong and there are 3/2-tough spider graphs that do not
admit such an assignment. We will overcome the deficit in the number of assigned
subtrees using Lemma 6 later.
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Proof of Lemma 10. As in the proof of Lemma 1, the core of our argument is
Hall’s theorem. We first construct an auxiliary bipartite graph H with parts
A and B. The part A consists of

∑m
i=1(3ri − 3) vertices ui

j where i = 1, . . . , m
and j = 1, . . . , 3ri − 3 (they correspond to the demands of the legs). The part
B consists of n0 vertices u′

1, . . . , u
′
n0

corresponding to the subtrees T1, . . . , Tn0
.

A vertex ui
j is joined by an edge to a vertex u′

i′ if the subtree Ti′ contains the
vertex wi

ki

d j+2

3 e
, i.e., the subtree Ti′ can fulfil the demand corresponding to the

integer ki

d j+2

3 e
. Clearly, the desired assignment exists if and only if H contains a

subgraph H ′ such that the degree of each vertex of A is one in H ′ and the degree
of each vertex of B is at most two (assign each leg Li the subtrees matched to
the vertices ui

1, . . . , u
i
3ri−3). By Hall’s theorem, the existence of the subgraph H ′

is equivalent to the following:

|A′|/2 ≤ |NH(A′)| for every subset A′ ⊆ A.

Assume that the inequality is violated for a subset A′ of A. Under this assump-
tion, we construct a non-empty subset V of vertices of G such that κ(G \ V ) >
3|V |/2 > 1.

Let V0 be the set of vertices of G corresponding to the vertices of H contained
in NH(A′). In the following paragraphs, for each i = 1, . . . , k, we construct a
subset Vi of the vertices corresponding to subpaths of the path wi

2 · · ·w
i
`i

and
define a number di. Consider an integer i = 1, . . . , m. If A′ contains none of
the vertices ui

1, . . . , u
i
3ri−3, set Vi = ∅ and di = 0. Otherwise, let di = |A′ ∩

{ui
1, . . . , u

i
3ri−3}|. By the construction of H , we may assume without loss of

generality that A′∩{ui
1, . . . , u

i
3ri−3} = {ui

1, . . . , u
i
di
}. Moreover, di can be assumed

to be equal to either 3j − 2 for some j or 3ri − 3. We deal with these two cases
separately.

We first consider the case when di = 3j−2 for some j ∈ {1, . . . , ri−1}. It can
be assumed without loss of generality that ki

j > 2 (otherwise, add the vertices
ui

di+1, . . . , u
i
3ri−3 to A′; since this preserves NH(A′), we can proceed with the en-

larged set A′). Let G′
i be the intersection graph of subpaths of the path wi

2 · · ·w
i
`i

(fully contained in this path) and the paths [wi
1, w

i
1] and [wi

1, w
i
ki

j
−1]. Since ki

j > 2

and G′
i is comprised of two components (one of them being the isolated vertex

corresponding to the subpath [wi
1, w

i
1]), G′

i is connected. By Lemma 8, there ex-
ists a non-empty subset Vi of vertices of Gi such that j ≤ κ(G′

i\Vi)−|Vi|. Clearly,
Vi does not contain the added vertex corresponding to the trivial path [wi

1, w
i
1].

The graph G \ (V0 ∪ Vi) contains at least j + |Vi| − 1 components comprised only
of the vertices corresponding to the subpaths of the path wi

2 · · ·w
i
`i
. A simple

calculation yields that the number of such components is at least the following
(recall that Vi is non-empty):

j + |Vi| − 1 = di/3 + 2/3 + |Vi| − 1 ≥ di/3 + 2|Vi|/3 .

12



In the latter case, di = 3ri−3. Since Gi is disconnected, ri ≥ 2. By Lemma 8,
there exists a set Vi of vertices of Gi such that ri = κ(Gi \ Vi) − |Vi|. Clearly,
Vi does not contain the added vertex corresponding to the trivial path [wi

1, w
i
1].

Note that the graph G \ (V0 ∪ Vi) contains at least ri + |Vi| − 1 ≥ di/3 + |Vi|
components comprised only of the vertices corresponding to the subpaths of the
path wi

2 · · ·w
i
`i
.

Let us summarize the properties of V0, . . . , Vm and the numbers di:

• |V0| < |A′|/2 =
∑m

i=1 di/2 (by the definitions of V0 and di), and

• the graph G\(V0∪Vi) contains at least 2|Vi|/3+di/3 components comprised
only of vertices corresponding to the subpaths of the path wi

2 · · ·w
i
`i
.

Set now V = V0 ∪ · · · ∪ Vm. The size of V is bounded by the following:

|V | <
m
∑

i=1

(|Vi| + di/2) (1)

On the other hand, the graph G \ V consists of at least the following number of
components:

m
∑

i=1

(2|Vi|/3 + di/3) (2)

Comparing (1) and (2) yields an immediate contradiction to the fact that G is
3/2-tough.

In the second step of the proof, we connect Hamilton cycles to the vertices
of the central clique to obtain a set of disjoint paths as in the proof for split
graphs. The general idea behind this step of the proof is the following: we
remove the vertices of the central clique from the resulting Hamilton cycles and
obtain several paths (whose end-vertices are adjacent to the vertices of the central
clique). However, we need to be careful to enter and leave the resulting paths
at their different ends. In order to achieve this, we will proceed similarly as in
Lemma 3 but we require in addition that a certain matching of H is contained
in the paths:

Lemma 11. Let H be a bipartite multigraph with parts A and B and let F ⊆
E(H) be a matching covering the vertices of A. If each vertex of A has degree
three and each vertex of B has degree at most two, then there exists a subgraph
H ′ of H comprised of disjoint paths such that F ⊆ E(H ′) and the degree of every
vertex of A in H ′ is two.

Proof. As in the proof of Lemma 3, we define two matroids M1 and M2 on the
set E(H). The matroid M1 is again the cycle matroid H . The second matroid
M2 is a special type of transversal matroid defined as follows: a set Y ⊆ E(H)
is independent in M2 if and only if each vertex of A is incident with at most one

13



edge of Y \ F . If Y ⊆ E(H) is a set of size 2|A| that is independent in both M1

and M2, then each vertex of A is incident with two edges of Y . In particular (see
the proof of Lemma 3), the edges of Y form the desired subgraph H ′.

We now verify the condition of Theorem 2 for the existence of a set of size 2|A|
that is independent in both M1 and M2. Assume that the condition is violated
for a set Y ⊆ E(H), i.e., rM1

(Y )+rM2
(E(H)\Y ) < 2|A|. First, we show that we

can assume that each vertex v of A is incident to none or three edges of Y . If v is
incident with one edge, then remove this edge from Y . This decreases the rank of
Y in M1 by one and increases the rank of its complement in M2 by at most one.
If v is incident with two edges of Y , include the remaining edge incident with v
into the set Y . This decreases the rank of E(H) \ Y in M2 by one and increases
the rank of Y in M1 by at most one. In both the cases, the new set violates the
condition.

The rest of the proof is the same as the proof of Lemma 3: we consider the
components C1, . . . , Cm of the subgraph spanned by Y . Let ki be the number
of vertices of A contained in the component Ci, i = 1, . . . , m. The rank of Y in
M1 is the sum of sizes of spanning trees of the components C1, . . . , Cm that are
at least 2ki each (see the proof of Lemma 3). The rank of E(H) \ Y in M2 is
2(|A| −

∑m
i=1 ki). We can now conclude that:

rM1
(Y ) + rM2

(E(H) \ Y ) ≥

(

m
∑

i=1

2ki

)

+ 2(|A| −
m
∑

i=1

ki) = 2|A| .

Hence, the condition of Theorem 2 is fulfilled and the existence of a subgraph H ′

is established.

We are now ready to prove our main theorem:

Theorem 12. Every 3/2-tough spider graph G is hamiltonian.

Proof. We use the notation of Lemma 1: G is the intersection graph of subtrees
T1, . . . , Tn of a spider S with m legs Li = wi

1 · · ·w
i
`m

where w1
1 = · · · = wm

1 is the
central vertex of S. Assume that exactly the first n0 subtrees contain the central
vertex and let Vc be the set of the vertices of G corresponding to these subtrees.
We can also assume without loss of generality that the subgraph of G that is
the intersection graph of the subtrees that are subpaths of the path wi

2 · · ·w
i
`k

is connected for every i = 1, . . . , k: if this is not the case, the spider S can be
modified to a spider with more legs representing each connected component in a
single leg. In addition, we can also assume that there is a subtree Tj for each leg
Li that is a subpath of Li and Tj does not contain the central vertex (if this is
not the case, the leg Li can be cut without changing the structure of the graph
G).

Let Gi be the interval graph defined in Lemma 10. Observe that each Gi

consists of exactly two components, and one of them is the isolated vertex corre-
sponding to the single-vertex path [wi

1, w
i
1]. Let ri and ki

1, . . . , k
i
ri

be the integers
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as in Lemma 10. Since G is 3/2-tough, each leg of S can be assigned a non-empty
set of the subtrees T1, . . . , Tn0

in the way that is described in Lemma 10. Since
ri ≥ 2 for every i (this follows from the fact that each Li contains a subpath
Tj that does not contain the central vertex), each leg is assigned some of the
subtrees.

Next, we construct another auxiliary interval graph G′
i for each i = 1, . . . , m.

G′
i is the intersection graph of the subpaths that form the graph Gi and the

paths [wi
1, w

i
ki
1

], . . . , [wi
1, w

i
ki

ri

]. By Lemma 7, G′
i is 1-tough. Let ui

1, . . . , u
i
ri

be the

vertices of G′
i corresponding to the paths [wi

1, w
i
ki
1

], . . . , [wi
1, w

i
ki

ri

] and ui
0 be the

vertex corresponding to the single-vertex path [wi
1, w

i
1]. By Lemma 6, G′

i contains
a Hamilton cycle Ci in which the vertices ui

ri
, ui

0 and ui
1 are consecutive.

The vertices corresponding to the subtrees assigned to the leg Li are parti-
tioned into (multi)sets U i

1, . . . , U
i
ri

as follows (the reader is invited to consult Fig-
ure 4): The set U i

1 consists of the vertex corresponding to the subtree containing
the vertex wi

k1
, each U i

j for j = 2, . . . , ri − 1 contains three vertices correspond-
ing to subtrees that contain the vertex wi

kj
and U i

ri
consists of the two vertices

containing wi
kri

. The partitioning is always possible by the properties stated in
Lemma 10. Note that the partitioning does not need to be unique.

Next, we modify the cycles Ci. Let us orient the edges of each Ci in such a
way that the arc from ui

ri
leads to ui

0 (and thus the arc from ui
0 leads to ui

1). The
cycle Ci is modified as follows:

• the vertices ui
0, ui

1 and ui
ri

are removed from the cycle,

• a blue edge is added from the predecessor of ui
ri

in Ci to each of the two
vertices contained in U i

ri
(in case the same vertex is contained twice in U i

ri
,

add two parallel edges),

• a red edge is added from the (single) vertex contained in U i
1 to the successor

of ui
1 in Ci,

• each of the vertices ui
j, j = 2, . . . , ri − 1, is removed from Ci, a red edge

is added from one of the vertices of U i
j to the successor of ui

j in Ci and
two blue edges are added from the predecessor of ui

j to the remaining two
vertices contained in U i

j (adding parallel edges if appropriate).

We have obtained a collection of paths in G such that the internal vertices of the
paths are all the vertices of V (G) \ Vc. Each of the paths starts with a red edge
leading from a vertex of Vc and ends with a fork of two blue edges leading to two
vertices of Vc. Since each subtree was assigned to at most two legs, each vertex
of Vc is incident with at most two colored edges. Let N be the number of these
paths. Note that N ≥ m.

We now construct an auxiliary graph H . Consider the subgraph of G formed
by the N constructed paths. Contract all the inner vertices of each path to a
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(i) Hamilton cycles in graphs G′
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(iii) the collection of paths (red edges are dashed)

Figure 4: An example of the construction of paths in the proof of Theorem 12.
Vertices contained in the central clique (i.e., those of the set Vc) are represented
by Greek letters. Vertices corresponding to subtrees fully contained in the legs
of the spider are drawn as solid circles.
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α β γ ψ χ δ ε ϕ ω

(i) the auxiliary graph H

α γ δ ϕ ω

β ψ χ ε

(ii) the obtained collection of paths in G and the Hamilton cycle

Figure 5: The auxiliary graph H from the proof of Theorem 12 constructed from
the paths depicted in the example in Figure 4. The edges of the subgraph H ′ are
drawn bold, the red edges are dashed, and the edges interconnecting resulting
paths are drawn with dots.

single vertex and remove all the edges that are neither red nor blue. The resulting
graph is H (see Figure 5). Note that H is a bipartite graph with a part A formed
by the vertices corresponding to the N paths and a part B formed by the vertices
of Vc. Each vertex of A is incident with a single red edge and two blue edges. Let
F be the set of red edges. By Lemma 11, there exists a subgraph H ′ of H that
is comprised of paths such that every vertex of A has degree two and is incident
with a single red and a single blue edge. After decontracting the paths, we obtain
a collection of (disjoint) paths in G with the following property:

• each vertex of V (G) \ Vc is contained in a path, and

• every path starts and ends in a vertex of Vc.

Since the vertices of Vc form a clique in G (the subtrees corresponding to them
contain the central vertex of the spider), it is trivial to connect the resulting paths
into a Hamilton cycle of G.

Acknowledgement

The authors would like to thank V́ıt Jeĺınek, Moshe Rosenfeld, Zdeněk Ryjáček
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